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ABSTRACT

In this paper, we describe a continuous optimization perspective on
Winter’s simplex volume maximization belief for endmemberex-
traction in hyperspectral remote sensing. Winter’s belief, proposed
in the late 90’s, is very insightful and has led to one of the most
widely used class of endmember extraction algorithms nowadays—
N-FINDR. Our endeavor to revisit this problem is to provide an al-
ternative, systematic, framework of formulating and understanding
Winter’s belief. Under the continuous optimization formulation of
Winter’s belief, we show a fundamental result that the existence of
pure pixels is not only sufficient for the Winter problem to perfectly
identify the ground-truth endmembers, but also necessary.Then,
we derive two Winter-based algorithms based on two different opti-
mization strategies. Interestingly, the resulting algorithms are found
to be similar to an N-FINDR variant and the vertex component anal-
ysis (VCA) algorithm. Hence, the developed framework provides
linkage and alternative interpretations to these existingalgorithms.
Simulation results are also presented to compare the derived Winter
algorithms and several existing algorithms.

Index Terms— Endmember extraction, Simplex volume maxi-
mization, Alternating optimization, Successive optimization

1. INTRODUCTION

In space object exploration in cosmos [1], as well as environmen-
tal and military monitoring on the Earth [2], using a hyperspectral
sensor, endmember extraction techniques are essential to identifying
the composition of disparate materials over the observed scene. How
to design an effective endmember extraction algorithm has therefore
been a subject of numerous investigations during the past decade [3].
One major group of endmember extraction algorithms [4–6] isbased
on Craig’s belief [7], which states that the vertices of a minimum-
volume simplex enclosing all the observed pixel vectors mayserve
as reliable estimates of the endmembers. However, algorithms based
on Craig’s belief can be expensive to implement, owing to thecom-
plexity required to handle pixel enclosing simplexes. Another group
of endmember extraction algorithms, which are generally simpler
to implement, assumes the existence of pure pixels and attempts
to search for those pure pixels as endmember estimates. The idea
started in the later 90’s, when Winter proposed a belief thatamong
all pixel-constructed simplexes, the one formed by the purepixels
should yield the maximum simplex volume [8]. From this very in-
sightful belief he then suggested a way to practically extract end-
members, well known as N-finder (N-FINDR). The working princi-
ple of N-FINDR is to exhaustively examine each pixel and recalcu-
late the corresponding simplex volume until it reaches the maximum.
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Winter’s idea has stimulated much interest, leading to manydifferent
N-FINDR implementations being proposed recently [9].

In this paper, we adopt a different view to study Winter’s belief,
where our objective is to provide new insights and interpretations of
the Winter approach. Specifically, we take a continuous optimization
perspective to revisit Winter’s belief. By establishing a continuous
Winter problem formulation and then studying it, some interesting
results are obtained. The first is regarding the fundamentallimita-
tion. In [10], we have proven that theoretically, the Winterproblem
can indeed lead to exact identification of the true endmembers un-
der the pure-pixel assumption. Here, we will show that the existence
of pure pixels is also necessary for the Winter problem to perfectly
identify the true endmembers. The latter gives a key implication—
the Winter-based endmember extraction algorithms would bemost
suitable for the pure-pixel existent scenario.

Despite the fundamental limitation described above, Winter-
based algorithms are attractive owing to their relatively simple
algorithmic structures. The second result arising from ourcontinu-
ous optimization perspective is on the algorithm aspect. Instead of
following the path of N-FINDR, we consider continuous optimiza-
tion strategies for dealing with the Winter problem. Specifically, we
propose to apply an alternating optimization strategy and asucces-
sive optimization strategy to the Winter problem. Interestingly, the
resulting optimization algorithms turn out to be similar toN-FINDR
and vertex component analysis (VCA) [11] in an algorithmic way.
Although our derived Winter optimization algorithms stillhave some
algorithmic differences in comparison to N-FINDR and VCA, the
similarities shed new light on N-FINDR and VCA from an optimiza-
tion perspective. Some simulations are presented to compare our
derived Winter-based algorithms and several existing algorithms.

