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ABSTRACT

Optimizing the system performance of a wireless powered com-
munication network (WPCN) has been extensively studied recently,
by incorporating space, frequency and/or time diversity ofthe chan-
nel, etc. However, the time diversity, inherently imposes the causal-
ity constraint on the channel state information (CSI) in thesystem
design. Hence development of effective and efficient onlinealgo-
rithms for optimizing the system performance is essential but chal-
lenging. In this paper, a WPCN with two single-antenna access
points (APs) and a single-antenna user, wherein the “harvest and
then transmit” over multiple time blocks is considered for the re-
source allocation (time and power in each time block) by maximiz-
ing the system throughput rate. To this end, a low-complexity online
algorithm is proposed. Some simulation results are provided to sup-
port its efficacy.

Index Terms— Wireless energy transfer, time diversity, online
algorithm, throughput maximization.

1. INTRODUCTION
Energy harvesting has drawn extensive attention in recent years, due
to perpetual energy supply for a conventional energy-constrained
network to prolong its life time. Among a variety of energy re-
sources, radio frequency (RF) enabled wireless energy transfer
(WET) technology can particularly provide more stable, andmore
controllable energy than others, such as solar and wind, [1,2]. As
a result, the wireless powered communication network (WPCN)
has become an appealing research topic. In a general WPCN [3], a
hybrid access point (H-AP) provides the information transmission
and energy transmission simultaneously to a set of distributed user
terminals in the downlink (DL) phase, and the wireless powered user
terminals transmit information in the uplink (UL) phase using the
energy harvested in the DL phase.

The research of WPCN can be roughly divided into two cate-
gories. The first considers the rate-energy trade-off for the simulta-
neous wireless information and power transfer (SWIPT) in the DL
phase of WPCNs, and has been extensively studied under different
system models and channel settings [3, 4, 5, 6, 7]. The other is the
transmission design for the “harvest-then-transmit” (i.e., user termi-
nals harvest energy in the DL phase, and then transmit information
using the harvested energy in the UP phase), which is the focus of
this paper. The time allocation, the power control, and beamform-
ing design for the DL-UL phases have fundamental impact on the
throughput performance of the user terminals. In [8], a WPCNcon-
sisting of one single-antenna H-AP and multiple single-antenna user
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terminals is considered. It is assumed that the user terminals trans-
mit their independent information to the H-AP by time-division-
multiple-access (TDMA), and both the sum-rate maximization prob-
lem and min-rate maximization problem are considered. Thiswork
is further extended to the MISO system, where the H-AP is equipped
with multiple antennas [9]. In the presence of Gaussian CSI error
that is inevitable in practical systems, the authors of [10]consider
joint time allocation and energy beamforming design for a MISO
WPCN system to maximize the sum-rate subject to signal-to-noise
ratio (SNR) outage probability constraints.

The related works in the literature mostly focus on exploiting the
spatial diversity provided by multiple antennas. However,the time
diversity has not yet been well studied for WPCN. Since the energy
harvested in current time block can be stored in the energy storage
device (ESD) for future use, properly designed time allocation and
power control over several time blocks experiencing different chan-
nel fading can well be expected to further improve the performance
of WPCN. To the best of our knowledge, there is only one work [11]
in the literature that considers a throughput maximizationproblem
for the time allocation and power control over a finite horizon of
time for a WPCN consisting of one single-antenna H-AP and mul-
tiple single-antenna users. However, the work [11] only deals with
the ideal case that the CSI for all time blocks are known a priori,
which is not very realistic due to the causality of CSI not taken into
account. So far, the development of online algorithms is still an open
problem. In view of this, we consider this problem for a WPCN con-
sisting two single-antenna APs and one single-antenna usersubject
to the causal CSI. Because it turns out to be an intractable noncon-
vex problem, we propose an online algorithm to obtain a suboptimal
solution. The proposed algorithm can be efficiently implemented by
simple bisection search and golden section search [12]. Some simu-
lation results are provided to demonstrate its efficacy.

