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ABSTRACT

Dynamic contrast enhanced magnetic resonance (DCE-MR) imag-
ing is an exciting tool to study the pharmacokinetics of a suspected
tumor tissue. Nonetheless, the inevitable partial volume effect in
DCE-MR images may seriously hinder the quantitative analysis of
the kinetic parameters. In this work, based on the conventional
three-tissue compartment model, we propose an unsupervised non-
negative blind source separation (nBSS) algorithm, called time ac-
tivity curve (TAC) estimation by projection (TACE-Pro), to dissect
and characterize the composite signatures in DCE-MR images of pa-
tients with prostate cancers. The TACE-Pro algorithm first identifies
the TACs (up to a scaling ambiguity) with theoretical support. Then
the problem of scaling ambiguity and the estimation of kinetic pa-
rameters is handled by pharmacokinetic model fitting. Some Monte
Carlo simulations and real DCE-MR image experiments of a patient
with prostate cancer were performed to demonstrate the superior ef-
ficacy of the proposed TACE-Pro algorithm. Furthermore, the real
data experiments revealed the consistency of the extracted informa-
tion with the biopsy results.

1. INTRODUCTION

Prostate cancer is a most common cancer in men and the number
of patients with prostate cancer is considerably increasing world-
wide. It is also one of the most high-risk types of cancers and it is
among the leading causes of cancer deaths [1,2]. DCE-MR imaging
is a powerful imaging modality suitable for early stage diagnosis of
prostate cancer. The analysis of the pharmacokinetic model of the
DCE-MR images is to estimate kinetic, physiological parameters of
tissues. Although the kinetic parameters have shown to be relevant
to cancer diagnosis, response of therapy and the survival rate, the
inevitable partial volume effect in DCE-MR images still hinders the
quantitative analysis of the kinetic parameters. Partial volume ef-
fect is a phenomenon that the signal at each pixel of DCE-MR im-
age data set is a weighted composition of time activities of more
than one distinct tissue irrespective of the spatial resolution. Current
methods for pharmacokinetic analysis are based on the approaches
reported in [3, 4]. Major limitations of these methods include unre-
alistic assumption on the compartment model that the tissue kinetics
are statistically independent, intractable computational complexity,
and sensitivity to initialization.

In this work, for the pharmacokinetic analysis of DCE-MR im-
ages of prostate cancer, we develop an unsupervised non-negative
blind source separation (nBSS) algorithm, namely time activity
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Fig. 1. Schematic diagram of three-tissue compartmental model.

curve (TAC) estimation by projection (TACE-Pro), motivated by
our previous work in hyperspectral image analysis (for spectral sig-
nature identification of disparate minerals in remote sensing) [5].
The TACE-Pro algorithm first identifies the TACs up to a scaling
ambiguity. The issue of scaling ambiguity is then handled by phar-
macokinetic model fitting, which is implemented using sequential
quadratic programming (SQP) solvers. Finally, the estimation of
the kinetic parameters using the obtained TACs can be formulated
as a convex constrained least-squares problem and can be solved by
available convex optimization solvers. The simulation and experi-
mental results are presented to demonstrate the superior efficacy of
TACE-Pro algorithm.

The notations used in this paper are briefed as follows: R
M rep-

resents the set of real M×1 vectors, 1N represents the N×1 all-one
vector, and IN is the N × N identity matrix. ⊗ represents convolu-
tion operation. The symbol ‖ · ‖ represents the Euclidean norm and
X

† stands for Moore-Penrose pseudo-inverse of matrix X.

