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Abstract—This paper considers robust multi-cell coordinated
beamforming (MCBF) design for downlink wireless systems,
in the presence of channel state information (CSI) errors. By
assuming that the CSI errors are complex Gaussian distributed,
we formulate a chance-constrained robust MCBF design problem
which guarantees that the mobile stations can achieve the desired
signal-to-interference-plus-noise ratio (SINR) requirements with
a high probability. A convex approximation method, based on
semidefinite relaxation and tractable probability approximation
formulations, is proposed. The goal is to solve the convex
approximation formulation in a distributed manner, with only a
small amount of information exchange between base stations. To
this end, we develop a distributed implementation by applying
a convex optimization method, called weighted variable-penalty
alternating direction method of multipliers (WVP-ADMM), which
is numerically more stable and can converge faster than the
standard ADMM method. Simulation results are presented to
examine the chance-constrained robust MCBF design and the
proposed distributed implementation algorithm.

Index Terms—Multicell coordinated beamforming, robust
beamforming, chance constraint, outage probability, distributed
beamforming.

I. INTRODUCTION

Multi-cell coordinated beamforming (MCBF) design has
been of great interest in recent years since it can effective-
ly manage the inter-cell interference (ICI) and improve the
throughput of the multi-cell systems; see, e.g., [1], [2]. Most of
the existing works assume that the base stations (BSs) have the
perfect channel state information (CSI) of the mobile stations
(MSs). However, in practical scenarios, it is inevitable to have
CSI errors due to, e.g., the imperfect channel estimation and
finite rate feedback. In order to provide guaranteed quality of
service (QoS) (e.g., the signal-to-interference-plus-noise ratio
(SINR)) for the MSs, robust MCBF designs that explicitly
account for the CSI errors have been studied. For example, in
[3], [4], the CSI errors were modeled as deterministic vectors
within a bounded uncertainty region and worst-case robust
MCBF designs were investigated.

In this paper, considering the stochastic nature of the CSI
errors, we model the CSI errors as complex Gaussian random
vectors, and study a chance-constrained robust MCBF design
problem. The problem formulation aims to minimize the
sum power of all BSs subject to constraints that the SINR
requirements of all MSs must be satisfied with a preassigned,
usually high probability. However, the associated optimization
problem is difficult to handle because the SINR constraints are
not convex and, moreover, the probability functions have no

tractable expression. Such a chance-constrained robust design
problem has only been studied in the single-cell scenario [5]–
[7]. In particular, effective convex approximations of the prob-
ability constraint were proposed in [7], using the semidefinite
relaxation (SDR) technique [8] and the idea of safe tractable
approximation [9]. It has been verified in [6] that the presented
approximation method outperforms the existing methods. In
this paper, we extend the approximation method in [6] to the
considered chance-constrained robust MCBF design problem.

Our focus in this paper is on distributed optimization meth-
ods, where each BS optimizes only the beamforming vectors
for its associated MSs in the serving region, using only local
CSI and with a small amount of message exchange between
BSs. There have been considerable works for distributed
optimization of MCBF designs with perfect CSI; see [1],
[10]–[12]. In [3], [4], distributed optimization methods for the
worst-case robust MCBF design problem has also been report-
ed. In particular, in [4], the authors proposed the use of the
distributed convex optimization method known as alternating
direction method of multipliers (ADMM) [13]. It is shown
that ADMM can avoid some unboundedness issue occurred in
the robust MCBF design and is more numerically stable than
the dual decomposition method used in [3], [11]. However,
ADMM may converge slowly especially when the problem is
ill-conditioned. In this paper, we consider a modified ADMM
scheme, called weighted variable-penalty ADMM algorithm
(WVP-ADMM) [14], which employs weighted augmented
penalty terms and thus provides more degrees of freedom
to precondition the problem formulation. We show in the
paper how the WVP-ADMM can be applied to the chance-
constrained robust MCBF design problem in a distributed
fashion. Simulation results are presented to demonstrate the
effectiveness of the proposed methods.

