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ABSTRACT

Accurate estimation of number of endmembers in a given hype
spectral data plays a vital role in effective unmixing anenitfica-
tion of the materials present over the scene of interest. €Blima-
tion of number of endmembers, however, is quite challenging
to the inevitable combined presence of noise and outlieeseRtly,

r

rest of the pixels in the data, and such outliers may be eitherto
detector failure or data transfer errors or simply due topttesence
of odd (unintended) endmembers in the given scene [3], [4].

Among the existing algorithms for estimation of number adien
members, hyperspectral subspace identification (HySiMgepafd
geometry based estimation of number of endmembers (GENE) [1

ometry based estimation of number of endmembers - affine huffoth HySiMe and GENE were proposed to estimate the number of

(GENE-AH) [1] to reliably estimate the number of endmembars
the presence of only noise. In this paper, we will demonsttiaat
the GENE-AH algorithm can be suitably used for reliableraation

of number of endmembers even for data corrupted by botheositli
and noise, without any prior knowledge about the outlieesent
in the data. Initially, the GENE-AH algorithm (alongsidethvits
inherent endmember extraction algorithm: p-norm-based pixel
identification (TRI-P) algorithm) is used to identify thet £ can-
didate pixels(possibly including the outlier pixels) that contribute
to the affine dimension of the hyperspectral data. Inspinedthb
fact that the affine hull of the hyperspectral data remaitecinfor
any data set associated with the same endmembers (that mbg no
in the data set), using GENE-AH again on the corrupted datia wi
the identified candidate pixels removed, will yield a reléadstimate
of the true affine dimension (number of endmembers) of thatrgi
data. Computer simulations under various scenarios anerstm
demonstrate the efficacy of the proposed methodology.

Index Terms— Estimation of number of endmembers, Hyper-
spectral data, Outliers, Affine hull, Convex geometry

1. INTRODUCTION

Hyperspectral Remote Sensing (HRS) is a powerful techiyotog
record the electromagnetic reflections of an object, in heotel of
narrowly spaced spectral bands, so as to gather informaltiout the
object without getting in direct contact with it. Howevengtmixed
pixel nature of the HRS image, demands effective hyperspam-
mixing (HU) to yield the details about the underlying obge§2].
Estimation of number of sources (aka model order selectfoti)e
prime important processing step for HU, as it directly diesathe
accuracy of the subsequent steps (dimension reductiomemndter
extraction, and abundance estimation) and thereby, theaaoc of
mineral identification and quantification. The inevitabtegence of
noise and outliers in the hyperspectral data poses a touglenpe
for accurate estimation of number of endmembers. The noiteei
hyperspectral data can result from the sensor noise andmaatt
mospheric fluctuations and absorptions. On the other haedyut-
liers can be simply regarded as pixels that deviate marKeaity the
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endmembers in the presence of noise, and they may fail rhigera
when the data are also corrupted by outliers (refer to TabteS&c-
tion 4). Outlier mitigation is very challenging and our ratg pro-
posed algorithms to this end also requires the prior knogdeabout
the number of endmembers [7], [8]. So far, to the best of oonkn
edge, no existing algorithms can effectively estimate tmalper of
endmembers from the hyperspectral data corrupted by bate no
and outliers.

In this work, we show that the recently proposed geometrgdbas
estimation of number of endmembers - affine hull (GENE-AH) [1
can be suitably used to reliably estimate the number of endrees
from hyperspectral data simultaneously corrupted by botkenand
outliers. It is found that the affine hull of the hyperspeltiata, on
which the GENE-AH algorithm is based, remains invariantdoy
data set associated with the same endmembers (that mayinghbe
data set). Because outliers can be treated as “pseudo enmirs3m
the GENE-AH is first used to detect the so-caltehdidate pixels
which includes true endmembers (pure pixels) and outliéemy.
Then all the detected candidate pixels are removed fromyherh
spectral data and the remaining pixels are used to estitnatee
number of endmembers, again by using the GENE-AH algorithm.
Toy examples and some simulation results for various sanare
provided to demonstrate tleasibilityandreliability of the proposed
methodology.

Notations:R™ and represent the set of reaf x 1 vec-
tors andM x N matrices, respectivel\),s represents ad/ x 1
all-zero vector]l s represents anf x 1 all-one vector, andly is the
N x N identity matrix. A Gaussian distribution with mean vector
and covariance matriX is denoted a3V’ (u, ). aff{ai,...,an}
denotes the affine hull [9] ofas, ...,anx} and itis defined as

N
ZOL = 1792‘ S R, VZ}
=1

RIVIXN

N
aff{ai,...,an} = {x = Zﬂiai
i—1

2. SIGNAL MODEL AND DIMENSION REDUCTION

The linear mixing model has been widely applied to model tRSH
image data cube, by which eagdli-dimensional pixel vector (pixel



for convenience) can be represented as [2], [10]:

x[n] = As[n] = Zsi[n]ai, VYn=1,...,L.

