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ABSTRACT

In this paper, we describe a continuous optimization petspeon
Winter’'s simplex volume maximization belief for endmemitser
traction in hyperspectral remote sensing. Winter's bejpedposed

in the late 90's, is very insightful and has led to one of theso

widely used class of endmember extraction algorithms neyse-
N-FINDR. Our endeavor to revisit this problem is to providea-

ternative, systematic, framework of formulating and ustierding
Winter’s belief. Under the continuous optimization formtibn of

Winter's belief, we show a fundamental result that the exisé of
pure pixels is not only sufficient for the Winter problem tafeetly

identify the ground-truth endmembers, but also necessa@ihen,

we derive two Winter-based algorithms based on two diffeopti-

mization strategies. Interestingly, the resulting altpons are found
to be similar to an N-FINDR variant and the vertex componesat-a
ysis (VCA) algorithm. Hence, the developed framework pdes
linkage and alternative interpretations to these exisailggrithms.
Simulation results are also presented to compare the devifieter

algorithms and several existing algorithms.

Index Terms— Endmember extraction, Simplex volume maxi-

mization, Alternating optimization, Successive optintiaa

1. INTRODUCTION

In space object exploration in cosmos [1], as well as enwirem-
tal and military monitoring on the Earth [2], using a hypersipal
sensor, endmember extraction techniques are essentigtfying
the composition of disparate materials over the observegesdHow
to design an effective endmember extraction algorithm heefore
been a subject of numerous investigations during the pastiad3].
One major group of endmember extraction algorithms [4—Based
on Craig’s belief [7], which states that the vertices of aimum-
volume simplex enclosing all the observed pixel vectors se&ye
as reliable estimates of the endmembers. However, algwsittased
on Craig’s belief can be expensive to implement, owing tocthma-
plexity required to handle pixel enclosing simplexes. Aeotgroup
of endmember extraction algorithms, which are generaliypser

to implement, assumes the existence of pure pixels and pttem
to search for those pure pixels as endmember estimates. d€he i

started in the later 90's, when Winter proposed a belief énadbng
all pixel-constructed simplexes, the one formed by the mixels
should yield the maximum simplex volume [8]. From this vemy i
sightful belief he then suggested a way to practically etteand-
members, well known as N-finder (N-FINDR). The working princ
ple of N-FINDR is to exhaustively examine each pixel and laca
late the corresponding simplex volume until it reaches thgimum.
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Winter’s idea has stimulated much interest, leading to nufififigrent
N-FINDR implementations being proposed recently [9].

In this paper, we adopt a different view to study Winter'sdfel
where our objective is to provide new insights and integiiens of
the Winter approach. Specifically, we take a continuouswiptition
perspective to revisit Winter’s belief. By establishingantinuous
Winter problem formulation and then studying it, some iasting
results are obtained. The first is regarding the fundamédintéth-
tion. In [10], we have proven that theoretically, the Wirpeoblem
can indeed lead to exact identification of the true endmesnber
der the pure-pixel assumption. Here, we will show that thisterce
of pure pixels is also necessary for the Winter problem téeody
identify the true endmembers. The latter gives a key impboa—
the Winter-based endmember extraction algorithms wouldchbst
suitable for the pure-pixel existent scenario.

Despite the fundamental limitation described above, Winte
based algorithms are attractive owing to their relativeiypde
algorithmic structures. The second result arising fromaantinu-
ous optimization perspective is on the algorithm aspecttebd of
following the path of N-FINDR, we consider continuous optiat
tion strategies for dealing with the Winter problem. Speaeify, we
propose to apply an alternating optimization strategy asdczes-
sive optimization strategy to the Winter problem. Interegly, the
resulting optimization algorithms turn out to be similaNe=INDR
and vertex component analysis (VCA) [11] in an algorithmigyw
Although our derived Winter optimization algorithms stiive some
algorithmic differences in comparison to N-FINDR and VCAet
similarities shed new light on N-FINDR and VCA from an optirai
tion perspective. Some simulations are presented to campar
derived Winter-based algorithms and several existingrityuos.

