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ABSTRACT

Accurate estimation of number of endmembers in a given hyper-
spectral data plays a vital role in effective unmixing and identifica-
tion of the materials present over the scene of interest. Theestima-
tion of number of endmembers, however, is quite challengingdue
to the inevitable combined presence of noise and outliers. Recently,
we have proposed a convex geometry based algorithm, namely ge-
ometry based estimation of number of endmembers - affine hull
(GENE-AH) [1] to reliably estimate the number of endmembersin
the presence of only noise. In this paper, we will demonstrate that
the GENE-AH algorithm can be suitably used for reliable estimation
of number of endmembers even for data corrupted by both outliers
and noise, without any prior knowledge about the outliers present
in the data. Initially, the GENE-AH algorithm (alongside with its
inherent endmember extraction algorithm: p-norm-based pure pixel
identification (TRI-P) algorithm) is used to identify the set of can-
didate pixels(possibly including the outlier pixels) that contribute
to the affine dimension of the hyperspectral data. Inspired by the
fact that the affine hull of the hyperspectral data remains intact for
any data set associated with the same endmembers (that may not be
in the data set), using GENE-AH again on the corrupted data with
the identified candidate pixels removed, will yield a reliable estimate
of the true affine dimension (number of endmembers) of that given
data. Computer simulations under various scenarios are shown to
demonstrate the efficacy of the proposed methodology.

Index Terms— Estimation of number of endmembers, Hyper-
spectral data, Outliers, Affine hull, Convex geometry

1. INTRODUCTION

Hyperspectral Remote Sensing (HRS) is a powerful technology to
record the electromagnetic reflections of an object, in hundreds of
narrowly spaced spectral bands, so as to gather informationabout the
object without getting in direct contact with it. However, the mixed
pixel nature of the HRS image, demands effective hyperspectral un-
mixing (HU) to yield the details about the underlying objects [2].
Estimation of number of sources (aka model order selection)is the
prime important processing step for HU, as it directly dictates the
accuracy of the subsequent steps (dimension reduction, endmember
extraction, and abundance estimation) and thereby, the accuracy of
mineral identification and quantification. The inevitable presence of
noise and outliers in the hyperspectral data poses a tough challenge
for accurate estimation of number of endmembers. The noise in the
hyperspectral data can result from the sensor noise and random at-
mospheric fluctuations and absorptions. On the other hand, the out-
liers can be simply regarded as pixels that deviate markedlyfrom the

This work is supported by National Science Council (R.O.C.)under
Grant NSC 99-2221-E-007-003-MY3.

rest of the pixels in the data, and such outliers may be eitherdue to
detector failure or data transfer errors or simply due to thepresence
of odd (unintended) endmembers in the given scene [3], [4].

Among the existing algorithms for estimation of number of end-
members, hyperspectral subspace identification (HySiMe) [5] and
geometry based estimation of number of endmembers (GENE) [1],
[6] have been shown to have promising performances. However,
both HySiMe and GENE were proposed to estimate the number of
endmembers in the presence of noise, and they may fail miserably
when the data are also corrupted by outliers (refer to Table 2in Sec-
tion 4). Outlier mitigation is very challenging and our recently pro-
posed algorithms to this end also requires the prior knowledge about
the number of endmembers [7], [8]. So far, to the best of our knowl-
edge, no existing algorithms can effectively estimate the number of
endmembers from the hyperspectral data corrupted by both noise
and outliers.

In this work, we show that the recently proposed geometry based
estimation of number of endmembers - affine hull (GENE-AH) [1]
can be suitably used to reliably estimate the number of endmembers
from hyperspectral data simultaneously corrupted by both noise and
outliers. It is found that the affine hull of the hyperspectral data, on
which the GENE-AH algorithm is based, remains invariant forany
data set associated with the same endmembers (that may not bein the
data set). Because outliers can be treated as “pseudo endmembers”,
the GENE-AH is first used to detect the so-calledcandidate pixels,
which includes true endmembers (pure pixels) and outliers,if any.
Then all the detected candidate pixels are removed from the hyper-
spectral data and the remaining pixels are used to estimate the true
number of endmembers, again by using the GENE-AH algorithm.
Toy examples and some simulation results for various scenarios are
provided to demonstrate thefeasibilityandreliability of the proposed
methodology.