Notations: � denotes componentwise inequality,‖ · ‖2 is the
Euclidean norm;1N andei represent theN × 1 all-one vector and
the unit vector with theith entry equal to 1, respectively;[x]i denotes
theith element ofx, andX† denotes the pseudo inverse ofX.

2. WINTER’S ENDMEMBER EXTRACTION PROBLEM
Assuming that the incident solar radiation gets reflected from the
Earth surface through a single bounce and the materials are dis-
tinct [3–11], each pixel vector of the hyperspectral data cube can
be represented by the following linear mixing model:

x[n] = As[n] =
N∑

i=1

si[n]ai, n = 1, . . . , L, (1)

wherex[n] = [ x1[n], . . . , xM [n] ]T is thenth observed pixel vec-
tor comprisingM spectral bands,A = [ a1, . . . ,aN ] ∈ R

M×N de-
notes the signature matrix whoseith column vectorai is theith end-
member signature,s[n] = [ s1[n], . . . , sN [n] ]T is the correspond-
ing abundance vector comprisingN fractional abundances, andL is
the total number of observed pixel vectors.

The endmember extraction problem is to estimateA from the
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Fig. 1. An example of signal geometry of Winter’s belief forN = 3.

observed pixel vectorsx[n], given prior knowledge ofN . Some
general assumptions are as follows:(A1) si[n] ≥ 0 for all i and
n; (A2)

∑N

i=1 si[n] = 1 for all n; (A3) min{L,M} ≥ N and
a1, . . . ,aN are linearly independent;(A4) there exist pure pixels,
i.e.,x[`i] = ai, i = 1, . . . , N for some index set{`1, . . . , `N}.

We employ a dimension reduction process based on convex ge-
ometry (see [6] for the details), given as follows:

x̃[n] , C
T (x[n]− d) =

N∑

i=1

si[n]αi ∈ R
N−1, n = 1, . . . , L,

(2)
where αi = CT (ai − d) ∈ R

N−1, i = 1, . . . , N, are di-
mension reduced endmembers,d = 1

L

∑L

n=1 x[n] and C =

[ q1(HHT ), . . . , qN−1(HHT ) ] in whichH = [ x[1]−d, . . . ,x[L]−
d ] ∈ R

M×L andqi(HHT ) denotes the unit-norm eigenvector as-
sociated with theith principal eigenvalue ofHHT . The same
linear mixing model as in (1) is still preserved in (2); however, the
dimension of̃x[n] isN − 1, which is much less than that ofx[n].

As mentioned in Section 1, Winter’s belief states that the true
endmembers may be obtained by finding a collection of pixel vectors
whose simplex volume is the largest [8]. Following Winter’sbelief
and (2), we formulate Winter’s endmember extraction problem in
form of continuous optimization as follows [10]:

max
ν1,...,νN∈R

N−1
|det(∆(ν1, . . . , νN))|

s.t. νi ∈ F , i = 1, . . . , N,
(3)

whereF = {ν ∈ R
N−1| ν = X̃θ, θ � 0, 1T

Lθ = 1} is the
convex hull ofx̃[1], . . . , x̃[L], X̃ = [ x̃[1], . . . , x̃[L] ], and

∆(ν1, . . . ,νN ) =

[
ν1 · · · νN

1 · · · 1

]
∈ R

N×N . (4)

We name Problem (3) theWinter problemin the sequel. The Win-
ter problem aims to find anN -tuple (ν1, . . . , νN ) from the pixel-
constructed convex hull such that the associated simplex volume is
maximum. A picture is used to illustrate this in Figure 1. It should
be noted that in Winter’s original work [8], each endmember esti-
mateνj is restricted to be any dimension-reduced pixel vector in
{x̃[1], . . . , x̃[L]}, rather than the continuous setF in (3).

In Appendix 5.1, we prove the endmember identifiability of
Winter’s belief as stated in the following theorem:
Theorem 1. (Endmember identifiability for Winter’s belief)
Suppose that noise is absent, and that(A1) − (A3) hold. Then,
the optimal solution of (3), denoted by{ν?