Notations: > denotes componentwise inequalilly; ||2 is the
Euclidean norm]  ande; represent théV x 1 all-one vector and
the unit vector with théth entry equal to 1, respectivelig]; denotes
theith element ofk, andX ' denotes the pseudo inverseXf

2. WINTER'S ENDMEMBER EXTRACTION PROBLEM
Assuming that the incident solar radiation gets reflectechfthe
Earth surface through a single bounce and the materialsiste d
tinct [3—11], each pixel vector of the hyperspectral dathecaan
be represented by the following linear mixing model:

N
x[n] = As[n] = Zsi[n]ai, n=1,...,L, 1)
i=1
wherex([n] = [z1[n],...,zam[n] |7 is thenth observed pixel vec-
tor comprisingh spectral bandsA = [ai,...,ay ] € RM*¥ de-
notes the signature matrix whoah column vectom,; is theith end-
member signatures[n] = [ s1[n),...,s~[n] ]” is the correspond-
ing abundance vector comprisifig fractional abundances, atidis
the total number of observed pixel vectors.
The endmember extraction problem is to estimAtérom the
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Fig. 1. An example of signal geometry of Winter's belief far = 3.

observed pixel vectorg[n], given prior knowledge ofV. Some

general assumptions are as follow#1) s;[n] > 0 for all 7 and

n; (A2) SN si[n] = 1 for all n; (A3) min{L, M} > N and

ai,...,an are linearly independen{A4) there exist pure pixels,
i.e.,x[l;] =a;,i=1,...,N for some index seft,...,{n}.

Second, such perfect identification would not be possibtaénab-
sence of pure pixels. The latter implies that in the absefigrie
pixels, a Winter-based endmember extraction algorithmldvie
subject to estimation errors even without noise effects.

Despite the limitation described above, the Winter apgnqao-
vides an attractive option to endmember extraction. Intpragit is
expected that if the pure-pixel condition is too seriousiglated,
the estimation errors caused by lack of pure pixels shoulsioel.
More importantly, the Winter problem (3) has a good problémcs
ture that one can exploit to develop simple, efficient, endiver
extraction algorithms. The latter will be explored in thetngection.

3. OPTIMIZATION OF THE WINTER PROBLEM

In the two subsequent subsections, we will introduce twiediht
optimization strategies for handling the Winter probler (3
3.1. ALTERNATING VOLUME MAXIMIZATION (AVMAX)

Alternating optimization, also known as block coordinate- d
scent/ascent and nonlinear Gauss-Seidel, is a pragmaticaagh to

We employ a dimension reduction process based on convex g&andling certain classes of difficult optimization probefh2]. Be-

ometry (see [6] for the details), given as follows:
N
x[n] £ CT(x[n] —d) = Zsz[n]o“ eRV" ' n=1,...,L,
=1
(2

wherea; = CT(a; —d) € RV, ¢ 1,...,N, are di-
mension reduced endmemberd, = %Zizlx[n] and C =
[q(HHT),...,qv_1(HHT)JinwhichH = [x[1]—d, ... ,x[L]—
d] € RM*" andq;(HH”) denotes the unit-norm eigenvector as-
sociated with theith principal eigenvalue oHH?. The same
linear mixing model as in (1) is still preserved in (2); howevthe
dimension ofk[n] is N — 1, which is much less than that &fn].

As mentioned in Section 1, Winter's belief states that the tr
endmembers may be obtained by finding a collection of pixetiors
whose simplex volume is the largest [8]. Following Wintdr&dief
and (2), we formulate Winter's endmember extraction pnobla
form of continuous optimization as follows [10]:

max |[det(A (v, ..., vN))|
V1,4.4,VNERN71 (3)
s.t. vieF,i=1,...,N,

whereF = {v € RV"'|v = X0, 6 = 0, 176 = 1} is the
convex hull ofx[1],...,x[L], X = [%][1],...,%X[L] ], and
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We name Problem (3) thé/inter problemin the sequel. The Win-
ter problem aims to find aiV-tuple (v, ..., vx) from the pixel-
constructed convex hull such that the associated simpleineis
maximum. A picture is used to illustrate this in Figure 1. Hoald
be noted that in Winter’s original work [8], each endmembsti-e

Ay, ... ,vN) = [ } eRVN. (4

matew; is restricted to be any dimension-reduced pixel vector in

{x[1],...,%x[L]}, rather than the continuous sgtin (3).

