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ABSTRACT 

This paper considers the energy-efficient precoding matrix design 
for relay-aided multiuser downlink multiple-input single-output 
wireless systems. The precoders of the base station (BS) and the 
relay station (RS) are designed to maximize the transmit energy 
efficiency, defined as the ratio between the system sum rate and the 
total power consumption, under the quality-of-service constraints of 
the users and the transmit power constraints on the BS and the RS. 
In view of the fact that this precoder design problem is a nonconvex 
fractional programming, a successive Dinkelbach and convex ap­
proximation (SDCA) algorithm is proposed to handle this problem. 
Simulation results are provided to demonstrate the effectiveness of 
the proposed SDCA algorithm, and significant EE improvement as 
the number of antennas at the BS and the RS increases. 

Index Terms- Convex optimization, energy efficiency, beam­
forming designs, relay-aided cOlmnunications, fractional program­
luing. 

1. INTRODUCTION 

The expeditious expansion of wireless networks has resulted in a 
tremendous increase in energy consumption. Thus, the issue of en­
ergy efficiency (EE) in wireless cOlmnunications has drawn increas­
ing attention in both academia and industry recently [1]. Among var­
ious definitions of EE, the most widely used is the ratio between the 
achievable transmission rate and the total power consumption, which 
is usually measured in bits/joule [2, 3]. The resource allocation for 
EE optimization has been extensively studied under various scenar­
ios, e.g.,frequency-selective interference channel [3], point-to-point 
parallel AWGN channel [4], point-to-point multiple-input multiple­
output (MIMO) channel [5, 6], multiple access channel (MAC) [7]. 

The aforementioned works focus on one-hop networks. How­
ever, wireless relaying is indispensable for reliable transmission with 
high throughput in the areas with severe shadowing effect, or re­
mote from the base stations (BSs) [8]. The energy-efficient transmis­
sion design for relay-aided networks is difficult since the signal-to­
interference-plus-noise ratio (SINR) of the users is inevitably a com­
plicated non convex function of the product of the transmission pre­
coders of the BS and the relay station (RS), making the transmission 
design an involved non convex problem. Thus, there are few works 
addressing EE of relay-aided networks. In the literature so far, EE­
optimal relay placement is investigated for one-dimensional cellular 
network [9], energy-efficient noncooperative power control strategy 
is developed for relay-aided single-input single-output (SISO) inter­
ference channel [10], energy-efficient precoder design is devised for 
relay-aided single-user MIMO downlink transmission [ll, 12, 13], 
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and a low complexity EE maximization method is proposed for mul­
tiuser uplink networks [14]. 

In this paper, we consider a relay-aided multiuser downlink sys­
tem consisting of one BS, one RS, and K users. Assuming amplify­
and-forward (AF) relay scheme, we design the precoding matrices 
of the BS and the RS to maximize the EE under the quality-of­
service (QoS) constraints of each individual user and the transmit 
power constraints of the BS and the RS. The resulting energy effi­
ciency maximization (EEM) problem is a nonconvex fractional pro­
gramming [15], and is difficult to solve. A special case, i.e., the 
single-user case, of this EEM problem has been studied in [11] using 
the Dinkelbach's algorithm [15] and alternating optimization method 
[16]. This method, however, is not directly applicable to the mul­
tiuser case due to the inter-user interference. We hence propose 
a successive Dinkelbach and convex approximation (SDCA) algo­
rithm to obtain an approximate solution for the multiuser case. We 
successively approximate the EEM problem by the Dinkelbach's ap­
proximation and a conservative approximation based on the inequal­
ity of arithmetic and geometric means, leading to an approximation 
problem that is convex in the the precoding matrices of the BS and 
the RS, respectively. Then, we can apply the alternating optimization 
method to handle the resulting problem. Finally, simulation results 
are provided to demonstrate the efficacy of the SDCA algorithm. 