1 , . . . ,ν
?
N}, is uniquely

given by{α1, . . . ,αN} if and only if(A4) holds.
The implications of Theorem 1 are twofold. First, for the pure-pixel
existent case, solving the Winter problem can lead to perfect iden-
tification, or error-free extraction, of all the true endmembers [10].

Second, such perfect identification would not be possible inthe ab-
sence of pure pixels. The latter implies that in the absence of pure
pixels, a Winter-based endmember extraction algorithm would be
subject to estimation errors even without noise effects.

Despite the limitation described above, the Winter approach pro-
vides an attractive option to endmember extraction. In practice, it is
expected that if the pure-pixel condition is too seriously violated,
the estimation errors caused by lack of pure pixels should besmall.
More importantly, the Winter problem (3) has a good problem struc-
ture that one can exploit to develop simple, efficient, endmember
extraction algorithms. The latter will be explored in the next section.

3. OPTIMIZATION OF THE WINTER PROBLEM

In the two subsequent subsections, we will introduce two different
optimization strategies for handling the Winter problem (3).

3.1. ALTERNATING VOLUME MAXIMIZATION (AVMAX)
Alternating optimization, also known as block coordinate de-
scent/ascent and nonlinear Gauss-Seidel, is a pragmatic approach to
handling certain classes of difficult optimization problems [12]. Be-
fore proceeding to describing its application to the Winterproblem,
let us consider a simplified form of problem (3), given as follows:

max
νi∈F, i=1,...,N

det(∆(ν1, . . . ,νN )) (5)

where we have removed the absolute function from the objective
function. It is shown [13] that problems (5) and (3) are equivalent.
To optimize problem (5) with respect to all endmember estimates
ν1, . . . ,νN jointly can be difficult, due to the nonconvexity of deter-
minant. In alternating optimization, we employ a divide andconquer
rationale— maximize the objective function of (5) over oneνi at a
time, while holding the others fixed. We can represent this by

ν̂j := arg max
νj∈F

det(∆(ν̂1, . . . , ν̂j−1,νj , ν̂j+1, . . . , ν̂N )),∀ j

(6)
where(ν̂1, . . . , ν̂N ) denotes the alternatingly optimized endmember
iterates. Note that the partial maximization in (6) is conducted in a
cyclic manner until some stopping rule is met.

Alternating optimization is attractive in that it shows a neat
closed-form solution to each partial maximizer (6). By applying
cofactor expansion todet(∆(ν1, . . . ,νN )), each partial maximizer
(6) can be written as

ν̂j := arg max
νj∈F

b
T
j νj + (−1)N+jdet(VNj), (7)

where bj = [(−1)i+jdet(Vij)]
N−1
i=1 ∈ R

N−1, and Vij ∈

R
(N−1)×(N−1) is a submatrix of∆(ν̂1, . . . , ν̂N) with the ith row

and jth column removed. It can be shown that problem (7) has a
closed-form solution, as stated in the following lemma

Lemma 1. Consider thejth partial maximization problem (7). Let

Ij =

{
` ∈ {1, . . . , L}

∣∣∣∣ b
T
j x̃[`] = max

n=1,...,L
b
T
j x̃[n]

}
. (8)

A pointν̂j is optimal to (7) if and only if it is a convex combination of
{x̃[n]}n∈Ij

; i.e., any point̂νj =
∑

`∈Ij
β`x̃[`] where

∑
`∈Ij

β` =

1, β` ≥ 0 for all ` ∈ Ij , is an optimal solution to (7) and vice versa.