2. PROBLEM STATEMENT

In 1991, Tofts et al. [6] proposed a compartmental model to analyze
T1-weighted DCE-MR images. In the presence of tumor, the tissue
compartment model consists of fast flow and slow flow pools [7],
as shown in Figure 1. There are three principal parameters of in-
terest, namely the unidirectional transfer constant (K trans), the flux
rate constant (kep), and the extravascular extracellular space (EES)
plasma fractional volume (Kp). The dynamic tracer concentrations
are governed by a set of first-order differential equations [6]:

dCf (t)

dt
+ kep,fCf (t) = K trans

f Cp(t), (1)

dCs(t)

dt
+ kep,sCs(t) = K trans

s Cp(t), (2)

Cms(t) = KpCp(t) + Cf (t) + Cs(t), (3)
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where Cf (t) and Cs(t) are the tracer concentrations of the inter-
stitial space in the fast and slow flow pools at time t, respectively;
Cp(t) is the tracer concentration in arterial (plasma) input function
at time t; Cms(t) is the measured tracer concentration at time t; K trans

f

and K trans
s (in min−1) are the unidirectional transfer constants from

plasma to fast and slow flow pools, respectively; kep,f and kep,s (in
min−1) are the flux rate constants from fast and slow flow pools to
plasma, respectively. Equations (1)-(3) can be solved for Cf (t) and
Cs(t) in terms of the rate constants and the solutions are given by

Cf (t) = K trans
f Cp(t) ⊗ exp(−kep,f t), (4)

Cs(t) = K trans
s Cp(t) ⊗ exp(−kep,s t). (5)

Let ap(t) = Cp(t), af (t) = Cp(t) ⊗ exp(−kep,f t), and as(t) =
Cp(t) ⊗ exp(−kep,s t). Consider the discretized signal model with
temporal resolution Δt, and denote the tracer concentration mea-
sured at time tm = (m − 1)Δt in the pixel n by Cms(n, tm).
Then, by (4) and (5), temporal patterns of Cms(n, tm) (given by (3)
in the nth pixel) can be expressed as the following latent variable
model [7]:

x[n] = [ ap af as ] k[n] ∈ R
M , n = 1, ..., L, (6)

where x[n] = [Cms(n, t1), . . . , Cms(n, tM )]T , ap ∈ R
M is the ar-

terial input function (AIF) which is the plasma TAC, and af ∈ R
M

and as ∈ R
M are the TACs of fast and slow flow tissues, respec-

tively, (which are also represented by aj = [aj(t1), . . . , aj(tM )]T ∈
R

M , j ∈ {p, f, s} below, for ease of the ensuing development), and
k[n] = [Kp[n], K trans

f [n], K trans
s [n]]T ∈ R

3 is a vector containing
the kinetic parameters in the nth pixel. In addition, M is the num-
ber of sampling time points and L is the total number of pixels.
Therefore we have

af = D(kep,f )ap, (7)

as = D(kep,s)ap, (8)

where D(x) is an M × M lower triangular matrix with the (i, j)th
entry being

Dij(x) =
�
Δt exp(−(i − j)xΔt), i ≥ j,
0, i < j.

(9)

The aim of this work is to estimate TACs ap, af , as and the
kinetic parameters k[1], ..., k[L] from the given DCE-MR data
x[1], ..., x[L]. Some general assumptions are as follows:

(A1) The components of k[n] are non-negative.

(A2) The TACs ap, af , as are linearly independent.

(A3) (Pure pixel assumption)
- In the entire image, there exists a pure artery pixel index

lp such that K trans
f [lp] = K trans

s [lp] = 0 and Kp[lp] �= 0,
leading to x [lp] = Kp[lp]ap.

- In the prostate gland, there exists an index set {lf , ls} such
that x [lj ] = K trans

j [lj ]aj for j ∈ {f, s}.

(A4) (Physical assumptions) [6]

- Blood plasma volume Kp[n] ≤ 1, ∀n.
- Flux rate constant is greater than transfer constant in both

fast and slow flow pools, i.e., kep,f ≥ K trans
f [n] and kep,s ≥

K trans
s [n], ∀n.

- The unidirectional transfer constant is larger in fast flow tis-
sue than in slow flow tissue, i.e., K trans

f [n] ≥ K trans
s [n], ∀n.

Assumptions (A1), (A2), (A4) are the assumptions widely used in
DCE-MR image analysis [7]. Assumption (A3) means that within
the prostate gland the distributions of the fast and slow flow tissues
are not fully overlapped. Moreover, because a pure artery pixel in
the prostate gland may not be acquired/imaged, we instead assume
that in the entire image there exists a pure artery pixel, possibly cor-
responding to internal pudendal artery or inferior vesical artery or
middle rectal artery.