=1

@)

In (1), x[n] € R represents theth pixel, A = [ai,...,an ] €
RM*N denotes the endmember signature matrix withithecol-
umn vectora; being theith endmember signature[n] € RY is
the nth abundance vector comprisiig (usually in tens) fractional
abundances, antl (usually in thousands) is the total number of ob-
served pixels. However, noise and outliers are inevitableality,
and hence theth corrupted observed pixgl[n] € R™ can be ex-
pressed as:

y[n] =x[n]+wn]+zn],n=1,...,L, )

wherex[n] is given by (1),w[n] ~ N (0ar, o*Iar) in which o2 is
the noise variance, angln] denotes the outlier vector which only
appears a¥ pixels, i.e.,

Z[TL] 75 Oy, neL £ {61, ...,fz},
z[n) =0nm, n€ L\,

where) is the set difference operatof, = {1,2,..., L}, andZ is
the set of outlier pixel indices. Furthermore, it is assuitined theZ
outliers are spectrally different from each other and eaclrember
contributes at least, to more than one pixel. It should betimesed
that the proposed methodology in this paper does not reguiye
prior knowledge about the number of outliegg)(nor its locations.
Standard assumptions pertaining to the signal model inr€l]2:
(A1) si[n] > 0, Vi,n; (A2) "N si[n] = 1, Vn; (A3) M > N,
andA is of full column rank.

The dimension reduction procedure not only aids in consider
able noise mitigation but also eases the computational ébate
subsequent processes. Mét,.x be an integer satisfying + Z <
Nmax < M. SuchNn.x is always possible, as in advanced HRS
sensors the number of outliers are ab®b 5 percent ofL (which
is usually very large) and/ is about several hundreds. Following
the discussions in [1], the corrupted dimension reducedrgbtions
can be obtained as:

yln] =C* (y[n] — d) € RMmex~t ®3)
where
1 L
d= Z nz::ly{n]v (4)
C=[q(U,U}),...,qNm—1(U,UL) ], (5)

inwhichU, = [y[1]—d,...,y[L] —d ] is the mean removed data
matrix andg;(X) is the eigenvector associated with the ith largest
eigenvalue of a matriX. Next, we present how GENE-AH can be
suitably used to reliably estimafé from y[n], Vn.

3. ESTIMATION OF NUMBER OF ENDMEMBERS USING
GENE-AH FOR NOISE-OUTLIER CORRUPTED DATA

The GENE-AH algorithm [1] is based on the data geometry faat, t
regardless of the existence of pure pixels (pure pixel ixal gion-
tributed fully by a single endmember) in the given data sketha
noise-free observed pixel vectors should lie in the affile(H) of
the endmember signatures and its affine dimensidvis1. For the
sake of self containment and clarity of presentation, we Kinefly
review the GENE-AH algorithm [1] based on the noise and eutli
free signal model given by (1).

3.1. Brief Review of GENE-AH

The GENE-AH exploits the successive estimation property sific-
cessive endmember extraction algorithm (EEA), namely yparo
based pure pixel identification (TRI-P) algorithm. It aimsdecide
when the TRI-P algorithm should stop extracting the next ead-
member. Letk[n] denote the noise-free dimension reduced pixel
associated withy[n], Vn, andli,...,lx_1,l, denote the purest
pixel indices (i.e., candidate pixel indices) obtained lbgcgessing
y[n], Vn using the TRI-P algorithm. Given the dimension-reduced
noisy hyperspectral data (defined by (2) witm] = 0, Vn), to
account for the noise in the hyperspectral data, NeymansBedy-
pothesis testing [11] has been employed to find the smdllesith

a given false alarm probabilitiPra. Precisely, at théth recursion,
the following constrained least squares (convex) probksoived:

0" =1[01,...,05_1]" £ arg ,min I5[0x] — Ar—10]3,

1} ,6=1
, ¥ (lk—1]]. Let

e = y[lk] — Ak,le*,

whereA,_1 = [y[l],. ..