Notations:RM andRM×N represent the set of realM × 1 vec-
tors andM × N matrices, respectively,0M represents anM × 1
all-zero vector,1M represents anM×1 all-one vector, andIN is the
N ×N identity matrix. A Gaussian distribution with mean vectorµ

and covariance matrixΣ is denoted asN (µ,Σ). aff{a1, . . . ,aN}
denotes the affine hull [9] of{a1, . . . ,aN} and it is defined as

aff{a1, . . . , aN} =

{
x =

N∑

i=1

θiai

∣∣∣∣
N∑

i=1

θi = 1, θi ∈ R, ∀i

}
.

2. SIGNAL MODEL AND DIMENSION REDUCTION

The linear mixing model has been widely applied to model the HRS
image data cube, by which eachM -dimensional pixel vector (pixel



for convenience) can be represented as [2], [10]:

x[n] = As[n] =

N∑

i=1

si[n]ai, ∀n = 1, . . . , L. (1)

In (1), x[n] ∈ R
M represents thenth pixel,A = [ a1, . . . ,aN ] ∈

R
M×N denotes the endmember signature matrix with theith col-

umn vectorai being theith endmember signature,s[n] ∈ R
N is

thenth abundance vector comprisingN (usually in tens) fractional
abundances, andL (usually in thousands) is the total number of ob-
served pixels. However, noise and outliers are inevitable in reality,
and hence thenth corrupted observed pixely[n] ∈ R

M can be ex-
pressed as:

y[n] = x[n] +w[n] + z[n], n = 1, . . . , L, (2)

wherex[n] is given by (1),w[n] ∼ N (0M , σ2IM ) in which σ2 is
the noise variance, andz[n] denotes the outlier vector which only
appears atZ pixels, i.e.,

z[n] 6= 0M , n ∈ I , {`1, ..., `Z},

z[n] = 0M , n ∈ L \ I,

where\ is the set difference operator,L = {1, 2, ..., L}, andI is
the set of outlier pixel indices. Furthermore, it is assumedthat theZ
outliers are spectrally different from each other and each endmember
contributes at least, to more than one pixel. It should be mentioned
that the proposed methodology in this paper does not requireany
prior knowledge about the number of outliers (Z) nor its locations.
Standard assumptions pertaining to the signal model in (1) are [2]:
(A1) si[n] ≥ 0, ∀i, n; (A2)

∑N

i=1
si[n] = 1, ∀n; (A3) M ≥ N ,

andA is of full column rank.
The dimension reduction procedure not only aids in consider-

able noise mitigation but also eases the computational loadof the
subsequent processes. LetNmax be an integer satisfyingN + Z ≤
Nmax ≤ M . SuchNmax is always possible, as in advanced HRS
sensors the number of outliers are about2 to 5 percent ofL (which
is usually very large) andM is about several hundreds. Following
the discussions in [1], the corrupted dimension reduced observations
can be obtained as:

ỹ[n] = C
T (y[n]− d) ∈ R

Nmax−1, (3)

where

d =
1

L

L∑

n=1

y[n], (4)

C = [ q1(UyU
T
y ), . . . , qNmax−1(UyU

T
y ) ], (5)

in whichUy = [ y[1]−d, . . . ,y[L]−d ] is the mean removed data
matrix andqi(X) is the eigenvector associated with the ith largest
eigenvalue of a matrixX. Next, we present how GENE-AH can be
suitably used to reliably estimateN from ỹ[n], ∀n.

3. ESTIMATION OF NUMBER OF ENDMEMBERS USING
GENE-AH FOR NOISE-OUTLIER CORRUPTED DATA

The GENE-AH algorithm [1] is based on the data geometry fact that,
regardless of the existence of pure pixels (pure pixel is a pixel con-
tributed fully by a single endmember) in the given data set, all the
noise-free observed pixel vectors should lie in the affine hull (AH) of
the endmember signatures and its affine dimension isN −1. For the
sake of self containment and clarity of presentation, we first briefly
review the GENE-AH algorithm [1] based on the noise and outlier
free signal model given by (1).