3. TAC ESTIMATION BY PROJECTION

In this section, we propose an unsupervised nBSS algorithm, namely
TAC Estimation By Projection (TACE-Pro) for pharmacokinetic
analysis of DCE-MR image data.

3.1. Estimation of Pure Pixel Indices

We first present how to sequentially estimate the pure pixel indices
corresponding to the TACs of plasma, fast flow, and slow flow re-
gions, from the DCE-MR image data. The estimated pure pixel
indices are then used to estimate the associated TACs and kinetic
parameters, as presented in the subsequent subsection.

To begin with, we first normalize the DCE-MR data (6) as

x̄[n] � x[n]/(1T
Mx[n]) (10)

= k̄p[n]āp + k̄f [n]āf + k̄s[n]ās, n = 1, ..., L, (11)

where āj = aj/1
T
Maj for j ∈ {p, f, s} denote the normal-

ized TACs, and k̄p[n] = Kp[n](1T
Map)/1T

Mx[n] and k̄j [n] =
Ktrans

j [n](1T
Maj)/1

T
Mx[n] for j ∈ {f, s} are the normalized ki-

netic parameters. It can be easily verified that�
i∈{p,f,s}

k̄i[n] = 1. (12)

With the normalized data (10), the first pure pixel index, lp, can be
estimated. It has been proved in [8] that by (12) and under (A1)-(A3)
the normalized AIF and its pure pixel index can be identified by

āp = x̄[lp], lp ∈ arg maxn∈I{‖x̄[n]‖}, (13)

where I is the set of pixel indices over the entire image.
Next, the question that remains is how to estimate the rest of the

pure pixel indices, say {lf , ls}. Though in this work we have consid-
ered the three-tissue compartment model with total number of tissue
compartments N = 3, in the ensuing development, the normalized
model in (10) can be generalized to any N tissue compartments as

x̄[n] =
N�

j=1

k̄j [n]āj , n = 1, ..., L, (14)

where k̄1[n] = k̄p[n], and ā1 = āp has been estimated by (13). To
estimate the pure pixel indices {lj}

N
j=2 in a sequential manner, we

first obtain the mean-removed data

x̃[n] = x̄[n] − μ̄ =

N�
i=1

k̄i[n]βi, (15)

where μ̄ = � L

n=1 x̄[n]/L is the mean of the normalized data, and
βi = āi − μ̄ is the unknown mean-removed TACs. Suppose that the
mean-removed TACs β1, ..., βj (where j < N ) have already been
identified. To identify the next mean-removed TAC βj+1, we first
find a normal vector [9] to the affine set formed by β1, ..., βj :

d
� = arg min

d∈aff{β1,...,βj}
‖d‖2 = P

⊥
Bβj , (16)
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where aff{β1, . . . , βj} = {y = � j

i=1 ϑiβi|1
T
j ϑ = 1, ϑ ∈ R

j}

in which ϑ = [ϑ1, . . . , ϑj ]
T [9], and P

⊥
B = IN−1 − BB

† is the
orthogonal complement projector of B � [β1 − βj , . . . , βj−1 −

βj ] ∈ R
(N−1)×(j−1) . Then, by (A1), (A3), and (15), we have

x̃[n]T d
� =

N�
i=1

k̄i[n]βT
i d

� ≥ min
i=1,...,N

{βT
i d

�}. (17)

where the equality holds if and only if n = lz (a pure pixel index)
for any z ∈ arg mini{β

T
i d

�}. Following the proof in [5, Lemma 2]
and assuming that βT

i d
�, i = 1, . . . , N are distinct, one can show

that under (A1)-(A3), the new mean-removed TAC and its pure pixel
index can be estimated by

x̃[lz] ∈ {βj+1, ..., βN}, lz ∈ arg min
n=1,...,L

x̃[n]T d
�. (18)

The above procedure given by (16) and (18) will be repeated until
all the rest of pure pixel indices {lj}N

j=2 are found.

