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Abstract—This paper addresses the problem of blind identifica-
tion of a linear instantaneous overdetermined mixture of quasi-
stationary sources, using a new formulation based on Khatri-
Rao (KR) subspace. A salient feature of this formulation is that
it decomposes the blind identification problem into a number
of per-source, structurally less complex, blind identification
problems. We tackle the per-source problems by developing a
specialized alternating projections (AP) algorithm. Remarkably,
we prove that AP almost surely converges to a true mixing
matrix column in its first iteration, assuming an ideal model
condition. Simulation results show that the proposed algorithm
yields competitive complexity and performance.

I. INTRODUCTION

In this paper, the problem of interest is blind identification
of a linear instantaneous mixture of quasi-stationary sources
(QSS). This problem has received much attention, motivated
by its application to blind separation of speech and audio
sources in microphone arrays. Its strong connection to funda-
mental frameworks, such as multi-way arrays and joint matrix
diagonalization, also makes this topic interesting to pursue.

The idea behind QSS-based blind identification is to exploit
statistically time-varying characteristics of QSS (generally
of second order), thereby intending to retrieve the mixing
system. Currently, there are two main classes of formulations
for QSS-based blind identification. One is based on parallel
factor analysis (PARAFAC) [1]–[3], where the blind identifi-
cation problem is formulated as a three-way data array fitting
problem. The other is joint diagonalization (JD), where the
problem is formulated as a problem of diagonalizing multiple
matrices [4]–[6]. Research on these two parallel formulations
has revealed some fundamentally beautiful results, subse-
quently triggering much interest in the field. In PARAFAC,
for example, there are elegant linear algebraic results that
provide much insight into the identifiability conditions, es-
pecially under underdetermined mixture cases [1], [2]. As
for JD, we now understand its connection to the optimal
maximum-likelihood estimation formulation for the overdeter-
mined Gaussian QSS case [4]. And, from these formulations,
effective blind identification or separation algorithms have
been developed. State-of-the-arts under PARAFAC are trilinear
alternating least squares (TALS) [2] and alternating-columns
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diagonal-centers (AC-DC) [3], while those under JD include
Pham’s JD [4], fast Frobenius diagonalization (FFDiag) [5],
and quadratic diagonalization (QDiag) [6].

This paper aims at establishing an alternative formulation
for QSS-based blind identification using Khatri-Rao (KR) sub-
space. KR subspace was previously proposed by the authors
for DOA estimation of QSS [7]. In the context here, the
KR subspace formulation decomposes the blind identifica-
tion problem into a number of per-source, structurally less
complex, blind identification problems; this is different from
PARAFAC and JD which are inherently joint-source formula-
tions. We focus on overdetermined mixtures, and devise a spe-
cialized alternating projections (AP) algorithm for dealing with
the simpler per-source problems. A distinguishing result with
this AP algorithm is its theoretically provable convergence—
We will show by analysis that under an ideal model condition,
AP almost surely converges to a true mixing matrix column
in its first iteration. Using this important insight, we build a
new blind identification algorithm which will be empirically
demonstrated to have good runtime performance. Simulation
results will also show that the proposed algorithm exhibits
blind estimation performance on a par with the existing
algorithms.

II. PROBLEM STATEMENT

Consider an N -by-K linear mixing model as follows:

x(t) = As(t) + v(t), t = 0, 1, 2, . . . , (1)

where x(t) = [x1(t), . . . , xN (t)]T is the received signal
vector, A = [a1, . . . ,aK ] ∈ CN×K is the mixing matrix,
s(t) = [s1(t), . . . , sK(t)]T is the source signal vector, and
v(t) represents noise. Our model assumptions are as follows:
(A1) The source signals sk(t), k = 1, . . . ,K, are statistically

independent of each other, with zero mean.
(A2) A ∈ CN×K is of full column rank.
(A3) The noise vector v(t) is wide-sense stationary with

zero mean and covariance σ2I, and it is statistically
independent of the source signals.

(A4) Each source signal sk(t) is wide-sense quasi-stationary
with frame length L; specifically, E{|sk(t)|2} =
dmk, ∀t ∈ [(m− 1)L+ 1,mL].

Note that assumption (A4) is key to QSS-based blind identifi-
cation techniques [2]–[6]. Physically, it means that the source



second-order statistics (SOSs) are static within a short, local
period of time, but are time-variant over a global time scale.

