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Abstract—This paper investigates space-aerial assisted mixed
cloud-edge computing services for space-aerial integrated net-
works, where unmanned aerial vehicles (UAVs) provide edge
computing services and one satellite (SAT) provides ubiquitous
cloud computing services. To effectively and efficiently schedule
such services under constraints on the available resources of
computational capacity, energy, and communications of UAVs
and the SAT, a problem for minimizing the total computing and
offloading delay is formulated. A learning algorithm for handling
the reformulated problem is proposed that alternatively per-
forms convex optimization based computation capacity allocation
(involving real variables) and double deep Q-learning (DDQL)
based task assignment (involving binary variables) among all
UAVs and the SAT. Extensive simulation results are presented
to demonstrate that the efficacy of the proposed algorithm is
significantly superior over some state-of-the-art reinforcement
learning-based methods in terms of the algorithm running time
and system scalability in the training stage and total computing
and offloading delay in the testing stage.

Index Terms—Space-aerial integrated networks, computation
offloading, resource allocation, deep reinforcement learning, con-
vex analysis.

I. INTRODUCTION

The rapid development of powerful cloud computing sup-
ports both performance-sensitive and resource-sensitive IoT
applications by providing high-quality computational ser-
vice [1]. Nevertheless, the high transmission costs and delay
associated with cloud computing can make it difficult to
meet the performance requirements of delay-sensitive appli-
cations [2], [3]. To resolve this issue, mobile edge computing
(MEC) has been proposed to enhance the computational capac-
ity at the edge of the network [4], [S], which enables resource-
constrained [oT devices to offload delay-sensitive computation
to surrounding edge devices with adequate computational
capacity [6]. However, MEC networks may fail to provide
services in remote areas due to the lack of network coverage.
To get rid of this limitation, the space-aerial integrated network
(SAIN) has been proposed for computation offloading to
remote networks [7]-[9].

This work is supported by the National Science and Technology Council
(NSTC), R.O.C. (Taiwan), under Grant NSTC 111-2221-E-007-035-MY2.

SAIN is a multidimensional heterogeneous network con-
sisting of three network components: a satellite (SAT), an
aerial network, and IoT devices. In SAIN, the low-earth orbit
(LEO) SAT provides powerful cloud computing and extensive
coverage [10], [11]. The aerial network supplies edge com-
puting [12], [13], and it is generally deployed over high data
traffic areas to offer high-speed network services on-demand.
IoT devices, such as various sensors deployed for collecting
data or offloading the computation tasks to the aerial network.
However, many challenges have been imposed on SAIN to
develop an efficient computing offloading scheme in light
of the dynamic and complex network conditions [14] under
the time-varying environment, e.g., caused by the mobility of
unmanned aerial vehicles (UAVs). The advancements in deep
reinforcement learning (DRL) have paved the way to obtain
asymptotically optimal solutions to computation offloading
and resource allocation in dynamic network environments [4].
Thus, DRL-based methods can be instrumental in devising
computation offloading and resource allocation strategies for
SAIN. Currently, DRL-based computation offloading and re-
source allocation problems have been extensively studied
for SAIN [2], [4], [15]. Nevertheless, most of the existing
approaches directly utilized conventional DRL without in-
volving efficient optimization processing, which causes high
computation delay and brings extra communication resource
consumption, thus decreasing their applicability [16], [17].
Motivated by the shortcomings of conventional DRL-based
approaches, we propose a double deep Q-learning (DDQL)
based framework in this work, that handle real variables in
computation capacity allocation by convex optimization and
binary variables in computation task assignment using DDQL,
thereby resulting in significant training time reduction by the
former and much better test performance than state-of-the-art
methods by the latter. The main contributions of this work are
summarized as follows.

o A constrained nonconvex problem by minimizing the
total offloading and computing delay among UAVs and
the SAT in SAIN is considered, that can be reformulated
as a structure of convex optimization for all the real
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variables followed by nonconvex optimization for all
the binary variables. A closed-form solution is obtained
for the former, which further reformulates the original
problem into an integer problem (though nonconvex).
This can be efficiently learned using a DDQL thanks to its
substantially lower complexity than the original problem.

o A learning algorithm for handling the reformulated in-
teger program is proposed, that alternatively performs
computation capacity allocation (real variables) using
the obtained closed-form formulas and task assignment
(binary variables) using DDQL among all UAVs and the
SAT.