3.2. Estimation of TACs and Kinetic Parameters

Given the pure pixel indices {l̂p, l̂2, l̂3} = {l̂p, l̂f , l̂s} (for N = 3)
estimated above, by (6)-(8) and (A3), we have

âp = x[l̂p]/Kp[l̂p], (19)

x[l̂j ] = K trans
j [l̂j ] âj = K trans

j [l̂j ] D(kep,j) âp, j ∈ {2, 3}.
(20)

Substituting (19) into (20) yields

x[l̂j ] = K trans
j [l̂j ]D(kep,j)x[l̂p]/Kp[l̂p], j ∈ {2, 3}, (21)

where x[l̂p], x[l̂2], and x[l̂3] are known. Hence, based on (A4), we
can estimate the kinetic parameters for the tissue TACs by the fol-
lowing non-negative least-squares problem

min
0≤Kp [l̂p]≤1,

0≤Ktrans
j [l̂j ]≤kep,j ,

j∈{2,3}

�
j∈{2,3}

‖x[l̂j ] −
K trans

j [l̂j ]

Kp[l̂p]
D(kep,j)x[l̂p]‖2. (22)

The above nonconvex problem can be handled by using sequential
quadratic programming (SQP) [10] solvers. By (A4) (w.l.o.g), if
k̂ep,2 > k̂ep,3, then k̂ep,f = k̂ep,2, k̂ep,s = k̂ep,3, K̂trans

f [l̂f ] =

K̂trans
2 [l̂2], and K̂trans

s [l̂s] = K̂trans
3 [l̂3]. Denoting a solution of (22)

by {K̂ trans
f [l̂f ], k̂ep,f , K̂ trans

s [l̂s], k̂ep,s, K̂p[l̂p]}, then the true AIF
âp, and the tissue TACs âf , âs can be estimated by

âp = x[l̂p]/K̂p[l̂p], (by (19)) (23)

âj = D(k̂ep,j)âp, j ∈ {f, s}. (by (7) and (8)) (24)

Finally, based on (6), we can estimate the kinetic parameters for
every pixel by solving

k̂[n] = arg min
0≤Kp [n]≤1,

0≤Ktrans
s [n]≤Ktrans

f [n]

‖x[n] − [âp âf âs]k[n]‖2, (25)

for n = 1, ..., L. Problem (25) is convex and can be solved by stan-
dard convex optimization solvers, such as SeDuMi [11] and CVX
[12].

The entire procedure described above is the proposed TACE-Pro
algorithm that estimates the TACs (âp, âf , âs), flux rate constants
(k̂ep,f , k̂ep,s), and the maps of kinetic parameters (k̂[n], ∀n).

.

Table 1. Mean±standard deviation of the estimated flux rate con-
stants (k̂ep,f , k̂ep,s) obtained by TACE-Pro algorithm over 100 inde-
pendent runs for different random tissue maps and different SNRs.

k̂ep
Scenario 1: Scenario 2: Scenario 3:

SNR kep,f = 1.625 kep,f = 3.25 kep,f = 6.5
(dB) kep,s = 0.33 kep,s = 0.33 kep,s = 0.33

20
k̂ep,f 1.96±0.06 3.80±0.14 9.07±1.18
k̂ep,s 0.40±0.01 0.40±0.01 0.41±0.01

30
k̂ep,f 1.73±0.07 3.46±0.05 6.88±0.19
k̂ep,s 0.35±0.01 0.35±0.00 0.35±0.00

40
k̂ep,f 1.66±0.01 3.31±0.07 6.62±0.07
k̂ep,s 0.33±0.00 0.33±0.00 0.33±0.00

4. SIMULATIONS

Since exact ground truths are not available for real DCE-MR image
data, the performance of the proposed nBSS algorithm, TACE-Pro,
is first evaluated with simulated data. To the best of our knowledge,
the proposed TACE-Pro is the first nBSS algorithm specifically de-
signed for DCE-MR image analysis of prostate cancer, and hence
it is alone considered for the simulations. In the simulations, the
number of compartment N was set to 3. The AIF ap was gener-
ated by the population average model [13] with temporal resolution
Δt = 4 seconds for 8-min period (M = 120), and the fast and
slow TACs, af given by (7) and as given by (8), can also be gen-
erated by using kep,f ∈ {1.625, 3.25, 6.5} and kep,s = 0.33. We
then generated L = 5000 DCE-MR image pixels x[n] defined
in (6) by using the following parameters: fast flow maps gener-
ated with K trans