Let us examine the local SOSs of the received signal. Define

Rm = E{x(t)x(t)H}, for any t ∈ [(m− 1)L+ 1,mL],
(2)

to be the local covariance matrices of x(t), where m = 1, 2, . . .
is the frame index. These Rm can be estimated by local time
averaging; i.e., Rm ' 1

L

∑mL
t=(m−1)L+1 x(t)x(t)H . Under

(A1), (A3), and (A4), we obtain the following model for Rm:

Rm = ADmAH + σ2I, (3)

where Dm = Diag(dm1, dm2, . . . , dmK) ∈ RK×K is the
source local covariance matrix of the mth frame. Suppose that
we have R1, . . . , RM available, where M is the number of
available frames. Our goal is to estimate the mixing matrix A
from R1, . . . ,RM without prior knowledge of D1, . . . ,DM

and σ2.
For convenience, we will assume that the noise covariance

matrix is absent from the local covariance model (3); i.e.,

Rm = ADmAH . (4)

In practice, it has been known that the noise covariance matrix
σ2I can be easily removed for the case of N > K. In essence,
one can make use of the fact that the minimum eigenvalue of
Rm, denoted here by λmin(Rm), is σ2 for N > K. In this
work, we will specifically use the following method to estimate
σ2

σ̂2 = min
m=1,...,M

λmin(Rm), (5)

followed by subtracting the noise covariance from (3).

III. KHATRI-RAO SUBSPACE CRITERION

We will first briefly review the KR product and some of
its properties. Then, our KR subspace blind identification
criterion will be described.

A. Some Basic Results for KR Product

Given two matrices A ∈ Cn×k and B ∈ Cm×k of identical
number of columns, the KR product of A and B is defined as

A�B = [ a1 ⊗ b1, . . . ,ak ⊗ bk ] ∈ Cnm×k, (6)

where ⊗ denotes the Kronecker product. KR product has
many interesting algebraic properties; see, e.g., [1], [2] and
the references therein. Here we list several results relevant to
this work:

i) a⊗b = [ a1b
T , . . . , anbT ]T = vec(baT ), where vec(·)

is the vectorization operation.
ii) Let A ∈ Cn×k, B ∈ Cm×k, and d ∈ Ck. Also denote

D = Diag(d), where Diag(·) is the diagonal operator.
Then we have [1]

vec(ADBH) = (B∗ �A)d. (7)

iii) For any a ∈ Cn, b ∈ Cm, and C ∈ Cn×m, we have

(b∗ ⊗ a)Hvec(C) = aHCb. (8)

B. KR Subspace Criterion
Let us consider the local covariance model in (4). By (7),

we have

ym , vec(Rm) = (A∗ �A)dm ∈ CN
2

, (9)

where dm = [dm1, . . . , dmK ]T . Then, stacking all ym yields

Y , [y1, . . . ,yM ] = (A∗ �A)ΨT ∈ CN
2×M , (10)

where Ψ = [d1, . . . ,dM ]T . We are interested in the subspace
characteristics of A. To do this, we first show that

Lemma 1. Under (A2), A∗ �A is of full column rank.

Proof: We aim to show that (A∗ �A)x 6= 0 for all x 6= 0.
By (7), we get

vec−1((A∗ �A)x) = ADiag(x)AH . (11)

Since A is of full column rank, ADiag(x)AH = 0 only when
Diag(x) = 0. Hence, we complete the proof. �

Moreover, we assume
(A5) Ψ is of full column rank.
Assumption (A5) is justified as follows. Physically, each col-
umn of Ψ describes the power distribution of a source over a
long-term time scale. Hence, for sources yielding significantly
different time-variant power distributions and for M ≥ K, we
would expect that the columns of Ψ be linearly independent.

By Lemma 1 and (A5), the rank of Y is K. Hence, Y
admits a compact singular value decomposition (SVD)

Y = UsΣsV
H
s , (12)

where Σs ∈ RK×K is the nonzero singular value matrix, and
Us ∈ CN2×K and Vs ∈ CM×K are the associated left and
right singular matrices, resp. As a basic SVD result, we have

R(Us) = R(Y) = R(A∗ �A) (13)

where R(X) denotes the range space of X. The implication
with (13) is that every mixing matrix column ak satisfies the
condition a∗k ⊗ ak ∈ R(Us). This leads us to the following
blind identification criterion [7]:

find a

such that a∗ ⊗ a ∈ R(Us), a ∈ CN
(14)

Eq. (14) will be called the KR subspace criterion in the sequel.
We are concerned with the identifiability of criterion (14).