In Appendix 5.1, we prove the endmember identifiability of
Winter’s belief as stated in the following theorem:
Theorem 1. (Endmember identifiability for Winter's belief)
Suppose that noise is absent, and tfal) — (A3) hold. Then,
the optimal solution of (3), denoted Hyf,...,vx}, is uniquely
given by{au, ..., an} if and only if(A4) holds.
The implications of Theorem 1 are twofold. First, for the gynixel
existent case, solving the Winter problem can lead to perflen-
tification, or error-free extraction, of all the true endmizars [10].

fore proceeding to describing its application to the Wingeablem,
let us consider a simplified form of problem (3), given asdai:
max

v, €F, i=1,..,N (5)

where we have removed the absolute function from the obgecti
function. It is shown [13] that problems (5) and (3) are eglamnt.
To optimize problem (5) with respect to all endmember esia
v, ..., N jointly can be difficult, due to the nonconvexity of deter-
minant. In alternating optimization, we employ a divide aodquer
rationale— maximize the objective function of (5) over aneat a
time, while holding the others fixed. We can represent this by

det(A(vy,...,vN))

U; = arg max det(A(vh,...,Uj—1,Vj,Ujy1,...,UN)),V ]
Vi
. o (6)
where(y, . . ., Un ) denotes the alternatingly optimized endmember

iterates. Note that the partial maximization in (6) is cortéd in a
cyclic manner until some stopping rule is met.

Alternating optimization is attractive in that it shows aahe
closed-form solution to each partial maximizer (6). By apud
cofactor expansion tdet(A (v, . ..,vn)), each partial maximizer
(6) can be written as

~

vj := arg max bl v; + (1) det(V;), (7)
vj

where b; = [(—=1)""det(Vi;)]7" € RV and V;; €
RW—Dx(N=1) is 5 submatrix ofA(y, ..., Dx) with theith row

and jth column removed. It can be shown that problem (7) has a
closed-form solution, as stated in the following lemma

Lemma 1. Consider thejth partial maximization problem (7). Let

-----

A pointy; is optimal to (7) if and only if it is a convex combination of
{x[nl}nez;;ie., any point; =32, . Bex[¢] whered_, ., fe =

1, B¢, > 0forall £ € Z;, is an optimal solution to (7) and vice versa.
The proof of Lemma 2 is given in Appendix 5.2.

The resulting algorithm, which we callternating volume max-
imization (AVMAX)is summarized in Table 1. An important obser-
vation is that AVYMAX algorithm is similar to the N-FINDR algo
rithms [8, 9] in terms of the algorithmic structures— thenfier and
latter both attempt to maximize the simplex volume in sontenfo



of one-at-a-time pixel search. Among the variants of N-FRID
algorithms, AVMAX is particularly similar to the SC-N-FINR al-

The proof of Lemma 3 is given in Appendix 5.3.
We name the successive optimization procedure developed

gorithm [9]. To be specific, the pseudo code of AVMAX in Table 1 above thesuccessive volume maximization (SVMAgorithm.

becomes that of SC-N-FINDR if we repla8by v; = x[¢] for any

¢ = arg maxn=1,.,r|det(tn,...,U;—1,X[n], Ujt1,...,UN)]
and restrict the number of alternating cycles to one (ieforees
termination atx = 1). From a different perspective, one may al-
ternatively interpret SC-N-FINDR as an alternating opgation
algorithm under the continuous Winter formulation.