(6)

be the optimal fitting error, and it leads to the following iy hy-
potheses:

e Hy: )E[lk] S aff{f([ll], ey )E[lkfl]}, ande ~ N(O,’y).
o Hi: )E[lk] ¢ aff{f([ll], ey )E[lkfl]}, ande ~ N(uk,’y),

wherep, is unknown andy = (1 4 032 + 032 + --- 4 052 ,)o>.
GENE-AH employs a Neyman-Pearson hypothesis testingifitass

[11] with a pre-definedPra, to obtain the estimatd/ = &k — 1
wheref; is the smallest integer such that hypotheHisis decided

by the Neyman-Pearson classifier. GENE-AH performs welhin t
presence of only noise [1], [6]. As the presence of outliedsado the
intrinsic affine dimension of the dat&] turns out to be the sum of
andZ, due to that every outlier has been treated as an endmember by
GENE-AH. Next, let us present how to estima¥ein the presence

of outliers (and noise) using GENE-AH.

3.2. Outlier-GENE-AH Algorithm
The idea behind the proposed methodology is to identify antbie
all the candidate pixels for endmembers and outliers frogrgilien
data using GENE-AH, and then estimate the number of endmmmbe
using the candidate pixels removed data set, again by udiidgE>
AH. This idea can be illustrated by the following toy examgi®wn
in Figures 1 - 3. Figure 1 shows the 2-dimensional scatterqflo
the noise and outlier corrupted hyperspectral data where tire 3
endmembers = 3) randomly chosen from USGS library [12],
with no pure pixels in the data cloud/ = 224 spectral bandd, =
1000, andZ = 30 (which amounts t8% of L), SNR=40 dB, and
signal-to-outlier ratio (SOR)=10 dB (to be defined in Set#d. The
true endmembers are not present in the data cloud, but ake difar
reference (red colored hollow triangles). When GENE-AHagleed
to the above hyperspectral data with,.. = 50 and Pra = 107,
the estimated number of endmembersVis= 33, which obviously
is not an estimation ofV but N + Z, and let the set of identified
pixel indices beZcs; = {l1,12,...,l5}. Itis interesting (but not
surprising) to note that the estimated number is the sumeofrtie
number of endmembers and the number of outliers. This isuseca
of the fact that th@utliers add to the original affine dimension of the
hyperspectral data The candidate pixels estimated by the GENE-
AH (along with its inherent EEA, TRI-P algorithm) are shown i
Figure 2.

It is obvious to see from Figure 2 that the outliers pixels are
now identified along with few other pixels (not necessarilyside
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Fig. 1. Simulated noise-outlier corrupted hyperspectral data wi Fi9- 2 The33 candidate pixels identified by GENE-AH for the sim-
N =3, L = 1000, Z = 30, SNR=40 dB, and SOR=10 dB. ulated noise-outlier corrupted hyperspectral data shoviigure 1.

the data cloud). As the affine hull of the data remains intaehe 4. SIMULATION AND CONCLUSION

some pixels are removed, we then applied the GENE-AH (agidin w In this section the proposed O-GENE-AH for estimating thenbar
Nuax = 50) for the data set with the candidate pixels removed fromof endmembers in the presence of both noise and outlieralisated
the original data cloud. The data cloud with the candidatelpi  using Monte Carlo simulations d00 independent runs for various
removed is shown in Figure 3. The number of endmember is nowossible realistic scenarios. As demonstrated in [1] ahdH$SiMe
estimated to beéV = 3, which is exactly the true number of end- [5] is one of the most promising existing algorithms, and deeit

members. is used for performance comparison, besides the origindlESEH
In general, the data set after removing the candidate pixils algorithm. For the algorithms under test, for each simdlai@ta set
haveL — N vectors, and can be expressed as: the true noise covariance matrix is used, and except for Mg$he
’ Pra = 1075,
Y= {3l JLR\ T, Tk @) The noise-free pixels are generated following the signadeho

in (1), where the endmember signatures witht spectral bands

As the potential outliers are removed (only the noise béiegburce (M = 224) are chosen from the U.S. geological survey (USGS)
of data contamination), the effective and efficient GENE-@ls ex-  library [12] and the abundance vectors are generated fiipthe
tensively investigated in [1]), when applied}& will yield accurate  Dirichlet distribution which naturally accounts f¢A1) and (A2).
estimate of the number of endmembers. As the above proc&iure Another parameter of interest is the purity leyedf the data set [1]
based on the GENE-AH algorithm, itis named as Outlier-GENE-  which is defined ap = max{||s[n]||2,» = 1,..., L}. The smaller
(O-GENE-AH) algorithm, which is summarized in Table 1. the value ofp, the more mixed is the data set, gnek 1 implies the

Table 1. Pseudo-code of O-GENE-AH algorithm.

existence of pure pixels (i.e., true endmembers) in the gizttaRan-
domly generated zero-mean white Gaussian noise vectoesidesl
to the generated noise-free pixels, for various signaldise ratios

Given

Step 1.

Step 2.

Step 3.

Step 4.