Lemma 2. (Identifiability) Under (A2), a vector a ∈ CN
satisfies the KR subspace criterion a∗ ⊗ a ∈ R(Us) if and
only if a = cak for any k = 1, . . . ,K and for any non-zero
constant c ∈ C.

Lemma 2 implies that the columns of the true mixing matrix A
can be unambiguously identified by the KR subspace criterion
(up to a scale factor). The proof of Lemma 2 is similar to that
of Lemma 1, and is skipped due to page limit.

We should note that the KR subspace criterion (14) suggests
a per-source decomposition approach to identifying the mixing
matrix A. This is in contrast to the PARAFAC and JD criteria,
where the columns of A are jointly identified.



IV. KR SUBSPACE ALTERNATING PROJECTIONS

In this section we focus on per-source identification in
accordance with the KR subspace criterion (14). The results
obtained here will be used to build a systematic all-sources
blind identification algorithm in the next section.

We employ alternating projections (AP) to deal with the
KR subspace criterion. AP is a simple technique for finding
a vector in the intersection of some given sets [8]. To apply
AP, we formulate criterion (14) as an optimization problem:

min
α∈C,a∈CN ,h∈CN2

‖αa∗ ⊗ a− h‖2

s.t. |α| = 1, ‖a‖2 = 1, h ∈ R(Us),
(15)

where ‖ · ‖ is the Euclidean norm. The operation of AP
is as follows: at one time, minimize (15) with respect to
(w.r.t.) h with (α,a) fixed, and, at another time, minimize
(15) w.r.t. (α,a) with h fixed. Let us first consider the partial
minimization w.r.t. h:

min
h∈R(Us)

‖αa∗ ⊗ a− h‖2. (16)

Problem (16) is a linear projection problem, whose solution is

h = UsU
H
s (αa∗ ⊗ a). (17)

Moreover, the partial minimization w.r.t. (α,a)

min
|α|=1,‖a‖2=1

‖αa∗ ⊗ a− h‖2 (18)

also has a closed form. To show this, consider the objective
function of (18). We have, for any |α| = 1, ‖a‖2 = 1,

‖αa∗ ⊗ a− h‖2 (19)

= |α|2‖a∗ ⊗ a‖2 − 2Re{α∗(a∗ ⊗ a)Hh}+ ‖h‖2

= 1− 2Re{α∗aHvec−1(h)a}+ ‖h‖2 (20)

≥ 1− 2|aHvec−1(h)a|+ ‖h‖2, (21)

where (20) is due to (8). Note that equality in (21) holds when
α = exp(jφ(aHvec−1(h)a)) where φ(x) is the phase of x.
Moreover, (21) is minimized when a equals a unit-norm eigen-
vector of vec−1(h) associated with an eigenvalue of the largest
absolute value, which we will denote by qmax(vec−1(h)). In
summary, a solution to (18) is

a = qmax(vec−1(h)), α = exp(jφ(aHvec−1(h)a)). (22)

We summarize the AP method as follows:

ALTERNATING PROJECTION ALGORITHM FOR (14)

given an orthogonal basis matrix Us ∈ CN2×K , and
an initial point h ∈ R(Us).

repeat
a := qmax(vec−1(h)), α := ejφ(aHvec−1(h)a),
h := UsU

H
s (αa∗ ⊗ a),

until a stopping criterion is satisfied.
output the vector a.

It is known that for general applications, AP may exhibit
slow convergence. Rather unexpectedly, we find that for semi-
unitary A (i.e., AHA = I), the convergence of AP becomes
dramatically different:

Theorem 1. (Convergence of AP for semi-unitary A)
Suppose that A is semi-unitary, that the initialization is
generated by h = Usζ where ζ ∼ CN (0, I) (i.e., i.i.d.
zero-mean unit variance complex Gaussian), and that there
is no modeling error in (4). Then, with probability one and
in one iteration, the AP algorithm converges to any one of
a1, . . . ,aK up to a scale factor.