2. SIGNAL MODEL AND PROBLEM STATEMENT 

Consider a relay-aided downlink transmission system consisting of 
one BS, one half-duplex AF RS, and K single-antenna users, where 
the BS and the RS are equipped with MB and MR antennas, respec­
tively. Assuming no direct path between the BS and the users, the 
downlink transmission is divided into two phases. In the first phase, 
the BS transmits K data streams (one for each user) to the RS, and 
the transmitted signal can be expressed as 

K 
XB = LbkSk, 

k=l 

where Sk E C is the signal intended for user k, and bk E CM B is the 
corresponding beamformer. In the second phase, the RS amplifies 
and forwards the received signal to the K users by the AF precoding 
matrix RECMRXMR. Let H ECMRXMB denote the MIMO channel 
between the BS and the RS, and gk E CMR denote the multiple-input 
single-output (MISO) channel between the RS and the kth user for 
k = 1, . . .  , K. Then, the received signal at the kth user is given by 

Yk = gk'R(HxB + ZR) + Zk 
= gk'RH (L;;;=lbkSk) + gk'RzR + Zk 

where ZR � CN(O, u�IMR) and Zk � CN(O, uk) are the additive 
Gaussian noises at the RS and the kth user, respectively. 
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Assume that the information signals are standard complex Gaus­
sian distributed, i.e., Sk � CN(O, 1), and that all the users decode 
their received signals using a single-user detection scheme. Then, 
the instantaneously achievable data rate to the kth user is given by 

Rk(B,R) = � log
2
(1 + SINRk) (bits/sec), (1) 

where W is the transmission bandwidth (assumed to be 1 for simpl­
city), B � [b1, ... , bK], and SINRk is given by 

SINR = IgfRHbkl2 k 
Lj# IgfRHbjl2 + O"hligfRI12 + O"�' 

(2) 

where 11·11 denotes the Euclidean norm. On the other hand, the trans­
mit powers of the BS and the RS can be respectively expressed as 

1 H PB(B) = 2(B Tr(BB ), (3) 

PR(B, R) = _1_ (Tr(RHBBHHHRH) + O"hTr(RRH)), (4) 2(R 
where Tr(·) denotes the trace of a matrix, (B and (R are the power 
amplifier efficiencies at BS and RS, respectively, and the factor 1/2 
is due to the two-phase transmission. For simplicity, We assume 
(B = (R = 1. Other power consumptions, including circuit power, 
signal processing power, cooling loss and so on, at BS and RS is also 
taken into account, and is modeled as [17] 

Pc = aM + Psta, (5) 

where aM (a linear function of the number of active antennas M) 
stands for the dynamic power consumption, and Psta stands for the 
static power consumption of the baseband signal processing. 

The EE of this relay-aided downlink system is defined as the 
ratio of the achievable sum rate to the total transmitted power 
PT(B, R) = PB(B) + PR(B, R) + Pc, i.e., 

( ) L:-=l 
Rk(B, R) . . EE B, R = PT(B, R) (bItS/Joule). (6) 

Our goal is to maximize the transmission EE under QoS constraints 
on each user and power constraints on the BS and the RS, i.e., 

maxEE(B,R) 
B,R 

(7a) 

s.t. SINRk 2: "/k, k = 1, ... , K, (7b) 

PB(B) ::; PB, PR(B, R) ::; PR, (7c) 

where "/k is the QoS requirement for user k; PB and PR are the 
power budgets of BS and RS, respectively. Problem (7) is difficult 
to solve since it is a noncovex fractional optimization problem. 

3. SUCCESSIVE DINKEL BACH AND CONVEX 

APPROXIMATION (SDCA) ALGORITHM 

3. 1. Dinkelbach's Algorithm 

In view of the fractional objective function, we apply the Dinkel­
bach's algorithm, which has been extensively used to handle frac­
tional programming, to the EEM problem (7). Specifically, given 
feasible precoding matrices B(n-l) and R(n-l) satisfying (7b), 
(7c), we consider to solve the following optimization problem: 

max EE(B,R I B(n-l),R(n-l)) (Sa) 
B,R 

S.t. SINRk 2: ,,/k, Vk, (Sb) 

PB(B) ::; PB, PR(B, R) ::; PR, (Sc) 
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where 

EE(B, R I B(n-l), R(n-l)) 
K 

� 2.: Rk(B,R) - EE(n-l). PT(B,R), 
k=l 

(9) 

in which 
(10) 

Solving problem (S) is difficult due to the coupling structure of B 
and R and the nonconcave SINR functions, SINR1, ... ,SINRK. 