(SNRs) defined as
noise and outlier corrupted hyperspectral dgta], Vn, Nmax

betweenN + Z and M), false alarm probabilityPra (e.g., L

(10—6)_ + ) p YPra (€.9 SNR = % Z Hx[n]||2 8)
Compute(C, d) given by (4) and (5), and obtain the dimension n=t

reduced observationgn], Vn by (3). The Z outlier pixel locationg{ ¢4, ..., £z} are randomly chosen from
Apply GENE-AH algorithm tog[n], Vn and let the estimated 1{1---, L}, and they are generated by [8p[(:] = cki, i@ =
number of endmembers B, and let the set of identified candi- 1+ - - -» £, in which each element o#; is a zero-mean unit-variance
date pixel indices b&est = {l1,02,...,l5}. Laplacian random variable, andis a scalar adjusted according to

Remove the candidate pixels corresponding to the pixetéesdi the predefined signal-to-outlier ratio (SOR), where
obtained in Step 2, to gé&? (given by (7)). L 2

) . ) SOR: Zn:l HX[TL]”Q/L (9)
Apply GENE-AH algorithm to)’ and the estimated number of Z-Z—1 lz[¢:]|12/2
endmembers will be the desired estimate of the true number of =
endmembers. As a general rule, in all the simulation scenarios SNFSOR,
S0 as to ensure that the outlier in a given location has heawie

tamination in that observed pixel than the noise. On therdihad



Table 2. Meantstandard deviation of the estimated number of endmembexsfibus scenarios ovdn0 independent runs.

Scenarios ' = 8, L = 1000) HySiMe GENE-AH O-GENE-AH O-GENE-AH2
oo Mean | Std. Dev.| Mean | Std. Dev.| Mean | Std. Dev.| Mean | Std. Dev.
Z = 20, SNR=25dB, SOR=10dB; = 0.8 | 28.00 0.00 27.46 0.64 7.77 0.53 7.84 0.54
7 = 20, SNR=30dB, SOR=10dB; = 0.8 | 28.00 0.00 28.00 0.00 8.02 0.14 8.02 0.14
Z = 20, SNR=35dB, SOR=10dB; = 0.8 | 28.00 0.00 28.00 0.00 8.00 0.00 8.00 0.00
Z = 20, SNR=40dB, SOR=10dB; = 0.8 | 28.00 0.00 28.00 0.00 8.00 0.00 8.00 0.00
7 = 20, SNR=30dB, SOR=15dB; = 0.8 | 28.00 0.00 28.00 0.00 8.02 0.14 8.02 0.14
Z = 20, SNR=30dB, SOR=20dB; = 0.8 | 27.97 0.17 28.00 0.00 8.03 0.17 8.02 0.14
Z = 20, SNR=30dB, SOR=10dB; = 0.9 | 28.00 0.00 28.00 0.00 8.00 0.00 8.00 0.00
Z = 20, SNR=30dB, SOR=10dB; = 1.0 | 28.00 0.00 28.00 0.00 8.00 0.00 8.02 0.20
Z = 50, SNR=30dB, SOR=15dB; = 0.8 | 58.00 0.00 57.88 0.32 8.06 0.23 8.03 0.17
Z =70, SNR=30dB, SOR=15dB; = 0.8 | 78.00 0.00 77.50 0.59 8.09 0.28 8.13 0.33
data are corrupted even by both noise and outliers. Thethgqen-
A A = Endmembers posed GENE-AH is used to identify and remove the so-callediea
° — Data Cloud after date pixels (consisting of purest pixels that include eusl) from the
e gzrr’]‘gi"d';‘?etg&els noise and outlier corrupted data cloud, and then it is agpigain
8:@@5@%@ o e to that data cloud (with candidate pixels removed) to yiekigh
goﬁ§§°%®§“°%o°@%%s‘;o fidelity estimate of the number of endmembers. Simulaticulte
5?;%§ ¢ ogdjo % B o demonstrated the efficacy of the proposed O-GENE-AH methodo
SEhsEE o a3 &Qi%’o@g" ogy. Testing O-GENE-AH on real AVIRIS hyperspectral datevis
o~ og“g‘gf b oy 0;?5‘%@0 o rently under investigation. Considering other types ofsadinon-
2 R T N cEaee 2@3@0 . Gaussian) and other types of outliers (non-Laplacian) kagllour
o T TR e e @39%@&2;0 future direction.
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and the standard deviation of the estimated number of endheesm
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close to that of true number of endmembers (e~ 8), and so are
the results of the estimated number of endmembers (undewthe

umn O-GENE-AH2) by removing the candidate pixels twice from

the original data set.

In conclusion, we have presented a methodology (O-GENE-AH,

in Table 1) to reliably estimate the number of endmemberswthe
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