2. SIGNAL MODEL AND PROBLEM STATEMENT

We consider a WPCN consisting of two single-antenna APs and a
single-antenna user. One of the APs is for DL wireless energytrans-
fer, referred to as energy-AP (E-AP); the other is for UL wireless
information transmission, referred to as information-AP (I-AP)1. To
exploit the time diversity of fading channel, we consider the en-
ergy transfer and information transmission overN consecutive time
blocks of independent channel fading states. The DL channelfrom
E-AP to user and the UL channel to I-AP in thenth time block are
assumed to be qusi-static flat fading channels and are denoted bygn
andhn, respectively. Except for an energy storage device (ESD) in
form of rechargeable battery, the user is assumed to have no other

1The WPCN with one H-AP and one user is a special case of this model.
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power resource. Thus, the user needs to harvest energy from the
E-AP in the DL phase for its information transmission in the UL
phase. Since the user cannot receive energy and transmit informa-
tion simultaneously, we adopt the “harvest-then-transmit” protocol
[8], in which a transmission time block is divided into DL phase and
UL phase in order. Specifically, in thenth time block,(1 − τn)T
(0 < τn < 1) amount of time is assigned to E-AP for energy trans-
fer, and the remainingτnT amount of time is for the user terminal to
transmit information to I-AP.

In the DL phase of thenth time block, the E-AP transfers energy
to user with DL transmit power budgetP . With the transmit signal
denoted byxdl

n , the DL transmit power from the E-AP is

E[|xdl
n |2] = pdln ≤ P. (1)

In thenth time block, the received signal at the user can be written
as (for energy receivers, the receiver noise is negligible in practice)

ydl
n = gnx

dl
n . (2)

As a result, the energy harvested by the user in the DL phase ofthe
nth time block is

En = ηE[|ydl
n |2] = ηpdln |gn|

2(1− τn)T, n = 1, . . . , N, (3)

where0 ≤ η ≤ 1 is the factor of energy conversion efficiency at the
receiver.

For the UL phase of thenth time block, the signal transmitted
from the user terminal to I-AP is denoted by

xul
n =

√

puln suln , (4)

wherepuln is the transmit power and the independent and identically
distributed information-carrying signalsuln ∼ CN (0, 1) (complex
Gaussian with zero mean and unity variance) is assumed. More-
over, for the information transmission, there is additional energy
consumption by the user terminal circuit, denoted byPc [13], which
is relatively independent of transmit power and assumed to be con-
stant over all the time blocks. Assuming infinite capacity for the
ESD at the user terminal, the available UL transmit power in the UL
phase of thenth time block is given by

P̄ul
n =

En + Eleft
n

τnT
=

ηpdln |gn|
2(1− τn)T + Eleft

n

τnT
, ∀n, (5)

whereEleft
n =

∑n−1

i=1
Ei −

∑n−1

i=1
(puli + Pc)τiT is the energy left

from the previous time blocks. Hence, the transmit power in the UL
phase is constrained bypuln + Pc ≤ P̄ul

n . The received signal at the
I-AP in thenth time block of the UL phase is given by

yul
n = hnx

ul
n + zn, (6)

where zn ∼ CN (0, σ2) is the additive white Gaussian noise
(AWGN) at the I-AP. Then, the SNR for decoding the signalsn
can be expressed as

γ̄n =
puln |hn|

2

σ2
. (7)

We assumeT = 1 andη = 1 without loss of generality. As a
result, the achievable rate (in bps/Hz) for information transmission
in thenth time block can be expressed as

Rn = τn log2

(

1 +
puln |hn|

2

σ2

)

. (8)

Notice that the optimal throughput performance, i.e., maximizing
∑N

n=1
Rn, relies on joint optimization of the DL-UL time allocation

τn and the power allocationpuln over theN blocks. In the following
sections, we propose an optimal offline optimization methodand a
practical online optimization method. This offline optimization is
obviously not very practical since non-causal CSI is required, but
it can serve as a performance upper bound to the proposed online
method, where the CSI-causality constraint is imposed.