Notation: Cn and Rn (Rn
−,Rn

+) stand for the sets of
n-dimensional complex and real (nonpositive, nonnegative)
vectors, respectively. In denotes the n × n identity matrix,
and 0 denotes an all-zero vector (matrix) with appropriate
dimension. The superscripts (·)T , (·)H and (·)† represent the
transpose, Hermitian (conjugate transpose) and pseudo inverse
operations, respectively. diag(·) denotes a diagonal matrix
formed from its vector argument. <(a) denotes the real part
of a complex number a and Tr(A) represents the trace of
matrix A. A�0 means that matrix A is positive semidefinite
(PSD). ‖a‖ denotes the Euclidean norm of vector a, and
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‖a‖2G,aHGa, ‖A‖F is the Frobenius norm of matrix A.
For a variable anmk, where n∈{1, . . . , N}, m∈{1, . . . ,M}
and k ∈ {1, . . . ,K}, {anmk}k denotes the set containing
anm1, . . . , anmK ; while {anmk} denotes the set containing
all possible anmk, i.e., a111, . . . , a11K , a121, . . . , aNMK .

II. SIGNAL MODEL AND PROBLEM STATEMENT

Consider a coordinated multi-cell downlink system with Nc

cells. Each cell consists of a BS, which is equipped with
Nt antennas, and K single-antenna MSs. The Nc BSs are
assumed to operate over the same frequency band and com-
municate with their respective MSs by transmit beamforming.
Let BSn denote the BS in the nth cell, and MSnk denote
the kth MS in the nth cell, for n ∈ Nc , {1, . . . , Nc} and
k ∈ K , {1, . . . ,K}. Let wnk ∈ CNt be the beamforming
vector for MSnk, and hnmk ∈ CNt denote the channel vector
from BSn to MSmk. Moreover, assume that the information
signals have the unit power. The signal-to-interference-plus-
noise ratio (SINR) of MSnk is given by [1], [4]

SINRnk ({wmk}m,k, {hmnk}m)

=

∣∣hH
nnkwnk

∣∣2
K∑
i6=k

∣∣hH
nnkwni

∣∣2 +
Nc∑

m6=n

K∑
i=1

∣∣hH
mnkwmi

∣∣2 + σ2
nk

, (1)

where σ2
nk>0 denotes the additive noise power at MSnk.

The scenario considered here is that the BSs may not have
perfect CSI, due to, e.g., imperfect channel estimation or
limited feedback [15]. Specifically, the true channel vector
hnmk can be written as

hnmk = ĥnmk + enmk ∀n,m, k, (2)

where {ĥnmk}m,k are the channel estimates known to BSn,
and enmk ∈ CNt is the unknown CSI error. In this paper,
we assume that the CSI errors {enmk} are complex Gaussian
distributed with zero-mean and covariance matrix Cnmk�0,
i.e., enmk∼CN (0,Cnmk) for all n,m and k.

Taking into account the CSI errors {enmk}, our goal is to
jointly design the beamforming vectors of all coordinated BSs
so that each MS can achieve its desired SINR requirement with
a specified probability. Specifically, we consider the following
chance-constrained robust MCBF design

min
wnk∈CNt

∀n,k

Nc∑
n=1

K∑
k=1

‖wnk‖2 (3a)

s.t. Pr
{

SINRnk

(
{wmk}, {ĥmnk + emnk}m

)
≥ γnk

}
≥ 1− ρnk ∀n ∈ Nc, k ∈ K, (3b)

where γnk > 0 is the target SINR value of MSnk, and ρnk ∈
(0, 1) is the maximum tolerable SINR outage probability. As
seen, formulation (3) guarantees that each MSnk achieves its
target SINR value γnk with probability at least 1− ρnk.

Problem (3) is difficult to solve because 1) the SINR
constraint SINRnk

(
{wmk}, {ĥmnk + emnk}m

)
≥ γnk is

nonconvex in {wmk}, and 2) the probability function in (3b)

has no tractable expression in general. In our previous work
[6], we proposed an efficient convex approximation method for
handling the chance-constrained beamforming design problem
in a single-cell scenario (Nc = 1). As we show in the next
section, the developed method in [6] can also be applied
to the robust MCBF problem (3) in spite of more involved
formulations.