« Extensive simulation results are presented to demonstrate
that the efficacy of the proposed algorithm is significantly
superior over some benchmark methods in terms of the
algorithm running time in the training stage and total
computing and offloading delay in the testing stage.

The remainder of the paper is organized as follows. In
Section II, we present the SAIN system model, followed
by a computation offloading and resource allocation problem
(which is NP-hard with both real and integer variables).
Section III reformulates the problem into a combination of
a convex subproblem in real variables (yielding closed-form
solutions) and a NP-hard problem in integer variables. Then
the dimension-reduced DDQL learning method is presented
for solving the latter, and implemented by two algorithms,
one for the training stage and the other for the testing stage.
Then we show extensive simulation results in Section IV
to demonstrate the efficacy of the proposed DDQL learning
method. Finally, we provide some conclusions in Section V.

II. SYSTEM MODEL

A. Network Model

SAIN has been considered for effective computing services
for IoT devices, which can be deployed in remote areas lacking
cellular network coverage. As illustrated in Fig. 1, SAIN
model consists of three layers, including the space layer, aerial
layer, and ground layer. In the aerial layer, the UAVs can
serve as edge servers to collect tasks, provide edge computing
services for the IoT devices in the ground layer, or offload
the collected tasks to the SAT in the space layer for high-
efficiency cloud computing services. All UAVs and the SAT
are controlled by an operations center in the ground layer.
In this work, we assume that the IoT devices have K tasks
that must be jointly computed by U UAVs or a SAT within
T time slots. To proceed, we assume the channel condition
and the network topology keep unchanged within every time
slot [6], [7], and the backhaul link between the UAVs and SAT
is assumed to be perfect without delay involved. For ease of
later use, some notations are listed in Table I.

B. Task Model

1) UAV Edge Computing: The computing delay of task k €
[K] £ {1,2,...,K} by UAV u € [U] at time slot ¢ € [T] is

________________________________

’ Cloud server Satellite /!

) = —3 mgum Y gunnnns
= ’ H
/ Taskk A3 . H

L4 10T devices

Ground Layer

Fig. 1: The computation offloading architecture for SAIN.

Operations
center

TABLE I: Main notations that involve time slot ¢ and system
parameters in SAIN.

Notation Description

Binary variables of {0,1} indicating if task k is
computed by UAV wu, SAT, and offloaded to SAT
from UAV wu, respectively.

t,k tk _tk
Ty ,Ys > 2u,s

fz,k ft,k Computational capacity allocated from UAV u and
woods SAT for processing task k, respectively.
Computational capacity of UAV u and SAT, respec-
Fy, Fs -
tively.
mg, Ck Size and computational complexity of task k.
"75, s Transmission rate from UAV u to SAT.
lz,, 1,1 Locations of task k, UAV wu, and SAT, respectively.

Delays for task & computed at UAV u, SAT, and
offloaded from UAV u to SAT, respectively.

Energy consumption in computing task k by UAV
u, SAT, and offloaded from UAV wu to SAT, respec-

t,k t,k t,k
Dy ) Dy ) Du,s

t,k t,k t,k
Ey" Es 7Eu’,5

tively.
EusEs Initial energy of UAV u and SAT, respectively.
gL gt Remaining energy of UAV w and SAT, respectively.
given by

mgcCg
Dt =it ( x: ) , ()

u

where z%F € {0,1}, and x%¥ = 1 indicates that task k
is computed on UAV wu at time slot t. my (bits) represents
the size of task k, cx (CPU cycles/bit) is the computational
complexity of task k, and myci (CPU cycles) means the
computational requirement of task k. fL* (CPU cycles/s)
denotes the computational capacity allocated by UAV u to
task k at time slot ¢. Then, the energy consumption at UAV u
for task k at time slot ¢ is

tk _ .tk
E° =z;"mgcrey, 2)

where e, (J/CPU cycle) is the energy consumption per CPU
cycle of UAV.