3.1. Brief Review of GENE-AH
The GENE-AH exploits the successive estimation property ofa suc-
cessive endmember extraction algorithm (EEA), namely p-norm-
based pure pixel identification (TRI-P) algorithm. It aims to decide
when the TRI-P algorithm should stop extracting the next newend-
member. Let̃x[n] denote the noise-free dimension reduced pixel
associated with̃y[n], ∀n, and l1, . . . , lk−1, lk denote the purest
pixel indices (i.e., candidate pixel indices) obtained by processing
ỹ[n], ∀n using the TRI-P algorithm. Given the dimension-reduced
noisy hyperspectral data (defined by (2) withz[n] = 0, ∀n), to
account for the noise in the hyperspectral data, Neyman-Pearson hy-
pothesis testing [11] has been employed to find the smallestk, with
a given false alarm probabilityPFA. Precisely, at thekth recursion,
the following constrained least squares (convex) problem is solved:

θ
? = [θ?1 , . . . , θ

?
k−1]

T
, arg min

1
T

k−1
θ=1

‖ỹ[lk]−Ak−1θ‖
2

2,

whereAk−1 = [ỹ[l1], . . . , ỹ[lk−1]]. Let

e = ỹ[lk]−Ak−1θ
?, (6)

be the optimal fitting error, and it leads to the following binary hy-
potheses:

• H0: x̃[lk] ∈ aff{x̃[l1], . . . , x̃[lk−1]}, ande ∼ N (0, γ).

• H1: x̃[lk] 6∈ aff{x̃[l1], . . . , x̃[lk−1]}, ande ∼ N (µk, γ),

whereµk is unknown andγ = (1 + θ?21 + θ?22 + · · · + θ?2k−1)σ
2.

GENE-AH employs a Neyman-Pearson hypothesis testing classifier
[11] with a pre-definedPFA, to obtain the estimatêN = k̂ − 1

wherek̂ is the smallest integer such that hypothesisH0 is decided
by the Neyman-Pearson classifier. GENE-AH performs well in the
presence of only noise [1], [6]. As the presence of outliers adds to the
intrinsic affine dimension of the data,̂N turns out to be the sum ofN
andZ, due to that every outlier has been treated as an endmember by
GENE-AH. Next, let us present how to estimateN in the presence
of outliers (and noise) using GENE-AH.

3.2. Outlier-GENE-AH Algorithm
The idea behind the proposed methodology is to identify and remove
all the candidate pixels for endmembers and outliers from the given
data using GENE-AH, and then estimate the number of endmembers
using the candidate pixels removed data set, again by using GENE-
AH. This idea can be illustrated by the following toy exampleshown
in Figures 1 - 3. Figure 1 shows the 2-dimensional scatter plot of
the noise and outlier corrupted hyperspectral data where there are 3
endmembers (N = 3) randomly chosen from USGS library [12],
with no pure pixels in the data cloud,M = 224 spectral bands,L =
1000, andZ = 30 (which amounts to3% of L), SNR=40 dB, and
signal-to-outlier ratio (SOR)=10 dB (to be defined in Section 4). The
true endmembers are not present in the data cloud, but are marked for
reference (red colored hollow triangles). When GENE-AH is applied
to the above hyperspectral data withNmax = 50 andPFA = 10−6,
the estimated number of endmembers isN̂ = 33, which obviously
is not an estimation ofN but N + Z, and let the set of identified
pixel indices beIest = {l1, l2, . . . , lN̂}. It is interesting (but not
surprising) to note that the estimated number is the sum of the true
number of endmembers and the number of outliers. This is because
of the fact that theoutliers add to the original affine dimension of the
hyperspectral data. The candidate pixels estimated by the GENE-
AH (along with its inherent EEA, TRI-P algorithm) are shown in
Figure 2.