III. TRACTABLE CONVEX APPROXIMATION FOR (3)

One of the key steps of the convex approximation method
in [6] is to apply the SDR technique [8] to ‘linearize’ the
nonconvex SINR constraints. By replacing wnkw

H
nk with a

general PSD matrix Wnk for all n, k, the resultant rank-
relaxed problem, which we call the SDR problem of (3), is
given by

min
Wnk�0
∀n,k

Nc∑
n=1

K∑
k=1

Tr(Wnk) (4a)

s.t. Pr

{
(ĥnnk + ennk)HBnk(ĥnnk + ennk) +

Nc∑
m 6=n

(ĥmnk+emnk)HDm(ĥmnk+emnk) ≥ σ2
nk

}
≥ 1− ρnk ∀n ∈ Nc, k ∈ K, (4b)

where Bnk,γ
−1
nkWnk−

∑K
i 6=k Wni and Dm,−∑K

i=1 Wmi.
Note that the objective function of (4) and the arguments in
the probability functions are all linear in {Wnk}.

The second step of our convex approximation method is
to use a conservative, but computational tractable (convex)
formulation to approximate the probability function in (4b).
To illustrate this, let us define the normalized CSI errors as

vmnk = C
−1/2
mnk emnk ∼ CN (0, INt) (5)

for all m,n ∈ Nc, and k ∈ K, where C
1/2
mnk � 0 is a PSD

square root of Cmnk Further define the following notations

Qnnk,C
1/2
nnkBnkC

1/2
nnk, Qmnk,C

1/2
mnkDmC

1/2
mnk,

unnk, C
1/2
nnkBnkĥnnk, umnk, C

1/2
mnkDmĥmnk,

cnnk, ĥH
nnkBnkĥnnk, cmnk, ĥH

mnkDmĥmnk,

for all n, k and m 6= n. Then we can express each of the
probability functions in (4b) as

Pr

{ Nc∑
m=1

(vH
mnkQmnkvmnk+

2<(vH
mnkumnk) + cmnk) ≥ σ2

nk

}
≥ 1− ρnk, (6)

which is a probability inequality of a quadratic form of
complex Gaussian random variables. Since Qmnk � 0,
the above probability function does not have a closed-form
expression in general. In [6], by applying a Bernstein-type
inequality [16], we showed that a probability inequality like

4958



(6) can actually be safely approximated by tractable convex
formulations. Specifically, consider the following inequalities√√√√ Nc∑

m=1

(‖Qmnk‖2F + 2‖umnk‖2) ≤

1√
2δnk

(
Nc∑
m=1

[
Tr(Qmnk)+cmnk

]
−δnkxnk−σ2

nk

)
,

(7a)

xnk ≥ 0, xnkINt + Qmnk � 0,m = 1, . . . , Nc, (7b)

where δnk , − ln(ρnk) and xnk is a slack variable. Note
that the inequalities in (7) are all convex. Then, by following
the derivations in [6], one can show that (7) is a sufficient
condition for (6), and therefore, the former can be used as
a conservative approximation of the latter. By substituting
(7) into (4), we obtain the following convex problem as an
approximation to the robust MCBF problem in (3):

min
Wnk�0,xnk≥0,

∀n,k

Nc∑
n=1

K∑
k=1

Tr(Wnk) (8a)

s.t.

√√√√ Nc∑
m=1

(‖Qmnk‖2F + 2‖umnk‖2) ≤ 1√
2δnk

·

(
Nc∑
m=1

[
Tr(Qmnk)+cmnk

]
−δnkxnk−σ2

nk

)
∀n, k,

(8b)

xnkINt + Qmnk � 0 ∀m,n, k. (8c)

The resultant SDR problem (8) does not necessarily yield rank-
one solutions of Wnk. If the obtained optimal Wnk is of
rank one for all n, k, then one can obtain a set of rank-one
beamforming solutions by decomposition of Wnk = wnkw

H
nk

for all n, k. One can easily show that the obtained {wnk}n,k
is feasible and is an conservative approximate solution to the
original problem (3). In the cases that the obtained optimal
Wnk is not of rank one, rank-one approximation methods [8]
can be used for obtaining a rank-one approximate solution. It
is worthwhile to mention that per-BS or per-antenna power
constraints can be readily taken into account in our proposed
method. Furthermore, the presented convex approximation
method outperforms the existing methods, as we showed by
simulations under the single-cell scenario in [6].