2) Task Offloading: Some tasks will be offloaded to SAT
when the computational power is insufficient for handling
them by the associated UAVs. The channel gain between UAV
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u and SAT can be described by the Weibull-based channel
model [18] as follows:

t :GTGR)\2
“r An(dy L)?

where G7 and G respectively denote the antenna gains
of the transmitter and the receiver; (,qi, (dB) stands for
the rain attenuation coefficient; df, , = [[l; — I}[|]> (km)
represents the distance between UAV w and SAT, where
U= (U x,ly,luz) € R® (ie., the same fixed height for
all UAVs) and I, = (ls x,lsy,lsz) € R3 (fixed) denote their
location coordinates, respectively. Moreover, rain adversely
impacts wireless links that operate on frequency bands like
Ka-band [19] in practical SAIN system. By Shannon—Hartley
theorem, the achievable transmission rate 7, , (bits/s) from
UAV u to SAT is

_ Srain

107 710, 3)

t PMGZ s
L, = wlogy (1+ =522, @
' N

where w (Hz) denotes the channel bandwidth, P, (W) and Py
(W) are the transmit power of the transmitter of UAV u and
the noise power of the receiver at the SAT. Based on (4), the
offloading delay is given by

tk tk Tk
Dk =2tk (52, )
Mu,s
where 2% € {0,1}, and z;% = 1 indicates that task k is

offloaded to SAT from UAV w. Then, the energy consumption
for UAV wu offloading task £ at time slot ¢ is
my
Btk = 2thp, (nt—) ©)
3) Cloud Computing: The computing delay for processing
task k£ on SAT at time slot ¢ can be computed by

Dy =ui (%) ™
where yL* € {0,1}, y©* = 1 indicates that task k is assigned
to SAT, and f%* (CPU cycles/s) indicates the computational
capacity of SAT to handle task £ at time slot ¢. Similar to (2),
the corresponding energy consumption for computing task &
by SAT is

ELF =yt R mpcpes, (8)

where e; (J/CPU cycle) is the energy consumption per CPU
cycle by SAT.

C. Problem Formulation

The total system delay minimization optimization problem
subject to the given energy and computational capacity can be
formulated as

U U

S [ b pe (X 0]

u=1

£ D (delay per episode)
(9a)

st abF bt bR e {0,139t K, u, (9b)
T U
ST ) ] = 0
gt =SSk vk (9d)
s t'=1 u=1 WS’ T
K
S (B4 B < el v, (%)
k=1 ’ ~~
Lo, Tl I (BURHELY)
K
> EM < gl v, (9)
k=1 ~~
L,y oK, B
fk > 0,9t k,u, %g)
K
Do, T < Fu v, (9h)
FoF = 0,9k, (%)
K
Do Y < Fov %)

where D is the total delay (computing and offloading delay
over T time slots) per episode. Constraint (9b) denotes the
binary variables associated with task k. Constraint (9¢) guar-
antees that each task is assigned either to only one UAV or to
the SAT. Constraint (9d) means that task & is offloaded to SAT
from some UAV before time slot ¢+ when y%* = 1. Constraints
(9e) and (9f) impose energy budgets on the total energy
consumption of each UAV and SAT, respectively. Constraints
(9g) and (9i) are due to the fact that every computational
capacity must be nonnegative. Constraints (9h) for every UAV
and (9j) for the SAT impose the budget for the total amount
of computational capacity at every time slot, respectively.

In Py, xbF, ybF, and zﬁ’i are binary variables, coupling
with the continuous variables f%* and f%*. Therefore, Py is
a NP-hard problem with real and integer variables, which is
computationally intractable to find the optimal solution [6].
We propose an efficient learning algorithm that combines the
convex optimization and DDQL to be presented in the next
section.