Proof: It can be verified that for a semi-unitary A, (A∗�A)
is also semi-unitary. With this property, we can show that

Us = (A∗ �A)Γ (23)

for some unitary Γ ∈ CK×K . Let η = Γζ. Then, we have η ∼
CN (0, I). Subsequently, the initialization can be expressed as

h = Usζ = (A∗ �A)η. (24)

Let us consider the devectorization of h. Applying (7) to (24)
yields

vec−1(h) = ADiag(η)AH . (25)

Since A is semi-unitary, the right hand side of (25) is in
fact an eigenvalue decomposition (EVD) of vec−1(h). The
remaining question is whether (25) is the unique EVD. If it
does, then the AP step a := qmax(vec−1(h)) will pick up a
principal eigenvector of vec−1(h), which is one of the ak up
to a scale factor. It is known that if the eigenvalues η1, . . . , ηK
are distinct, then the respective EVD is unique. As ηi = ηj
holds with probability zero for any i 6= j, we assert that the
AP algorithm almost surely converges to a true mixing matrix
column in its first iteration. �

V. KR SUBSPACE AP-BASED ALGORITHM

We now establish a blind identification algorithm that uti-
lizes AP to identify the whole mixing matrix A. In particular,
we intend to make use of the rapid convergence characteristic
of AP shown in Theorem 1. While Theorem 1 applies to semi-
unitary A only, we can enforce mixing matrix semi-unitarity
through prewhitening. To illustrate this, let

R̄ ,
1

M

M∑
m=1

Rm = AD̄AH (26)

be the time-average covariance matrix, where D̄ =
1
M

∑M
m=1 Dm. We perform a square root factorization on R̄

(e.g., EVD) to obtain R̄ = BBH , where B ∈ CN×K . Then,
we carry out the following prewhitening procedure:

R̃m = B†Rm(B†)H , m = 1, . . . ,M. (27)

where B† is the pseudo-inverse of B. It can be shown that

R̃m = GD̃mGH , m = 1, . . . ,M, (28)



where D̃m = D̄−1Dm, and G ∈ CK×K is unitary and
satisfies

G = B†AD̄1/2. (29)

Hence, we can apply AP on R̃1, . . . , R̃M to obtain the
columns of G. Once the whole G is identified, we estimate
the original mixing matrix by BG; cf., (29).

As a side benefit of prewhitening, we can systematically
identify all the columns of G by exploiting its column
orthogonality. Suppose that we have identified gr. Let G−r =
[g1, . . . ,gr−1,gr+1, . . . ,gK ]. It can be easily shown that

R(G∗−r �G−r) = R
(
P⊥g∗

r⊗gr
(G∗ �G)

)
= R

(
P⊥g∗

r⊗gr
Us

)
where P⊥g∗

r⊗gr
= I − (g∗r ⊗ gr)(g

∗
r ⊗ gr)

H is the orthog-
onal complement projector of g∗r ⊗ gr. By applying AP on
P⊥g∗

r⊗gr
Us, we can identify another gi, i 6= r.

We finish this section by providing the complete pseudo-
code of the proposed algorithm in Table I. For convenience, we
will call this algorithm the prewhitened AP algorithm (PAPA).

TABLE I: The proposed prewhitened AP algorithm.

Given local covariance matrices R1, . . . ,RM .
Step 1. compute σ̂2 = minm=1,...,M λmin(Rm), and obtain

R̂m = Rm − σ̂2I, m = 1, . . . ,M .
Step 2. compute R̄ = 1

M

∑M
m=1 R̂m, and perform a square-root

factorization R̄ = BBH , where B ∈ CN×K .
Step 3. compute R̃m = B†R̂m(B†)H , m = 1, 2, . . . ,M .
Step 4. form Y = [vec(R̃1), . . . , vec(R̃M )], and compute its

compact SVD; i.e., Y = UsΣsV
H
s , and set i = 1.

Step 5. apply the AP algorithm with the basis matrix Us and an
initial point h = Usζ for ζ ∼ CN (0, I), and record its
output as gi.

Step 6. compute P⊥g∗
i⊗gi

= I−(g∗i⊗gi)(g
∗
i⊗gi)

H and obtain the

basis matrix of P⊥g∗
i⊗gi

Us, denoted by Qs ∈ CK2×(K−i).
Then, update Us := Qs.

Step 7. set i := i+ 1 and goto Step 5. until i > K.
Step 8. output Â = BG, where G = [g1, . . . ,gK ].

VI. SIMULATIONS AND CONCLUSION

We use simulations to demonstrate the performance of
PAPA and compare it to some benchmarked QSS-based blind
algorithms. The simulation settings are described as follows.
We consider real-valued mixtures and sources, with N = 11
and K = 10. The mixing matrix A is randomly generated at
each trial. The sources are real speech. We have a database
of 23 speech signals, and at each trial we randomly pick
K of them as the source signals. The total signal length is
T = 25600. In order to obtain more local covariances under
limited signal lengths, we employ 50% overlapping frames to
estimate Rm; specifically,

Rm =
1

L

0.5(m−1)L+L∑
t=0.5(m−1)L+1

x(t)xH(t). (30)

We set L = 256, and the subsequent number of local covari-
ances is M = 199. These Rm’s are then processed by the
noise covariance removal procedure mentioned in Section II.