IV. PROPOSED DISTRIBUTED OPTIMIZATION METHOD

As mentioned in the introduction, our focus in this paper
is on the distributed optimization methods. In particular, for
solving (8), each BSn optimizes its own variables {Wnk}k
and {xnk}k, by using local CSI {ĥnmk,Cnmk}m,k only and
some information exchange with other BSs. However, such a
distributed design is challenging because, in (8b) and (8c), the
variables of all BSs are nontrivially coupled with each other. In
this section, we first reformulate (8) into a compact form with
linear coupled constraints, followed by applying a distributed
optimization method, called WVP-ADMM [14], to solve (8)
in a decentralized fashion.

A. Problem Reformulation
To reveal the intrinsic coupled structures of (8b) and (8c),

let us introduce some slack variables {anmk, bnmk}m,k and

pn for each BSn, and rewrite the constraints of (8) as

Tr(Qnmk) + cnmk = anmk ∀n,m, k, (9a)√
‖Qnmk‖2F + 2‖unmk‖2 ≤ bnmk ∀n,m, k, (9b)

‖[b1nk, . . . , bNcnk]T ‖ ≤

1√
2δnk

( Nc∑
m=1

amnk−δnkxnk−σ2
nk

)
∀n, k,

(9c)

xmk ≥ 0, xmkINt + Qnmk � 0 ∀n,m, k, (9d)

Wnk � 0, pn =

K∑
k=1

Tr(Wnk) ∀n, k. (9e)

It can be verified that constraints in (9a) to (9d) are equivalent
to (8b) and (8c). By (9), we observe that the slack variables
{amnk, bmnk}n,k and {xmk}k with different m are coupled
in (9c) and (9d). A commonly used way for handling this
coupling issue is to introduce ‘local’ versions of the coupled
variables for each BSn. Define the following vectors

yn ,
[
aTn ,b

T
n ,x

T
n

]T ∈ R(5Nc−4)K , (10a)

an ,
[
{a(n)nmk}m 6=n,k, {a(n)mnk}m 6=n,k

]
∈ R2(Nc−1)K

− , (10b)

bn ,
[
{b(n)nmk}m6=n,k, {b(n)mnk}m 6=n,k

]
∈ R2(Nc−1)K

+ , (10c)

xn ,
[
{x(n)1k }k, . . . , {x

(n)
Nck
}k
]T
∈ RNcK

+ , (10d)

for all n ∈ Nc, where the superscript (n) denotes that the local
variables are maintained by BSn. Then, it holds true that

a
(n)
nmk = anmk, b

(n)
nmk = bnmk, x

(n)
mk = xmk ∀n,m, k, (11)

where the original {amnk, bmnk}n,m6=n,k and {xmk}m,k, by
contrast, are referred to as the public variables. Let

z ,
[
{anmk}n,m 6=n,k, {bnmk}n,m6=n,k, {xmk}m,k

]T
. (12)

Then (11) can be written in a compact form as

Anz = yn ∀n, (13)

where An ∈ {0, 1}(5Nc−4)K×NcK(2Nc−1).
With the vectors defined in (10) and the linear equality (13),

we can decompose the constraints in (9) into the following Nc
convex subsets:

Cn ,

{(
pn,
{
Wnk, annk, bnnk

}
k
, yn

)∣∣∣∣∣
Tr(Qnmk) + cnmk = a

(n)
nmk ∀m, k,√

‖Qnmk‖2F + 2‖unmk‖2 ≤ b(n)nmk ∀m, k,∥∥∥[b
(n)
1nk, . . . , b

(n)
Ncnk

]T
∥∥∥ ≤

1√
2δnk

( Nc∑
m=1

a
(n)
mnk−δnkx

(n)
nk −σ

2
nk

)
∀k,

x
(n)
mk ≥ 0, x

(n)
mkINt + Qnmk � 0 ∀m, k,

Wnk � 0 ∀k, pn =
∑K
k=1 Tr(Wnk)


, (14)

for n = 1, . . . , Nc. As a result, we end up with the following
compact formulation for problem (8):

min
{pn}, {Wnk}, {yn}, z

Nc∑
n=1

pn (15a)

s.t.
(
pn,
{
Wnk, annk, bnnk

}
k
,yn

)
∈ Cn ∀n, (15b)