III. PROPOSED OPTIMIZATION METHOD

DDQL is one of the characteristic DRL algorithms tailored
for resource allocation in complex and dynamic networks [2],
[4], [6]. Though DDQL can be applied to handle Py, we
empirically found that to get good learning performance would
cost extraordinary training time under the limited computing
facilities in practice, thus not very practical. To mitigate this
serious issue, this section presents the reformulation of P into
P3 (an integer program), formulation of P3 into a Markov
decision process (MDP), the proposed DDQL algorithm for
solving Ps (denoted as DDQL-Ps3), and a problem complexity
comparison of P and Py, respectively.

A. Problem Reformulation

By observing from (9), Py is convex in the uncoupling real
variables ff* (cf. (1)) and f* (cf. (7)). Thus, Py can be
reformulated to two convex subproblems as follows:
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P:ming E g
! : t=1 k=1 u1“

t,k
fu

s.t. (92), (9h). (10)
7)2 g f;k Zt lzk 1ng
s.t. (91), (9)). )

By solving the KKT conditions [20] of P; and P5, we come
up with the following optimal solutions:

VMECE F xt,k =1
t7k — K, xfjk/ ™M1 Cpt w u ’
fo = Ozk -1 N SR — 0, (12)
,/mkck F ytvk — 1
fok={ SE_ N e % (13)
‘ 0, yir = 0.

Then substituting (12) and (13) into (9), yields the following
integer program:

U
Po: ,,mip mZZ[ 5" 01%) +DYF 4 (30 DE)]

LRI S i bt u:l
s.t. (9b) — (99), (14)
where
t.k K t k'
ek TR D g T /M Cr
D= 3 . (5
Dk YRR Syt e (15b)

Note that the problem complexity of Ps (no. of constraints and
variables) is remarkably smaller than that of P3. Nevertheless,
Ps is a multi-dimensional knapsack problem [10], a strongly
NP-hard and almost formidable to be solved by conventional
optimization methods. Hence we further reformulate it into a
MDP to be presented next, which can be efficiently handled
using DDQL.

B. Markov Decision Process (MDP) Formulation

The operations center of UAVs and SAT is treated as the
agent, and SAIN as the environment. Then, the state, action,
and reward function of Ps are designed as follows:

1) State: State S* £ { My, L% ;y. L, E547x }, which
collects the parameters that characterize the environment of
P3 for time slot ¢, is defined as follows:

o Task size set My = {my, k € [K]}.

« SAIN element-location set LY o,y = {14, u € [U]}U{l;}.

o Task location set Lt = {It |k € [K]} C LSAIN

« Remaining energy set £% 4,y ={EL, u € [U]} U {ELL.
Suppose that C is a set of m real n-vectors. Let p(C) £
mn denote a complexity measure of C (i.e., total no. of real
variables (entries) that constitute the set C'). Thus, the state
set complexity is p(S*) = p(Mx) + p(L%4;n) + p(Lk) +
P(Esarn) =4U + K +1).

2) Action: Action A' £ {Al k€ [K]}, where Al =
{P{,0}}, and P} and O}, are defined as follows:

o Task assignment set P,ﬁﬁ{:z:u ,u € Uy U {yt*}.

o Task computing set O} £ {zL% u € [U]}.
Thus, the action set complexity is p(A?) =
p(0)) = K x (20 +1)

3) Reward Function: The total reward for all tasks at time
slot ¢ is

K x (p(P{) +

R'= Z; Ry, (S',A}), (16)
where Ry, (S*, A}) is defined by
—DY* + o, if A and D are true, (17a)
—o, if either A or ID is false, (17b)
fDi’k + o0, if B and E are true, (17¢)
Ri(S", A}) =< —o0, if either B or E is false, (17d)
—DL% + 0, if C and D are true, (17e)
-0, if either C or D is false, (17f)
0, otherwise. 17g)
A:abb=1. B:yk=1 (C:ZZ’,IZ:L

D: 1L =1! and ZK
E: 1} =1, and Z

In (17), 0 > 0 is a bonus when the agent takes an appropriate
action, as shown in (17a), (17¢), and (17¢). Otherwise, —o is
used as a penalty when an improper action is taken by the
agent, such as in (17b), (17d), and (17f).