The proof of Lemma 2 is given in Appendix 5.2.
The resulting algorithm, which we callalternating volume max-

imization (AVMAX), is summarized in Table 1. An important obser-
vation is that AVMAX algorithm is similar to the N-FINDR algo-
rithms [8,9] in terms of the algorithmic structures— the former and
latter both attempt to maximize the simplex volume in some forms



of one-at-a-time pixel search. Among the variants of N-FINDR
algorithms, AVMAX is particularly similar to the SC-N-FINDR al-
gorithm [9]. To be specific, the pseudo code of AVMAX in Table 1
becomes that of SC-N-FINDR if we replaceS3by ν̂j = x̃[`] for any
` = arg maxn=1,...,L |det(ν̂1, . . . , ν̂j−1, x̃[n], ν̂j+1, . . . , ν̂N )|
and restrict the number of alternating cycles to one (i.e., enforces
termination atκ = 1). From a different perspective, one may al-
ternatively interpret SC-N-FINDR as an alternating optimization
algorithm under the continuous Winter formulation.

3.2. SUCCESSIVE VOLUME MAXIMIZATION (SVMAX)

The second optimization strategy we propose for the Winter problem
is successive optimization. Successive optimization is anapproach
that requires a specific decomposition structure of the objective func-
tion. To put into context, the Winter problem needs to be castto a
suitable form. By lettingwi = [νT

i 1]T andW = [w1, . . . ,wN ] ∈
R

N×N , the Winter problem in (3) can be equivalently written as

max
wi∈F, i=1,...,N

|det(W)|, (9)

whereF = {w ∈ R
N | w = Xθ, θ � 0}, x̄[n] = [x̃[n]T 1]T

andX = [x̄[1], . . . , x̄[L]]. To facilitate the application of successive
optimization to (9), we derive the following general matrixlemma:
Lemma 2. LetY = [y1, . . . ,yN ] ∈ R

M×N . It holds true that
√

det(YTY) = ‖y1‖2

∥∥∥P⊥
Y1:1

y2

∥∥∥
2
· · ·

∥∥∥P⊥
Y1:(N−1)

yN

∥∥∥
2
,

(10)
whereY1:j = [y1, . . . ,yj ], P⊥

Y1:j
= IM −Y1:j(Y

T
1:jY1:j)

†YT
1:j

is the orthogonal complement projector ofY1:j .
Lemma 2 is proven by Schur’s formula and matrix analysis. We
omit the proof due to the space limit, and its details will be given
in [13]. Since|det(W)| =

√
det(WTW), we can use Lemma 1 to

decompose the objective function of Problem (9), thereby obtaining
the following equivalent from:

max
w1,...,wN∈R

N
f1(w1)f2(w1,w2) · · · fN (w1, . . . ,wN )

s.t. wi ∈ F , i = 1, . . . , N.
(11)

where

f1(w1) = ‖w1‖2 (12)

fj(w1, . . . ,wj) =
∥∥∥P⊥

W1:(j−1)
wj

∥∥∥
2
, j = 2, . . . , N. (13)

Now, we consider the successive optimization method. In this
method, the endmembers are recursively estimated by

ŵj =arg max
wj∈F̄

fj(ŵ1, . . . , ŵj−1,wj), (14)

from j = 1 to N . The jth endmember,wj , is determined by
finding a maximizer of the decomposed sub-objective function
fj(ŵ1, . . . , ŵj−1,wj), fixing the previously determined endmem-
bersŵ1, . . . , ŵj−1. The obtained partial maximizer̂wj , together
with the previous partial maximizerŝw1, . . . , ŵj−1, are then used
to determine the next endmember. Notice that unlike alternating
optimization, successive optimization is not an iterativemethod
and requires no initial point to start with. Moreover, the partial
maximization problems in (14) have simple solutions:
Lemma 3. For eachj, the partial maximizer in(14) is given by
ŵj = x̄[`], where

` ∈

{
arg maxn=1,...,L ‖x̄[n]‖2, j = 1
arg maxn=1,...,L ‖P⊥

Ŵ1:(j−1)
x̄[n]‖2, j > 1 (15)