Anz = yn ∀n. (15c)
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From (15c), we see that the variables of different BSs are
coupled linearly. One approach for solving (15) in a distributed
manner is to apply the so called ADMM [13]. In our recent
work [4], we used ADMM for distributed optimization of
a worst-case robust MCBF problem. However, our experi-
ences in simulations reveal that the ADMM algorithm for
(15) suffers from serious numerical issues. More precisely,
since large-scale fading is considered in the simulations, the
coefficients of the channel vectors ĥnmk for different n,m, k
may have very different numerical scales (i.e., large dynamic
range, depending on the distances between the MSs and BSs).
As a result, the problem can be ill-conditioned and ADMM
converge very slowly.

B. Distributed Optimization by WVP-ADMM

As a variant of ADMM, WVP-ADMM [14] avoids the
ill-condition issue by using weighted variable penalties. To
illustrate WVP-ADMM, let us consider a general problem
formulation as follows

min
z̃∈Z,ỹn∈Yn,
n=1,...,Nc

f(z̃) +

Nc∑
n=1

gn(ỹn) (16a)

s.t. Ãnz̃ = B̃nỹn, n = 1, . . . , Nc, (16b)

where f : RN 7→ R, gn : RM 7→ R, Ãn ∈ RL×N , B̃ ∈
RL×M , and Z , Yn are nonempty convex sets. According to
[14], WVP-ADMM for solving (16) is given in Algorithm 1.

Note that when Gn(t) ∝ IL for all n, t, WVP-ADMM boils
down to the standard ADMM [13]. The weighting matrices
{Gn(t)} provide additional degrees of freedom to cancel out
or precondition the matrices Ãn such that an ill-conditioned
dual optimization (Step 5) can be avoided.

Now let us apply the WVP-ADMM algorithm to the SDR
MCBF problem (15) with the following correspondence:

f ≡ 0, gn ≡ pn, z̃ ≡ z, ỹn ≡ [pn,y
T
n ]T , (17a)

Ãn ≡ An, B̃n ≡ [0, I5(Nc−4)K ], (17b)

Z ≡ RNcK(2Nc+1), Yn ≡ C̄n, (17c)

where C̄n ={(pn,yn)|(pn,
{
Wnk, annk, bnnk

}
k
, yn) ∈ Cn}.

Hence, the corresponding optimization steps for solving (15)
follow those of Algorithm 1.

Note that the weighting matrix {Gn(t)} should be well
adjusted such that the condition in step 7 of Algorithm 1 holds.
In this paper, we propose the following simple strategy:

Gn(t) = βn(t)T2
n, Tn = diag(Ans), (18)

where s ∈ RNcK(2Nc−1)
+ should be selected to rescale the

coupled variables so that the nominal values are balanced; and
βn(t) > 0 satisfies

βn(t)

1 + η(t)
≤ βn(t+ 1) ≤ (1 + η(t))βn(t) (19)

Algorithm 1 WVP-ADMM [14]

1: Given % ∈ (0, 1+
√
5

2
), a non-negative sequence {η(t)} satisfying∑∞

t=0 η(t) < ∞, z̃(0) ∈ Z , and G(0) � 0 and λn(0) ∈
RL, n = 1, . . . , Nc.

2: Set t = 0.
3: repeat
4: ỹn(t+ 1) :=

arg min
ỹn∈Yn

gn(ỹn) + 1
2
‖Ãnz̃(t)− B̃nỹn +λn(t)‖2Gn(t), for

all n = 1, . . . , Nc.
5: z̃(t+ 1) :=

arg min
z̃∈Z

f(z̃)+ 1
2

∑Nc
n=1 ‖Ãnz̃−B̃nỹn(t+1)+λn(t)‖2Gn(t).