C. DDQL Algorithm for Solving Ps (DDQL-Ps) in Training
Stage

We consider a DDQL algorithm with two Q-networks:
including the main Q-network (denoted as Q(S, A;0) with
inputs state S and action A and a parameter vector 6)
and target Q-network (denoted as Q(S, A;0) with inputs S
and A and a parameter vector 6). For each episode, SAIN
environment is initialized, and the information of SAIN is
recorded as a state S* at time slot ¢. Based on S*, action A*?
is selected by utilizing the main Q-network @ with e-greedy
strategy, where € denotes the probability of randomly selecting
an action for exploration and selecting the best known action
with probability 1—e for exploitation [21]. Then, we obtain the
reward R? and state ST by executing A?, and then a state
transition Q = (8¢, A*, R*, §**1) is stored in the experience
replay buffer B. For each time slot, b state transitions €2,
denoted as Q; = (S!, AL, R, Si™1) Vi € [b], are randomly
sampled from B to train the parameters of the main Q-network.
To improve the stability and avoid the overestimation of the Q-
value [22], the main Q-network is trained using the Q-value
of the target Q-network by minimizing the average loss of
b sampled transitions. The loss function of the i-th selected
transition €2; is defined by

Li(0) = (R +~ max Q(SIT A’ 9) —

(EL* + E“;) <&

Etk

Q(Si, A} 0))°, (18)
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where v € [0,1] is a discount factor, and A is the set of all
the possible actions that can occur in the system. The DDQL-
based algorithm for solving Ps in training stage is detailed in
Algorithm 1.

D. DDQL Algorithm for Solving Ps (DDQL-Ps) in Testing
Stage

The testing phase of the proposed DDQL algorithm is
implemented by Algorithm 2 without involving the target Q-
network (used only in trainig). Every action is taken according
to the current state by the well-trained main Q-network Q.
The testing performance is evaluated according to the averaged
system delay D over Eps episodes until all the tasks are done,
which is given by

- Eps t,p
b= Eps Zt lR

where RYP (cf. (16) and (17) with ¢ = 0) indicates the
obtained reward at the ¢-th timeslot of episode p.

19)

Algorithm 2 : Proposed DDQL algorithm (DDQL-Ps3) in
testing stage

1: Input: No. of episodes Eps, no. of time slots 7', no. of
tasks K, no. of UAVs U.

2: Output: Delay D (cf. (19)).

3: Initialization: Load the trained main Q-network Q.

4: for episode p =1 fo Eps do

5:  Reset SAIN environment, and obtain initial state S*.

6: fort=1toT do

7: Select action A? according to the current state S* by
the main Q-network Q.

8: Calculate f“* and ff’“ by (12) and (13).

9: Execute A? to obtain reward R*? by (16) with 0 = 0
and form the next state S**1.

10: if all tasks have been completed then

11: break

12: end if

13:  end for

14: end for

Algorithm 1 :
training stage

Proposed DDQL algorithm (DDQL-Ps3) in

TABLE II: Parameters used in the simulation.

1: Input: No. of episodes Eps, no. of time slots 7', no. of
tasks K, no. of UAVs U, batch size b, learning rate «,
networks update interval I (no. of time slots).

2: Output: Main Q-network Q(S, A;0).

3: Initialization: Set an experience replay buffer B with size
B; set main Q-network and the target Q-network with
parameter vectors 8 and 6, respectively; set 8 = 6.

4: for episode p =1 to Eps do

5. Reset SAIN environment, and obtain initial state S*.

6: fort=1toT do

7: Select action A? according to the current state S* by
the main Q-network ) with e-greedy method.