3.2. SUCCESSIVE VOLUME MAXIMIZATION (SVMAX)

The second optimization strategy we propose for the Wirrtaslpm

is successive optimization. Successive optimization iagproach

that requires a specific decomposition structure of theatibgefunc-

tion. To put into context, the Winter problem needs to be tast

suitable form. By lettingv; = [v] 1)7 andW = [w1,...,wn] €

RM*N the Winter problem in (3) can be equivalently written as
max

_m |det(W)], )
w; EF, i=1,...,N

whereF = {w € RY |w = X0, 0 = 0}, x[n] = [x[n]" 1]”
andX = [x[1],...,%[L]]. Tofacilitate the application of successive
optimization to (9), we derive the following general matexma:
Lemma2. LetY = [y1,...,y~] € RM*¥ It holds true that

4t (YY) = lIylly [Py, ve|| - [Py

whereY1.; = [y1,...,yjl, P\l(l:j =Tn — Y1;(YE, Y1) YT,
is the orthogonal complement projectorf,. ;.

Table 1 also provides the pseudo code of the SVMAX algorithm.
As another interesting coincidence, SVMAX appears to belaim
to the VCA algorithm [11] in algorithmic structures. The ably
similar part lies in the result in Lemma 3: If we replace the in
dex selection in (15) by € arg max,—1,..r |r] X[n]|, where

L L H H
r; = P\Tvl:@,l)g/”P\Tvl (j,UgH with £ being randomly gener-

ated, the resulting algorithm would be similar to VCA. As aran
see, both VCA and SVMAX employ some forms of orthogonal com-
plement projections onto the previously determired ..., w;_1

at each stage, and they both do so in a successive manner.

4. SIMULATIONS AND CONCLUSION

Two Monte Carlo simulations of one hundred independent auas
presented to demonstrate the advantages of the proposedAVM
and SVMAX algorithms. Three existing endmember extractibn
gorithms, SQ-N-FINDR [9], SC-N-FINDR [9], and VCA [11] were
tested for comparison. In each run, we synthetically geadnaoisy
hyperspectral data by endmember signatures wift24 bands se-
lected from the U.S. geological survey (USGS) library, atances
generated from Dirichlet distribution [11], and additivera-mean
white Gaussian noise based on the specified signal-to-mati&e
(SNR). The root-mean-square spectral angle distancetettby g,
was used as the performance measure [11]. The computatiefti
(in secs) of each method running in a computer equipped wad-2
GHz Core i7-930 CPU and 12GB memory is used as the complexity

omit the proof due to the space limit, and its details will tieeg
in [13]. Since|ldet(W)| = /det(WTW), we can use Lemma 1 to
decompose the objective function of Problem (9), thereliginng
the following equivalent from:

max fi(wa) fa(wi,wa) -+ fn(Wi,...,wn)
wl,.“,wNG]RN (11)
st. w;€eF,i=1,...,N.
where
fi(wi) = [[wil]2 (12)
Hiwiow) = [Pw,w =28 @19)

Now, we consider the successive optimization method.
method, the endmembers are recursively estimated by
(14)

V/Gj =arg max fj({’\vlw-'a‘/{’j*hwj%

w,;EF
from 57 = 1to N. The jth endmemberw;, is determined by
finding a maximizer of the decomposed sub-objective functio
fi(Wi,...,w;_1,wj;), fixing the previously determined endmem-
berswi,...,w;_1. The obtained partial maximize¥ ;, together
with the previous partial maximizess, ..., w;_1, are then used
to determine the next endmember. Notice that unlike alterga
optimization, successive optimization is not an iteratimethod
and requires no initial point to start with. Moreover, thertd
maximization problems in (14) have simple solutions:
Lemma 3. For eachj, the partial maximizer in(14) is given by
w; = x[{], where

j=1

arg maxp—1,...L |‘P\J1*v1:(j,1)k[n]|l2’ j>1 (15)

per realization over various algorithms. Herein, the bexdefvalue
denotes the best performance among the tested algorithrasf®-
cific SNR orL. For Case | {4/ = 224, N = 8 and L = 1000) , the
performance of all the algorithms improves as the SNR goe&op
Case Il M = 224, N = 8, SNR= 15 (dB)), the computation time
of all the methods increases Adncreases. For both cases, the per-
formance of SVMAX, and the computational efficiency of AVMAX
and SVMAX are better than that of all the other methods.