6: λn(t+ 1) := λn(t) + %
(
Ãnz̃(t+ 1)− B̃nỹn(t+ 1)

)
for all

n = 1, . . . , Nc.
7: Adjust Gn(t) such that

1
1+η(t)

Gn(t) � Gn(t+ 1) � (1 + η(t))Gn(t)

for all n = 1, . . . , Nc.
8: t := t+ 1;
9: until the predefined stopping criterion is satisfied.

for all t. Substituting (18) into the penalty term in Step 4 yields

‖Anz(t)− yn + λn(t)‖2Gn(t)

= βn(t)‖Tn

(
Anz(t)− yn + λn(t)

)
‖2

= βn(t)‖An diag(s)z(t)−Tnyn+Tnλn(t)‖2
= βn(t)‖Anz̄(t)− ȳn + λ̄n(t)‖2,

where the second equality is due to the fact that An diag(s) =
diag(Ans)An by exploiting the structure of An, and

z̄(t)= diag(s)z(t), ȳn = Tnyn, λ̄n(t) = Tnλn(t) (20)

are the weighted scaled variables.
By (17), (18) and (20), we can rewrite the WVP-ADMM

Steps 4 to 6 for solving (15) as follows:

ȳn(t+ 1):=

arg min

K∑
k=1

Tr(Wnk)+
βn(t)

2

∥∥Anz̄(t)−ȳn+λ̄n(t)
∥∥2

s.t.
({

Wnk, annk, bnnk
}
k
, T−1n ȳn

)
∈ Cn,

for all n = 1, . . . , Nc, (21)

z̄(t+ 1) := Ā†(ȳ(t+ 1)− λ̄(t)), (22)

λ̄n(t+ 1) := λ̄n(t)+% (Anz̄(t+ 1)−ȳn(t+ 1)) ∀n ∈ Nc,
(23)

where ȳ(t+1)=[(ȳ1(t+1))T , . . . , (ȳNc
(t+1))T ]T , λ̄(t+1) =

[(λ̄1(t+1))T , . . . , (λ̄Nc
(t+1))T ]T and Ā = [AT

1 , . . . ,A
T
Nc

]T .
It is important to note that both the optimization steps in

(21) and (23) can be independently computed by each BSn,
using only local CSI. However, for updating (23), each BSn

has to know z̄(t + 1). In general, this can be obtained by
information exchange of ȳn(t+1)− λ̄n(t) with the other BSs
so that all BSs can compute z̄(t+ 1) by (22) on its own. We
summarize the obtained distributed algorithm for solving the
robust MCBF design (8) in Algorithm 2.
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Algorithm 2 Distributed Optimization for Solving (8)

1: Choose % ∈ (0, 1+
√
5

2
), η(0) > 0, βn(0) > 0 for all n, and the

vector s in (18). Set t=0.
2: Initialize z(0) which is known to all BSs, and initialize λn(0)

for all n.
3: repeat
4: Each BSn updates the local variable ȳn(t+ 1) by (21);
5: Each BSn exchanges ȳn(t+ 1)− λ̄n(t) with the other BSs.
6: Each BSn updates the public variables z̄(t+ 1) by (22);
7: Each BSn updates the dual variables λ̄n(t+ 1) by (23);
8: Each BSn updates the penalty coefficient βn by (19);
9: t := t+ 1;

10: until the predefined stopping criterion is satisfied.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present some simulation results
to demonstrate the effectiveness of the proposed chance-
constrained robust MCBF design and distributed optimization
method. A hexagonal layout with 3 cells and 2 MSs per cell
is considered. Each BS is equipped with 4 antennas and the
inter-BS distance is set to 500 m. The MSs are uniformly
located in the triangular region formed by the three BSs and
have a minimum distance of 35 m to their respective BSs. We
follow the simulation setting in [4], considering both large-
scale and small-scale channel fadings. Each BS is assumed to
be able to accurately track the large-scale fadings while having
CSI errors for the small-scale components. The CSI errors
are modeled as zero mean, spatially i.i.d. complex Gaussian
random variables (i.e., Cnmk , ε2INt

for all n,m and k). The
channel estimates {ĥnmk} are also generated following i.i.d.
complex Gaussian distribution. The SINR target values and the
outage probabilities of all MSs are set the same, i.e., γnk , γ,
ρnk , ρ for all n, k. The CVX [17] is used to handle the cen-
tralized problem (8) and the subproblem (21). For Algorithm 2,
we choose %=1, s=[sa1

T
2(Nc−1)K , sb1

T
2(Nc−1)K , sx1

T
NcK

]T

with sa = 8000, sb =sx =80, 000, z(0)=0, λ(0)=0, βn = β
for all n, β(0)=10−5 and β(t+1):=min(β(t)(t+5)/t, 0.02).