8 Calculate f%* and f* by (12) and (13).

9: Execute A? to obtain reward R* by (16) and form
the next state S**1.

10: Store transition 2 = (S*, A*, Rt, §*+1) in B.

11: if all tasks have been completed then

12: break

13: end if

14: Randomly select Q;,¥i € [b] from B; calculate
L'(0) =  3-;_, L} (6) using (18).

15: Update 6 := 6 — aVeL'().

16: Update 0 := 6 every I time slots.

17 end for

18: end for

Remark 1: Certainly, DDQL and QL can be applied to
Poy. Then the resulting algorithms, denoted as DDQL-Py and
QL-Py, resRectlvely, share identical state set and action set,
denoted as S* and A, respectively. However, both algorithms
have much higher complexities than Algorithm 1, as analyzed
next. .

The state S* for Py is

St 2 (S'YU{Fsarn}, (20)

F,, (CPU cycles/s) ¢k (CPU cycles/bit) UAVs’ height (m)
3 x 10° 50 ~ 100 100
Fs (CPU cycles/s) my (bits) SAT’s altitude (km)
1010 108 780
Eps (training, testing) € B b |T| 1| ~ «a
2000, 3 1 — 1073 [20000 | 128 | 30|50 | 0.96 | 10—3

where Fsarn £ {F,,u € [U]} U {F;s} is the SAIN com-
putational capacity set. Therefore, the state set complexity is
p(S*) = p(8*) + p(Fsarn) = p(S*) + (U + 1).

Then, action A* for Py is

AL £ AL ke [K]),

where AL 2 {ALYU{F}}, and F{ 2 {fiF u e [U]}U{f*}
is the task computational capacity set. Thus, the action set
complexity is p(A") = p(A") + K x p(Fsarn) = p(A") +
K x (U+1). Therefore, it can be anticipated that Algorithm 1
will yield better learning performance with less training time
than both DDQL-Py and QL-P,.

21

IV. SIMULATION RESULTS AND DISCUSSIONS
A. Simulation Settings

The simulation parameters used are given in Table II,
provided that UAVs with the same height (100 m) are mobile
randomly over a 1 km? area. In the simulation, the neural
network structure of the main Q-network and target Q-network
in the proposed method consists of an input layer, an output
layer and 3 hidden layers (with 64, 128, and 128 neurons). We
adopt ReLU as the activation function of all the hidden layers.
To encourage the agent to explore the environment in early
espisodes and exploit the up-to-date state-action data in later
espisodes in a smooth exchange fashion, the e-greedy method
[21] is applied. Specifically, e(p) = 1—0.001 x (p — 1) where
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Fig. 2: Training performance comparison. Reward R per
episode (solid curves in light colors) and its associated 50-
episode moving average rewards (dashed curves) of the three
algorithms, for K = 15 and U = 4.

10 10
A »
—~ "* ~ . ‘/’
=0 - =10 .
E 10 ",l EIO (.
E - E e
W 10 e
10° %
2 2 »
= ' —e— QL-P, = Ll —e— QL-P,
\ 4 —m- DDQL-P, 10'4 & 4 -8~ DDQL-P,
10 P —-4- DDQL-P, 4-0" -4- DDQL-P,
-4~ s | T d
234567 8 9 10111213141516 10 12 14 16 18 20 22 24 26 28 3

U (no. of UAVs) K (no. of tasks)

(a) (b)
Fig. 3: Training performance comparison. (a) Training time

versus U for K = 15 and (b) training time versus K for
U=4

p denotes the episode number. All the simulations for perfor-
mance evaluation of the proposed DDQL-P5 (Algorithm 1 and
Algorithm 2), and two existing benchmark algorithms QL-P,
and DDQL-P, (discussed in Remark 1) are implemented on
a computer with an Intel Core 19-10900K CPU at 3.7 GHz,
NVIDIA GeForce RTX 3070, and 128 GB DDR4 RAM at
3200 MHz under the 64-bit Windows 10 operating system.