It is obvious to see from Figure 2 that the outliers pixels are
now identified along with few other pixels (not necessarily outside



Band 1

B
a
n
d
 2

Endmembers

Noise-Outlier
corrupted data

Fig. 1. Simulated noise-outlier corrupted hyperspectral data with
N = 3, L = 1000, Z = 30, SNR=40 dB, and SOR=10 dB.

the data cloud). As the affine hull of the data remains intact even
some pixels are removed, we then applied the GENE-AH (again with
Nmax = 50) for the data set with the candidate pixels removed from
the original data cloud. The data cloud with the candidate pixels
removed is shown in Figure 3. The number of endmember is now
estimated to bêN = 3, which is exactly the true number of end-
members.

In general, the data set after removing the candidate pixelswill
haveL− N̂ vectors, and can be expressed as:

Ỹ = {ỹ[1], . . . , ỹ[L]} \ {ỹ[l1], . . . , ỹ[lN̂ ]}. (7)

As the potential outliers are removed (only the noise being the source
of data contamination), the effective and efficient GENE-AH(as ex-
tensively investigated in [1]), when applied tõY, will yield accurate
estimate of the number of endmembers. As the above procedureis
based on the GENE-AH algorithm, it is named as Outlier-GENE-AH
(O-GENE-AH) algorithm, which is summarized in Table 1.

Table 1. Pseudo-code of O-GENE-AH algorithm.

Given noise and outlier corrupted hyperspectral datay[n], ∀n, Nmax

(betweenN + Z and M ), false alarm probabilityPFA (e.g.,
10−6).

Step 1. Compute(C,d) given by (4) and (5), and obtain the dimension
reduced observations̃y[n], ∀n by (3).

Step 2. Apply GENE-AH algorithm toỹ[n], ∀n and let the estimated
number of endmembers bêN , and let the set of identified candi-
date pixel indices beIest = {l1, l2, . . . , lN̂}.

Step 3. Remove the candidate pixels corresponding to the pixel indices
obtained in Step 2, to get̃Y (given by (7)).

Step 4. Apply GENE-AH algorithm toỸ and the estimated number of
endmembers will be the desired estimate of the true number of
endmembers.
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Fig. 2. The33 candidate pixels identified by GENE-AH for the sim-
ulated noise-outlier corrupted hyperspectral data shown in Figure 1.

4. SIMULATION AND CONCLUSION

In this section the proposed O-GENE-AH for estimating the number
of endmembers in the presence of both noise and outliers is evaluated
using Monte Carlo simulations of100 independent runs for various
possible realistic scenarios. As demonstrated in [1] and [6], HySiMe
[5] is one of the most promising existing algorithms, and hence it
is used for performance comparison, besides the original GENE-AH
algorithm. For the algorithms under test, for each simulated data set
the true noise covariance matrix is used, and except for HySiMe the
PFA = 10−6.

The noise-free pixels are generated following the signal model
in (1), where the endmember signatures with224 spectral bands
(M = 224) are chosen from the U.S. geological survey (USGS)
library [12] and the abundance vectors are generated following the
Dirichlet distribution which naturally accounts for(A1) and (A2).
Another parameter of interest is the purity levelρ of the data set [1]
which is defined asρ = max{‖s[n]‖2 , n = 1, . . . , L}. The smaller
the value ofρ, the more mixed is the data set, andρ = 1 implies the
existence of pure pixels (i.e., true endmembers) in the dataset. Ran-
domly generated zero-mean white Gaussian noise vectors areadded
to the generated noise-free pixels, for various signal-to-noise ratios
(SNRs) defined as

SNR =
1

σ2ML

L∑

n=1

‖x[n]‖2. (8)

TheZ outlier pixel locations{`1, ..., `Z} are randomly chosen from
{1, . . . , L}, and they are generated by [8]:z[`i] = cκi, i =
1, . . . , Z, in which each element ofκi is a zero-mean unit-variance
Laplacian random variable, andc is a scalar adjusted according to
the predefined signal-to-outlier ratio (SOR), where

SOR =

∑L

n=1
‖x[n]‖22/L∑Z

i=1
‖z[`i]‖22/Z

. (9)

As a general rule, in all the simulation scenarios SNR≥ SOR,
so as to ensure that the outlier in a given location has heavier con-
tamination in that observed pixel than the noise. On the other hand



Table 2. Mean±standard deviation of the estimated number of endmembers for various scenarios over100 independent runs.