3.2. SCA-based Algorithm to Problem (S) 

Since the variables Band R are coupled in problem (S), we consider 
the alternating optimization method, i.e., alternatingly optimize one 
variable with the other fixed. However, the subproblems for optimiz­
ing Band R are still non convex due to the non concave SINR func­
tions, which appear in the objective function in (Sa) and in constraint 
(Sb). To cope with this, let us define Pk(B, R) as the interference 
plus noise power (the denominator of SINRk given by (2» at the kth 
user, i.e., 

Pk(B, R) � 2.: IgfRHbjl2 + O"hligfRI12 + O"�, (l1) 
j# 

and equivalently reformulate constraint (Sb) as [IS, Appendix II]: 

Re{gfRHbd 2: ,,/;/2. Pk(B,R)1/2, k = 1, ... ,K, (l2) 

where Re{-} denotes the real part of a complex number. Note that 
the constraints in (l2) are second-order cone constraints on Band 
R, respectively. Next, we tackle the nonconcave objective function 
based on the successive convex approximation (SeA) method. 

For ease of exposition, let us introduce the slack variables 
{tk}k'=l and equivalently reformulate problem (S) as 

s.t. SINRk 2: tk, Vk, (l3b) 

(l3c) 

(l3d) 

Re{gfRHbd 2: ,,/;/2. Pk(B,R)1/2, Vk, 

PB(B) ::; PB, PR(B, R) ::; PH-

Similar to (Sb), the constraints in (13b) can be written as 

{ H } 1/2 ( ) 1/2 Re gk RHbk 2: tk . Pk B,R ,Vk. (14) 

However, the constraints in (14) are still hard to handle since, in 
contrast to "/k, tk is a variable for k = 1, ... ,K. In view of this, we 
consider the inequality of arithmetic and geometric means [19]: 

(15) 

where the equality holds when <p = jOJb. Therefore, by applying 
(15) to (14), problem (l3) can be conservatively approximated by 

K 
max 2.: � log

2
(1 + tk) - EE(n-l) . PT(B, R) (16a) 

B,R, k=l {td [<=1 

S.t. Re{gfRHbk} 2: 
<pk'lPk(B,:) + <Pktk

, Vk, (l6b) 

Re{gfRHbd 2: ,,/;/2. Pk(B, R)1/2, Vk, (16c) 

PB(B) ::; PB, PR(B, R) ::; PR, (16d) 



where <Pk > 0, k = 1, ... , K, are parameters to be judiciously 
assigned. Observing that the optimal {tdf=1 must satisfy the con­
straints in (16b) with equality, we further rewrite problem (16) as 

K 
1 

�� {; 2Iog2(l+Tk(B, R, <Pk)) - EE(n-l) FT(B, R) (17a) 

s.t. Re{g�RHbk} 2: 1'�/2 . Pk(B, R)I/2, 'v' k, (17b) 

FE(B) :s: PE, FR(B, R) :s: PR, (17c) 

where we have replaced tk by 

Note that problem (17) is convex if either B or R is fixed, and hence 
can be handled by alternating optimization method. Moreover, ac­
cording to (13b) and (15), we have 

Since the optimal solution of (17) must satisfy Re{g�RHbk} 
Ig�RHbkl, k = 1, ... , K, (19) holds with equality when 

rI. Pk(B,R) f:, 

,+,k = Re{g�RHbd = <h(B, R), k = 1, ... , K (20) 

Therefore, given the feasible point (B(n-l), R(n-I)), of problem 
(8), we choose <Pk = ih(B(n-I),R(n-I)) for k = 1, ... ,K, such 
that, by optimizing either B or R in (17), we can achieve a higher 
objective value to problem (8) compared with that achieved by 
(B(n-I), R(n-l)), which is EE(B(n-I), R(n-l) I B(n-I), R(n-I)) 
= O. To see this, let J(B, R, {<pd k�l) denote the objective func­
tion of problem (17). By (9) and (19), we have 