B. Simulation Results

Figure 2 shows the reward R = Zthl Rt (cf. (16))
per episode and its moving average over 2000 episodes for
the three algorithms under test in the training stage. One
can see from this figure that the DDQL-P3 converges af-
ter 1000 episodes whereas the other two algorithms require
1100 and 1400 episodes, respectively, and meanwhile the
proposed algorithm achieves much higher reward than the two
benchmark algorithms; thereby demonstrating the efficacy of
DDQL-Ps with considerably improved training performance
(higher reward and faster convergence rate) over the other two
algorithms.

Figure 3 illustrates the comparison of training time for the
three algorithms under test for different values of U (no. of
UAVs) and K (no. of tasks). Obviously, DDQL-Ps (Algorithm

—— QL % —— QL7
55 —l- DDQL-P; . —&- DDQL-P,
z -4- DDQLP; || ZH T~y -4- DDQL-P;
2% 40 N,
] 24 \
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T123 45678 9 10111213141516 1 2 3 4 5 6 7 8

U (no. of UAVs)
(a) ()

Fig. 4: Testing performance comparison. (a) Delay D per
episode versus U for K = 15 and (b) delay D per episode
versus F,, for K =15, U = 4.
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Fig. 5: Testing performance comparison. (a) Delay D per

episode versus K for U = 4 and (b) delay D per episode
versus my for K = 15,U = 4.

1) runs significantly faster than the other two algorithms as
stated in Remark 1. Specifically, DDQL-Ps5’s running time is
around 5 ~ 50 (1 ~ 1000) times shorter than the other two
algorithms for U < 10, K = 15 (K < 20,U = 4). Moreover,
the two benchmark algorithms fail to run for U > 10, K =
15 and K > 20,U = 4 due to the occurrence of “out of
memory” of the computer, thus no running time record for
these cases in Fig. 3. These results demonstrate that DDQL-
Ps is significantly more efficient (much less running time and
lower computer memory, i.e., smaller RAM) than the other
two algorithms.

Figure 4 shows the testing performance (delay D per
episode, cf. (9)) for different values of U and F, (com-
putational capacity of UAVs). Some observations from this
figure are as follows. DDQL-P5; performs best with much
smaller delay than the other two algorithms; the total delay
for each algorithm decreases with U (as shown in Fig. 4(a)
where K = 15) and saturates for U > 5, implying that some
UAVs may stay idle when U > 5; the total delay decreases
monotonically with F, for all the algorithms under test (as
shown in Fig. 4(b) where K = 15, U = 4).

Figure 5 shows the testing performance for different values
of K and my, (task size). From Fig. 5, one can see that DDQL-
‘Ps performs best again with appreciable performance gaps
beyond the other two algorithms; the trend of the total delay
around linearly increases with K for each algorithm (as shown
in Fig. 5(a) where U = 4); the total delay also increases
with my in nearly linear fashion for all the algorithms under

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on March 20,2024 at 05:47:22 UTC from |IEEE Xplore. Restrictions apply.



test, while the increasing rate of DDQL-Ps is the smallest (as
shown in Fig. 5(b) where K = 15, U = 4).

V. CONCLUSION

We have presented a DDQL algorithm (implemented by Al-
gorithm 1 for training stage and Algorithm 2 for testing stage)
for effectively solving computing services in SAIN, especially
for remote areas lacking network coverage, which was defined
as an NP-hard optimization problem Py (minimizing the total
system delay under various resource constraints). By refor-
mulating Py into an integer program Ps with much smaller
problem size (because only binary variables and the associated
constraints remain for the latter), the proposed algorithm was
developed by applying the existing DDQL to Ps including
its complexity analysis (cf. Remark 1). Extensive simulation
results were provided to demonstrate the effectiveness of the
proposed DDQL algorithm, with much better performance
than the resulting algorithm by directly applying DDQL or
QL to Py in terms of the algorithm running time (efficiency)
and SAIN (system) scalability in training, and total system
delay (performance) in testing.
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