The benchmarked algorithms are TALS, Pham’s JD, and
FFDIAG. All the algorithms under test were run on the same
set of noise covariance removed {Rm}. In PAPA, we adopt
a standard stopping criterion for its per-source AP processes,
specifically, |f (n) − f (n−1)|/|f (n)| < ε = 10−4, where f (n)

is the objective value of the algorithm at the nth iteration.
The other algorithms also use the same type of criterion to
stop. The performance measure employed is the average mean
square error (MSE), defined as

MSE = min
π∈Π,

c1,...,cK∈{±1}

1

K

K∑
k=1

∥∥∥∥ ak
‖ak‖

− ck
âπk

‖âπk
‖

∥∥∥∥2

,

where Π is the set of all permutations of {1, 2, . . . ,K}; A
and Â are the true and estimated mixing matrices, respec-
tively. The signal-to-noise ratio (SNR) is defined as SNR =
1
T

∑T−1
t=0 E{||As(t)||2}/E{||v(t)||2}.

Fig. 1 shows the MSEs of the various algorithms; the
results were obtained by 1000 independent trials. We see that
for SNR ≤ 30dB, PAPA generally provides the best MSE
performance compared to the other algorithms. FFDIAG is
also competitive, yielding MSEs almost identical to that of
PAPA for SNR ≥ 15dB. PAPA nevertheless gives better MSEs
than FFDIAG for SNR < 15dB. Pham’s JD yields better
MSEs for SNR ≥ 35dB, which is very high1; otherwise
its MSEs are higher than those of PAPA and FFDIAG. We
tried two different implementations of TALS: In the legend
of Fig. 1, “TALS” is a standard TALS, while “TALS with
warm start” has its initialization done by a cheap version of
PAPA, specifically, restricting PAPA’s AP iterations to one
only. As seen in Fig. 1, our warm start attempt improves the
MSEs of TALS. This illustrates that PAPA can also be used to
warm start other blind algorithms, especially those requiring
reasonable initializations, to help improve their performance.

Fig. 2 plots the average runtimes of the various algorithms
corresponding to the above simulation. All the algorithms
were run on a 2.80GHz Desktop PC, written in MATLAB.
PAPA is seen to have the lowest runtime. FFDIAG also shows
good runtime, with its gap relative to PAPA being higher
for low SNRs. Moreover, TALS yields an improved runtime
performance when warm start by PAPA is employed.

To get a better idea of the computational efficiency of
PAPA, we examine its number of iterations used. Recall that in
Theorem 1, we prove a key result that AP should converge to
the ground truth in one iteration, when there is no modeling
error in {Rm}. Table II shows the average number of AP
iterations corresponding to the above simulation. From the
second row of the table, we see that the number of AP
iterations is higher than what we expect in theory; this is owing
to noise corruption and signal covariance estimation errors,
which constitute the modeling errors. To verify Theorem 1,
we perform an additional numerical evaluation where {Rm} is
generated following the model in (3) exactly; i.e., synthesizing
an ideal model. The results are tabulated in the third row of

1This high-SNR performance advantage may be attributed to the fact that
Pham’s JD criterion is ML in the noiseless Gaussian QSS case [4].



TABLE II: Average number of iterations of AP in PAPA.

SNR(dB) -10 0 10 20
real speech 9.45 5.28 4.70 4.98
ideal model (ref. only) 2 2 2 2

Table II, where we see that the number of AP iterations are
all 2 (the 2nd iteration is required for AP to realize that the
estimate is good enough), verifying our claim in Theorem 1.
We also note that for real speech, the number of AP iterations
is about 5 for moderate to high SNRs, which is quite modest.

In Figs. 3-4, we illustrate the MSEs and runtimes of the
various algorithms w.r.t. the number of frames M . Note that
L = 256, the SNR is fixed at 10dB, and the number of trials
is 200. Again, PAPA is seen to yield competitive estimation
accuracy and complexity in general.

To conclude, we have established an alternative approach to
QSS-based blind identification using a KR subspace formu-
lation. In particular, we have developed a blind identification
algorithm that has a desirable theoretical convergence property.
Simulation results have shown that the proposed algorithm is
competitive in performance and complexity.
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