In conclusion, we have provided an alternative, continuous
optimization-based, perspective on Winter's endmembaraetion
approach. We have studied a fundamental characteristitieof t
Winter formulation, and have developed algorithms basedltan-
native and successive optimization strategies. Remayrkéikse

Ie thi algorithms show connections to some existing algorithraspety,

SC-N-FINDR and VCA. Thus, our development offers new inter-
pretations to these existing algorithms. The journal wersif this
paper [13] will describe more implications and results igtaiabout

by the continuous optimization perspective.

5. APPENDIX

5.1. Proof of Theorem 1. Sufficiency of Theorem 1 has been
proven in [10]. Now, we show the necessity of Theorem 1. Sup-
pose thaf{vy, ..., vy} = {a1,...,an}. This means thaty; €
conv{x[1],...,X[L]} for all i. Since{a,...,an} are affinely
independent, everg; cannot be represented by any non-trivial con-
vex combination ofa,...,an}. Hence, by (2), we must have
a; = x[¢;] for somel; and for alli; that is,(A4). [ |

5.2. Proof of Lemma 1.By substitutingv; = )~(0j into the objec-
tive function, problem (7) can be equivalently written as

e
b; X6;, (16)



Table 1. The two proposed optimization algorithms for handling Wifs problem (3).

The SVMAX Algorithm

The AVMAX Algorithm

Given a convergence toleranee> 0, {X[n]}5_; andN.
S1. randomly selec(Dy, . .., Dy) from {X[n]}5_;. S1.
S2. setj :=1, o := det(A(v1,...,Un)),and k = 0. S2.
S3. calculateb; = [(—1)""det(V;;)]Y;", and updatey; :=

x[(] for any/ € arg max, b] X[n]. S3.
S4. if (§ moduloN) # 0, thenj := j 4+ 1 and go toS3

else update := k + 1, andg = det(A (D1, ..., Un)). s4.
S5. if |g — o|/0 > ¢, then seb := g, j := 1, and go taS3 S5

else outpu{zy, ..., Un) as an approximate solution to (3).

Given {x[n]}%_, andN.

constructz[n] = [%[n]” 1]7 for all n, and segj = 1.
obtainv, = x[(] for any/ € arg max, |x[n]||2, and set
W = x[/.

updatej j + 1 and obtainv; = x[¢] for any ¢ €
arg maxs, HP%LV)"C[n]Hg

updateW := [W x[(]] € RV*7 and go toS3until j = N.
output(vi, ..., Un) @s an approximate solution to (3).

Table 2. Performance comparison of average root-mean-squarérapaegle distance (degrees) and average computation tihésecs)

per realization over various endmember extraction methods

Case l:.M =224, N = 8, L = 1000 Case Il:M = 224, N = 8, SNR= 15 (dB)
Algorithms SNR (dB) L

5 15 25 35 45 oo | 2000 | 4000 | 8000 | 16000 | 32000 | 64000

VCA ¢ | 15.34| 3.79| 1.26 | 0.44| 0.13| O 3.45 | 3.43 | 3.66 | 3.49 3.68 3.58

T | 0.12 | 0.08 | 0.08 | 0.06 | 0.05| 0.03| 0.05 | 0.07 | 0.112 | 0.22 0.48 | 0.95

SQ-N-FINDR ¢ | 14.17| 3.49| 1.08| 0.32| 0.10| O 3.19 | 3.11 | 3.11 | 3.12 3.20 3.34
T | 019 | 0.15| 0.13| 0.12| 0.12| 0.12| 0.25 | 0.50 | 1.01 | 2.27 4.74 | 10.00

SC-N-FINDR ¢ | 1459| 3.74| 1.18|( 0.32| 0.11| O 3.49 | 3.41 | 356 | 3.50 3.78 3.72
T | 0.08 | 0.07| 0.06 | 0.06 | 0.06 | 0.06 | 0.10 | 0.19 | 0.38 | 0.87 1.86 3.78

AVMAX ¢ | 15.00| 3.55| 1.07| 0.32| 0.10| O 3.21| 3.09 | 3.09 | 3.13 3.33 3.38
T | 0.05 | 0.04| 0.03| 0.03| 0.03| 0.02| 0.03 | 0.04 | 0.07 | 0.16 0.39 | 0.77