f ∈ {0.5, 1, 2}, slow flow maps generated with
K trans

s = 0.1, and plasma maps generated with Kp[n] = 0.05.
Scenario 1: (K trans

f [n], kep,f ) = (0.5, 1.625) is to simulate the
tissue of early-stage tumor; Scenario 2: (K trans

f [n], kep,f ) =
(1, 3.25) is to stimulate tissue of moderate tumor; Scenario 3:
(K trans

f [n], kep,f ) = (2, 6.5) is to simulate the tissue of active tumor.
Moreover, the observed pixel vectors x[n] were artificially added
with Gaussian white noise with zero mean and covariance matrix
σ2

IM so as to satisfy the signal-to-noise ratio (SNR) specification
SNR � � L

n=1 ‖x[n]‖2/σ2ML where σ2 is the noise variance. Ta-
ble 1 shows the mean±standard deviation of the flux rate constants
(k̂ep,f , k̂ep,s) estimated by TACE-Pro algorithm over 100 indepen-
dent runs for different random tissue maps and for different SNRs.
In each run, while solving (22), five different sets of random initial-
izations were used and the estimates with the least fitting error were
considered as the solution for (22). It can be seen that in all the three
scenarios, as the SNR increases, the mean values of the estimates
get closer to the true values of the respective flux rate constants, and
the standard deviations approach zero.

5. EXPERIMENTAL RESULTS

In real data experiments, we demonstrate the efficacy of the proposed
method with T1-weighted DCE-MR images of a 72-year-old patient
who has been confirmed to have prostate cancer based on biopsies.
The DCE-MR image data set was acquired at Mackay Memorial
Hospital, Taipei, Taiwan using Philips Achieva 3-Tesla MRI scanner.
The acquired three-dimensional data set with 4 mm slice thickness,
0.45 mm pixel spacing, 10◦ field of view, and in-plane matrix size
256×256 were taken every 30 seconds for a total of 10 minutes after
the injection of gadolinium DTPA. Figure 2 shows the biopsy results
of the patient, where each percentage number denotes the proportion
of tissue in that area containing cancer tissue. For this real data set,
TACE-Pro algorithm has been applied while fixing N = 3. Figure
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3(a) shows the estimated TACs both before (discrete points) and after
(continuous curves) model fitting for slices 12, 15, 18, and 22. Fig-
ure 3(b) shows the corresponding estimated kinetic parameter maps.
It can be observed that the slow flow TAC has lower washout rate
k̂ep,s, and k̂ep,f is much higher than k̂ep,s. Also, the fast flow tis-
sue for all the slices are almost dominant in both sides of peripheral
and central zones of the prostate gland, while the plasma volume and
the slow flow tissue are relatively inactive. These results are highly
consistent with the biopsy results (Figure 2).

6. CONCLUSION

We have presented an effective TAC estimation algorithm, namely
TACE-Pro, followed by estimation of kinetic parameters through
pharmacokinetic model fitting, for prostate DCE-MR image analy-
sis. We have evaluated the TACE-Pro algorithm with the synthetic
DCE-MRI data and real DCE-MRI images with prostate cancer.
Simulation results have shown that the proposed method TACE-Pro
performs well for all the scenarios (early-stage, moderate, and active
tumor). For real data experiments, we have estimated the tissue
TACs, kinetic parameter values, and kinetic parameter maps, which
show high consistency with the biopsy results.
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Fig. 2. Position of biopsy examination (left) and biopsy examination
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Fig. 3. (a) The estimated TACs âp, âf , âs (normalized such that
1

T
M âp = 1

T
M âf = 1

T
M âs = 1), for slices 12, 15, 18, and 22 us-

ing TACE-Pro algorithm, and (b) the estimated kinetic parameter (or
tissue) maps corresponding to the model fitted TACs in (a).
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