A. Performance of Convex Approximation Formulation (8)

Figure 1 displays the histograms of the achieved SINR
values of the non-robust design [1] and the (centralized) robust
MCBF design using the approximation formulation in (8), for
γ = 10 dB, ρ = 10% and ε2 = 0.002. The beamforming
solutions are obtained under a set of randomly generated
channel estimates {ĥnmk}, and the histograms are plotted by
testing over 10,000 sets of randomly generated CSI errors. We
can observe from Fig. 1 that, for more than half of the tested
cases (54.89%), the non-robust design cannot achieve the
desired SINR value. In contrast, the proposed approximation
formulation (8) for robust MCBF can achieve the desired SINR
value for most of the cases, and has only a 0.98% outage
probability. Note that the achieved outage value is in fact
far smaller than the desired probability 10%, owing to the
approximation formulation in (8) is conservative in nature.

Figure 2 shows the average transmission power of the robust
beamforming solution obtained by (8) versus the target SINR
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Fig. 1: Histogram of achieved SINR values, for ρ= 10% and γ =
10dB.
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Fig. 2: Average transmission power vs. target SINR for ρ = 10%

γ, for ρ = 10%, and ε2 = 0.002, 0.01. From 10,000 sets of
randomly generated channel estimates, we pick up all channel
realizations for which (8) is feasible under the setting of γ=
14 dB and ε2 = 0.01, and the results in Fig. 2 are obtained
by averaging over these 288 feasible channel realizations. As
expected, the required minimum transmission power increases
for larger target SINR values or larger CSI error variances.

Figure 3 presents both the average transmission power and
problem feasibility rate versus the target SINR satisfaction
probability 1 − ρ, for ε2 = 0.002. Ten thousand channel
realizations are tested. The average transmission powers are
obtained by averaging over the channel realizations for which
(8) is feasible for ρ = 0.05. We can observe that a larger
transmission power is required to achieve a more strict outage
performance, and the problem feasibility rate also decreases.

B. Performance of Proposed Distributed Optimization Method

We here examine the performance of the proposed distribut-
ed optimization algorithm (Algorithm 2). In Fig. 4, we present
four typical convergence curves of Algorithm 2 for different
parameter settings. The outage probability is set to 10%. The
normalized power accuracy is defined as ‖p(t)p? − 1‖, where
p(t)=

∑
n

∑
k Tr(Wnk(t)), in which {Wnk(t)} are obtained

by (21), and p? is the centralized optimal value of (8). We
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Fig. 3: Average transmission power and feasibility rate vs. satisfaction
probability for γ = 10 dB and ε2 = 0.01.

can see from this figure that Algorithm 2 can achieve a 10%
power accuracy within 20 iterations for Nc = 2 and within 40
iterations for Nc = 3. It is anticipated that more iterations are
required when Nc increases.

We are also interested in how the number of iterations
affects the achieved outage probability. Let us recall Figure 1,
where the histograms of achieved SINR values of Algorithm
2 are also shown. One can see that Algorithm 2 with 40
iterations exhibits almost the same SINR distribution as the
centralized solution, and achieves a 0.95% outage probability.
Note that the achieved outage probability is far smaller than
the target outage probability (which is 10%) owing to the
conservativeness of (8). Interestingly, as seen from Figure
1, Algorithm 2 with 20 iterations achieves a 6.69% outage
probability which also meets the desired outage performance.
This result implies an advisable early termination criterion that
may achieve a better trade-off between the outage performance
and the number of iterations, thus reducing the communication
overhead between BSs.

In summary, we have developed a convex approximation
formulation (in (8)) and a distributed optimization method
(Algorithm 2) for the chance-constrained robust MCBF design
problem (3). The proposed distributed optimization method
is based on WVP-ADMM by which one can precondition
the problem and thus improve the convergence behavior of
the ADMM algorithm. The presented simulation results have
shown that the convex approximation formulation (8) can
provide guaranteed SINR outage performance for the MSs, and
that the proposed Algorithm 2 can yield solutions satisfying
the SINR outage requirement in a few tens of iterations.
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