The proof of Lemma 3 is given in Appendix 5.3.
We name the successive optimization procedure developed

above thesuccessive volume maximization (SVMAX)algorithm.
Table 1 also provides the pseudo code of the SVMAX algorithm.
As another interesting coincidence, SVMAX appears to be similar
to the VCA algorithm [11] in algorithmic structures. The notably
similar part lies in the result in Lemma 3: If we replace the in-
dex selection in (15) bỳ ∈ arg maxn=1,...,L |rTj x̄[n]|, where
rj = P⊥

Ŵ1:(j−1)
ξ/‖P⊥

Ŵ1:(j−1)
ξ‖ with ξ being randomly gener-

ated, the resulting algorithm would be similar to VCA. As onecan
see, both VCA and SVMAX employ some forms of orthogonal com-
plement projections onto the previously determinedŵ1, . . . , ŵj−1

at each stage, and they both do so in a successive manner.

4. SIMULATIONS AND CONCLUSION

Two Monte Carlo simulations of one hundred independent runsare
presented to demonstrate the advantages of the proposed AVMAX
and SVMAX algorithms. Three existing endmember extractional-
gorithms, SQ-N-FINDR [9], SC-N-FINDR [9], and VCA [11] were
tested for comparison. In each run, we synthetically generated noisy
hyperspectral data by8 endmember signatures with224 bands se-
lected from the U.S. geological survey (USGS) library, abundances
generated from Dirichlet distribution [11], and additive zero-mean
white Gaussian noise based on the specified signal-to-noiseratio
(SNR). The root-mean-square spectral angle distance, denoted byφ,
was used as the performance measure [11]. The computation timeT
(in secs) of each method running in a computer equipped with 2.80-
GHz Core i7-930 CPU and 12GB memory is used as the complexity
measure. Table 2 shows the averageφ (degrees) and averageT (secs)
per realization over various algorithms. Herein, the boldface value
denotes the best performance among the tested algorithms for a spe-
cific SNR orL. For Case I (M = 224, N = 8 andL = 1000) , the
performance of all the algorithms improves as the SNR goes up. For
Case II (M = 224, N = 8, SNR= 15 (dB)), the computation time
of all the methods increases asL increases. For both cases, the per-
formance of SVMAX, and the computational efficiency of AVMAX
and SVMAX are better than that of all the other methods.

In conclusion, we have provided an alternative, continuous
optimization-based, perspective on Winter’s endmember extraction
approach. We have studied a fundamental characteristic of the
Winter formulation, and have developed algorithms based onalter-
native and successive optimization strategies. Remarkably, these
algorithms show connections to some existing algorithms, namely,
SC-N-FINDR and VCA. Thus, our development offers new inter-
pretations to these existing algorithms. The journal version of this
paper [13] will describe more implications and results brought about
by the continuous optimization perspective.

5. APPENDIX

5.1. Proof of Theorem 1. Sufficiency of Theorem 1 has been
proven in [10]. Now, we show the necessity of Theorem 1. Sup-
pose that{ν?

1 , . . . ,ν
?
N} = {α1, . . . ,αN}. This means thatαi ∈

conv{x̃[1], . . . , x̃[L]} for all i. Since{α1, . . . ,αN} are affinely
independent, everyαi cannot be represented by any non-trivial con-
vex combination of{α1, . . . ,αN}. Hence, by (2), we must have
αi = x̃[`i] for some`i and for alli; that is,(A4). �

5.2. Proof of Lemma 1.By substitutingνj = X̃θj into the objec-
tive function, problem (7) can be equivalently written as

max
θj�0, 1T

Lθj=1
b
T
j X̃θj , (16)



Table 1. The two proposed optimization algorithms for handling Winter’s problem (3).

The AVMAX Algorithm The SVMAX Algorithm

Given a convergence toleranceε > 0, {x̃[n]}Ln=1 andN .
S1. randomly select(ν̂1, . . . , ν̂N ) from {x̃[n]}Ln=1.
S2. setj := 1, % := det(∆(ν̂1, . . . , ν̂N )), and κ = 0.
S3. calculatebj = [(−1)i+jdet(Vij)]

N−1
i=1 , and updatêνj :=

x̃[`] for any` ∈ arg maxn bT
j x̃[n].