SVMAX ¢ | 15.03| 3.33| 0.94| 0.28| 0.09| O 3.07 | 294 | 295 | 3.03 3.10 3.10
T | 0.04 | 0.03| 0.03| 0.03| 0.03| 0.02| 0.02 | 0.04 | 0.07 | 0.16 0.39 | 0.79

where the term(—1)""det(Vy;) in (7) is removed without

change of optimality. By letting;,» = [0;]», we have ”

(17

" [5]
for any®; = 0 and176; = 1. Moreover, it can be verified that the
equality in (17) holds if and only iEnte 0;» = 1 for Z; given by

(8). Hence, the solution of (16¥;, can be any convex combinations 6]
of x[¢] forall ¢ € Z;. |

5.3. Proof of Lemma 3. Consider (14). By substitutingv,
X80 into the objective function of (14) fof = 1 and by triangle
inequality, we have

(7]

L L
_ _ [8]
max | > 0ax[n]|| < max 3 OnlX[n]]l2 < max||%[n]]l2-
1Tg=1 lIn=1 2 1Tg=1 "=t

[l
It can be easily verified that the equality above is achie\i'e(z}i?u%l
only if 8 = e, for any¢ € arg max,—1,...,1 ||X[n]||2. Hence, the
solutionw, = x[¢] is arrived. The proof for (14) when > 1 is the
same as above, and hence is omitted for brevity. |

6. REFERENCES
[1] B. A. Campbell, Radar Remote Sensing of Planetary Surfachiew
York: Cambridge University Press, 2002.
[2] N. Keshava and J. Mustard, “Spectral unmixinFEE Signal Process.
Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002.

[3] J. M. Bioucas-Dias and A. Plaza, “Hyperspectral unmixirfGeomet-
rical, statistical, and sparse regression-based appgeéclin Proc. of

SPIE - Image and Signal Processing for Remote SensingTéulouse,
France, Sept. 20, 2010, vol. 7830.

L. Miao and H. Qi, “Endmember extraction from highly mielata
using minimum volume constrained nonnegative matrix fazation,”
IEEE Trans. Geosci. Remote Sensl. 45, no. 3, pp. 765-777, Mar.
2007.

J. M. B. Dias, “A variable splitting augmented Lagrangiapproach
to linear spectral unmixing,” ifProc. First IEEE Workshop on Hyper-
spectral Image and Signal Processing: Evolution in Rematesig
(WHISPERS)Grenoble, France, Aug. 26-28, 2009.

T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, “A cornxanalysis
based minimum-volume enclosing simplex algorithm for higpectral
unmixing,” IEEE Trans. Signal Procesvol. 57, no. 11, pp. 4418-4432,
Nov. 2009.

M. D. Craig, “Minimum-volume transforms for remotelysged data,”
IEEE Trans. Geosci. Remote Sensl. 32, no. 3, pp. 542-552, May
1994.

M. E. Winter, “N-findr: An algorithm for fast autonomougectral end-
member determination in hyperspectral dataPinc. SPIE Conf. Imag-
ing SpectrometryPasadena, CA, Oct. 1999, pp. 266-275.

C.-C. Wu, S. Chu, and C.-I Chang, “Sequential N-FINDRaaithms,”
Proc. of SPIE vol. 7086, Aug. 2008.

[10] T.-H.Chan, W.-K.Ma, C.-Y. Chi, and A. Ambikapathi, “lggrspectral

unmixing from a convex analysis and optimization perspe¢tin Proc.
First IEEE WHISPERSGrenoble, France, August 26-28, 2009.

[11] J. M. P. Nascimento and J. M. B. Dias, “Vertex componemlysis:

A fast algorithm to unmix hyperspectral dataJEEE Trans. Geosci.
Remote Sensvol. 43, no. 4, pp. 898-910, Apr. 2005.

[12] D. P. Bertsekas, Nonlinear Programming MA: Athena Scientific,

1999.

[13] T.-H.Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, “Araplex vol-

ume maximization framework for hyperspectral endmembgaetion,”

to appear inEEE Trans. on Geoscience and Remote Sensing— Special

Issue on Spectral Unmixing of Remotely Sensed ,24th1.