EE(B(n),R(n-l) I B(n-I),R(n-I)) 
2: J(B(n), R(n-l), {<h(B(n-I), R(n-I))}f=l) 
2: J(B(n-I), R(n-l), {ih(B(n-I), R(n-l))}k�l) 
= EE(B(n-I),R(n-l) I B(n-I),R(n-I)) = 0, (21) 

where B(n) is obtained by optimizing problem (17) with R fixed to 
R (n-I) and <Pk = ih (B(n-I), R (n-I)), k = 1, ... , K, i.e., 

B(n)=arg m:x J(B, R(n-I), {<I>k(B(n-I), R(n-I))}f=l) (22a) 

s.t. Re{g�R (n-I)Hbk} 2: [l'kP(B, R(n-I))] �, 'v' k, (22b) 

FE(B):S: PE, FR(B,R(n-I)):s: PR- (22c) 

Analogous to (21) and (22), updating R by 

R(n)=argm�x J(B(n), R, {<I>k(B(n), R(n-I))}f=l) (23a) 

we have 

S.t. Re{g�RHbkn)} 2: bkP(B(n), R)]!, 'v' k, (23b) 

FR(B(n), R) :s: PR, (23c) 

EE(B(n), R (n) I B(n), R (n-l)) 
2: EE(B(n),R(n-l) I B(n),R(n-I)) = O. (24) 

From (21), (24) and (9), one can further prove that 

EE(B(n),R(n)) 2: EE(B(n-I),R(n-I)). 
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Algorithm 1 SDCA algorithm to problem (7) 

I: Input (B(O),R(O)) satisfying (7b) and (7c); set solution accu-
racy E > 0; 

2: Setn:= 0; 
3: repeat 

4: n = n+ 1; 
5: Obtain B(n) by (22); 
6: Obtain R (n) by (23); 
7: until 

EE(n) _ EE(n-l) ------;-..::..::.,-- :s: E; EE(n-l) 
8: Output (B(n) , R (n)) as an approximate solution to (7). 

Hence, alternatively solving problem (22) and problem (23) achieves 
a nondecreasing sequence of energy efficiency values, {EE(n) };:;:"=O, 
which eventually converges since the achievable energy efficiency is 
upper bounded. Therefore, we come up with the SDCA algorithm 
constituted by the above successive optimization procedures to han­
dle problem (7) as summarized in Algorithm 1. 

3.3. Initialization of the SDCA Algorithm 

The SDCA algorithm needs to be initialized by a feasible point of 
problem (7). However, finding a feasible point of the nonconvex 
constraint set, (7b) and (7c), is difficult. Next, we present a heuristic 
approach based on the idea of zero-forcing bearnforming to find a 
feasible point. 

Assume that ME 2: K and MR 2: K. Let gk = gk/llgkll 
and hk = hk/llhkll , where hk is the kth column of H, for k = 
1, ... , K, and define 

G-k � [gl, ... , gk-I, gk+I, ... , gK], k = 1, ... , K, 

H-k � [hI, ... , hk-I, hk+I, ... , hK ] ' k = 1, ... , K 

Under the assumption that MB 2: K and MR 2: K, we can elimi­
nate the inter-user interference by making R(O) and B(O) in the fol­
lowing structure: 

B(O) = [ Diag( y"iiBl, ... , VPBK) 
O(MB-K)XK 

K 

(25a) 

R(O) = L y'PRkgt(ht)H, (25b) 
k=1 

where gt and ht are the unit-norm zero-forcing vectors obtained 
through complement orthogonal projection associated with G-k and 
H_k. respectively, i.e., 

A� f:, (IMR - G-k(Gl!kG-k)-IGl!k)gk gk = A A A A , 
II(IMR - G-k(Gl!kG-k)-IGl!k)gkll 

A AH A IAH A 
ht � 

(IMR - �-k(�-k�-k)- �-k)�k . 
II(IMR - H_k(Hl!kH-k)-IHl!k)hkll 

By (25), we have 

Ig�R(O)Hb)O)12 = {P
O,
RkPBj '1Igk I12 1IhjI12, ifj = k, 

ifj=l k. 