S4. if (j moduloN) 6= 0, thenj := j + 1 and go toS3,
else updateκ := κ+ 1, and%̄ = det(∆(ν̂1, . . . , ν̂N )).

S5. if |%̄− %|/% > ε, then set% := %̄, j := 1, and go toS3,
else output(ν̂1, . . . , ν̂N ) as an approximate solution to (3).

Given {x̃[n]}Ln=1 andN .
S1. construct̄x[n] = [x̃[n]T 1]T for all n, and setj = 1.
S2. obtain ν̂1 = x̃[`] for any ` ∈ arg maxn ‖x̄[n]‖2, and set

Ŵ = x̄[`].
S3. updatej := j + 1 and obtainν̂j = x̃[`] for any ` ∈

arg maxn ‖P⊥

Ŵ
x̄[n]‖2.

S4. updateŴ := [Ŵ x̄[`]] ∈ R
N×j and go toS3until j = N .

S5. output(ν̂1, . . . , ν̂N ) as an approximate solution to (3).

Table 2. Performance comparison of average root-mean-square spectral angle distanceφ (degrees) and average computation timeT (secs)
per realization over various endmember extraction methods.

Algorithms
Case I:M = 224, N = 8, L = 1000 Case II:M = 224, N = 8, SNR= 15 (dB)

SNR (dB) L
5 15 25 35 45 ∞ 2000 4000 8000 16000 32000 64000

VCA
φ 15.34 3.79 1.26 0.44 0.13 0 3.45 3.43 3.66 3.49 3.68 3.58
T 0.12 0.08 0.08 0.06 0.05 0.03 0.05 0.07 0.11 0.22 0.48 0.95

SQ-N-FINDR
φ 14.17 3.49 1.08 0.32 0.10 0 3.19 3.11 3.11 3.12 3.20 3.34
T 0.19 0.15 0.13 0.12 0.12 0.12 0.25 0.50 1.01 2.27 4.74 10.00

SC-N-FINDR
φ 14.59 3.74 1.18 0.32 0.11 0 3.49 3.41 3.56 3.50 3.78 3.72
T 0.08 0.07 0.06 0.06 0.06 0.06 0.10 0.19 0.38 0.87 1.86 3.78

AVMAX
φ 15.00 3.55 1.07 0.32 0.10 0 3.21 3.09 3.09 3.13 3.33 3.38
T 0.05 0.04 0.03 0.03 0.03 0.02 0.03 0.04 0.07 0.16 0.39 0.77

SVMAX
φ 15.03 3.33 0.94 0.28 0.09 0 3.07 2.94 2.95 3.03 3.10 3.10
T 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.04 0.07 0.16 0.39 0.79

where the term(−1)N+jdet(VNj) in (7) is removed without
change of optimality. By lettingθjn = [θj ]n, we have

b
T
j X̃θj =

L∑

n=1

θjnb
T
j x̃[n] ≤ max

n=1,...,L
b
T
j x̃[n] (17)

for anyθj � 0 and1T
Lθj = 1. Moreover, it can be verified that the

equality in (17) holds if and only if
∑

n∈Ij
θjn = 1 for Ij given by

(8). Hence, the solution of (16),̂νj , can be any convex combinations
of x̃[`] for all ` ∈ Ij . �

5.3. Proof of Lemma 3. Consider (14). By substitutingw1 =
Xθ into the objective function of (14) forj = 1 and by triangle
inequality, we have

max
θ�0

1
T
Lθ=1

∥∥∥∥∥

L∑

n=1

θnx̄[n]

∥∥∥∥∥
2

≤ max
θ�0

1
T
Lθ=1

L∑

n=1

θn‖x̄[n]‖2 ≤ max
n

‖x̄[n]‖2.

(18)
It can be easily verified that the equality above is achieved if and
only if θ = e` for any` ∈ arg maxn=1,...,L ‖x̄[n]‖2. Hence, the
solutionŵ1 = x̄[`] is arrived. The proof for (14) whenj > 1 is the
same as above, and hence is omitted for brevity. �
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