Scenarios (N = 8, L = 1000)
HySiMe GENE-AH O-GENE-AH O-GENE-AH2

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Z = 20, SNR=25dB, SOR=10dB,ρ = 0.8 28.00 0.00 27.46 0.64 7.77 0.53 7.84 0.54
Z = 20, SNR=30dB, SOR=10dB,ρ = 0.8 28.00 0.00 28.00 0.00 8.02 0.14 8.02 0.14
Z = 20, SNR=35dB, SOR=10dB,ρ = 0.8 28.00 0.00 28.00 0.00 8.00 0.00 8.00 0.00
Z = 20, SNR=40dB, SOR=10dB,ρ = 0.8 28.00 0.00 28.00 0.00 8.00 0.00 8.00 0.00
Z = 20, SNR=30dB, SOR=15dB,ρ = 0.8 28.00 0.00 28.00 0.00 8.02 0.14 8.02 0.14
Z = 20, SNR=30dB, SOR=20dB,ρ = 0.8 27.97 0.17 28.00 0.00 8.03 0.17 8.02 0.14
Z = 20, SNR=30dB, SOR=10dB,ρ = 0.9 28.00 0.00 28.00 0.00 8.00 0.00 8.00 0.00
Z = 20, SNR=30dB, SOR=10dB,ρ = 1.0 28.00 0.00 28.00 0.00 8.00 0.00 8.02 0.20
Z = 50, SNR=30dB, SOR=15dB,ρ = 0.8 58.00 0.00 57.88 0.32 8.06 0.23 8.03 0.17
Z = 70, SNR=30dB, SOR=15dB,ρ = 0.8 78.00 0.00 77.50 0.59 8.09 0.28 8.13 0.33
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Fig. 3. Data cloud with the candidate pixels removed.

if SNR < SOR, then the outliers just behave as noise vectors, and
hence cannot be identified. The various scenarios that are consid-
ered for the purpose of evaluation are detailed in Table 2. The mean
and the standard deviation of the estimated number of endmembers
over 100 independent runs for each scenario is the performance mea-
sure. In Table 2, GENE-AH corresponds to applying GENE-AH [1]
for the entire noise and outlier corrupted data, O-GENE-AH corre-
sponds to applying GENE-AH to the data after removing the candi-
date pixels identified by GENE-AH. Just to ensure the reliability of
O-GENE-AH, GENE-AH is, again, applied to the data after remov-
ing both the candidate pixels identified by GENE-AH and the candi-
date pixels identified by O-GENE-AH, and the results are tabulated
under O-GENE-AH2 in Table 2. As can be readily inferred from Ta-
ble 2, applying HySiMe and GENE-AH directly to the outlier-noise
corrupted data resulted in the estimation ofN + Z. After removing
the candidate pixels from the original data cloud, the results of the
estimated number of endmembers by the proposed O-GENE-AH are
close to that of true number of endmembers (i.e.,N = 8), and so are
the results of the estimated number of endmembers (under thecol-
umn O-GENE-AH2) by removing the candidate pixels twice from
the original data set.

In conclusion, we have presented a methodology (O-GENE-AH,
in Table 1) to reliably estimate the number of endmembers when the

data are corrupted even by both noise and outliers. The recently pro-
posed GENE-AH is used to identify and remove the so-called candi-
date pixels (consisting of purest pixels that include outliers) from the
noise and outlier corrupted data cloud, and then it is applied again
to that data cloud (with candidate pixels removed) to yield ahigh
fidelity estimate of the number of endmembers. Simulation results
demonstrated the efficacy of the proposed O-GENE-AH methodol-
ogy. Testing O-GENE-AH on real AVIRIS hyperspectral data iscur-
rently under investigation. Considering other types of noise (non-
Gaussian) and other types of outliers (non-Laplacian) willbe our
future direction.
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