With the precoder structures given in (25), we aim to allocate the 
transmission powers PEk. PRk, k = 1, ... , K, such that B(O) and 
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Fig. 1. Performance of energy efficiency versus iteration number 
of the SDCA algorithm and the PM algorithm for K = 2, 4, 6 and 
MB =MR =6. 

R(O) satisfy constraints (7b) and (7c). This can be formulated as the 
following optimization problem 

K 
min PR (B(O),R(O)) = LPRk(pBkllhkI12+u�) (26a) 

P%�'i,J<k,R0' k=l 

t 
PRkPEk ·llgkl121lhkl12 s. . u�llgkl12pRk + u� 

2: ,,(k, Vk, (26b) 

K 
L PBk ::; PE (26c) 
k=l 

By the change of variables, PRk In(PRk) and PEk = In(PEk), 
k = 1, ... , K, problem (26) can be converted into the following 
convex optimization problem: 

K 
LePBk ::; PE. 
k=l 

(27c) 

Consequently, if the optimal value of problem (27) is less than or 
equal to PR, then the associated precoder given by (25) is a feasible 
point of problem (7). 

Note that, since the associated feasibility problem of problem 
(7) is itself a nonconvex problem, there is no efficient method to effi­
ciently determine the feasibility or obtain a feasible point of problem 
(7). Nevertheless. the above zero-forcing bearnforming scheme suc­
cessfully yields feasible points for more than 95% of the randomly 
generated channel realizations in our simulations. 

4. SIMULATION RESULTS AND CONCLUSIONS 

This section shows some simulation results to demonstrate the effi­
cacy of the proposed SDCA algorithm. In the simulation, we set the 
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Fig. 2. Performance of energy efficiency versus ME = MR � M 
of the SDCA algorithm for K = 2, ... , 6, and M 2: K. 

power budgets of the BS and the RS to PB PR = 10 dB, the 
SINR requirements for all the users are "(1 = ... = "(K = 5 dB, and 
the noise variances are uk = ur = ... = uk = 0.01. The general 
circuit power model is given by Pc = 0.0 05M + 0.0 05. All the 
simulation results are obtained by averaging over 200 sets of chan­
nel realizations. in which every component of Hand gl, ... ,gK is 
independently generated according to the standard complex Gaus­
sian distribution. We set solution accuracy E = 10-3. To the best 
of our knowledge, there is no existing state-of-the-art algorithm for 
performance comparison. Thus we compare the performance of the 
proposed algorithm with that of a heuristic algorithm motivated by 
[18]. In [18]. the total power PT (B, R) is minimized under the 
users' QoS constraints (7b). Adding the transmit power constraint 
(7c) to this problem results in an optimization problem that is con­
vex in B and in R, respectively. Therefore, the heuristic algorithm, 
which is referred to as power minimization (PM) algorithm below, is 
to solve this PM problem by alternating optimization and is initial­
ized by the scheme presented in Subsection 3.3. 

Fig. 1 shows the EE performances of the SDCA algorithm and 
the PM algorithm for ME = MR = 6 and K = 2,4,6. It is 
observed that the SDCA algorithm outperforms the PM algorithm; 
moreover, the performance difference is significant when K is small 
because, in this case, there are sufficient spatial degrees of freedom 
to enhance the transmission rate without significantly increasing the 
transmit power. On the other hand, both of the two algorithms con­
verge quickly, indicating promising computational efficiency. 

Fig. 2 demonstrates the EE performance of the proposed SDCA 
algorithm versus the number of antennas, ME = MR � M, at the 
BS and the RS. It is observed that the achieved EE increases with the 
number of antennas M, demonstrating the efficiency of the SDCA 
algorithm in exploiting the spatial degrees of freedom. However, the 
increment eventually saturates as M increases. The reason is that 
the increasing circuit power consumption (cf. (5)) would constrain 
the effectiveness of activating more antennas. 

In conclusion, we have presented an SDCA algorithm for the de­
sign of the precoding matrices of the multiple-antenna BS and RS by 
maximizing the EE under each user's QoS constraint and the trans­
mit power constraints of the BS and the RS. Some simulation results 
were provided to demonstrate its effectiveness and fast monotone 
convergence. 
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