3. OFFLINE OPTIMIZATION

Assuming all the CSIs known a priori, the offline throughput max-
imization problem for the considered WPCN can be formulatedas

max
pdln ,pul

n ,τn,∀n

N
∑

n=1

τn log2

(

1 +
puln |hn|

2

σ2

)

(9a)

s.t. 0 ≤ pdln ≤ P, puln ≥ 0, ∀n, (9b)
n
∑

i=1

τi(p
ul
i + Pc) ≤

n
∑

i=1

pdli |gi|
2(1− τi), ∀n, (9c)

0 ≤ τn ≤ 1, ∀n, (9d)

where (9c) is the UL power constraint deduced from (5), (3) and the
constraintpuln + Pc ≤ P̄ul

n . Obviously, problem (9) is a non-convex
optimization problem, due to its non-concave objective function and
non-convex constraint (9c). Nevertheless, it can be reformulated as
a convex problem by the change of variablesp̃dln = (1− τn)p

dl
n and

p̃uln = τnp
ul
n , so can be efficiently solved using the standard convex

solverCVX [14].

4. ONLINE OPTIMIZATION

For online optimization, we assume that only the CSI of the current
time block, saygn andhn, are known, and the CSI of the future time
blocks{gi, hi}

N
i=n+1 are unknown and random with known proba-

bility distribution. Therefore, at each time blockn, we consider the
problem of maximizing the throughput of the current time block plus
the expected throughput of the future time blocks, i.e.,

max
pdln ,pul

n ,τn

τn log2

(

1 +
puln |hn|

2

σ2

)

+ E

[

N
∑

i=n+1

τ̆i log2

(

1 +
p̆uli |Hi|

2

σ2

)

]

(10a)

s.t. 0 ≤ pdln ≤ P, puln ≥ 0, (10b)

τn(p
ul
n + Pc) ≤ pdln |gn|

2(1− τn) + Eleft
n−1, (10c)

0 ≤ τn ≤ 1, (10d)

where{τ̆i, p̆uli ,Hi}
N
i=n+1 are the time allocation, power allocation,

and CSI in the UL phase of the future time blocks, and are modeled
as random variables in the current time block.

4.1. Problem Reformulation

By introducing the slack variablesn ≥ 0 (the total energy left at the
nth time block), one can rewrite constraint (10c) as

τn(p
ul
n + Pc) + sn = pdln |gn|

2(1− τn) + Eleft
n−1, sn ≥ 0.

Then, constraints (10c) and (10d) translate to

0 ≤ τn =
pdln |gn|

2 + Eleft
n−1 − sn

puln + pdln |gn|2 + Pc

≤ 1, sn ≥ 0.
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Moreover, it can be observed from (10b) and (10c) that the optimal
DL power must bepdln = P . Hence, problem (10) can be reformu-
lated as2

max
pul
n ,sn

P |gn|
2 +Eleft

n−1 − sn
puln + P |gn|2 + Pc

log2

(

1 +
puln |hn|

2

σ2

)

+E

[

P |Gn+1|
2 + sn − s̆n+1

p̆uln+1 + P |Gn+1|2 + Pc

log2

(

1 +
p̆uln+1|Hn+1|

2

σ2

)]

+E

[

N
∑

i=n+2

P |Gi|
2 + s̆i−1 − s̆i

p̆uli + P |Gi|2 + Pc

log2

(

1 +
p̆uli |Hi|

2

σ2

)

]

(11a)

s.t. 0 ≤ P |gn|
2 +Eleft

n−1 − sn ≤ puln + P |gn|
2 + Pc, (11b)

sn ≥ 0, puln ≥ 0. (11c)

4.2. Conservative Approximation

It is obvious that the optimal transmission strategy for thefuture
blocks, i.e.,{p̆uli , s̆i}

N
i=n+1, depends on how much energy is left

for the current time block, i.e.,sn, which makes problem (11) in-
tractable. To find a tractable suboptimal solution to problem (11),
we assume that in the next future time block, the user terminal does
not perform energy harvesting from E-AP, and use up all the remain-
ing energy to transmit information, i.e.,

p̆uln+1 = max{sn − Pc, 0},

s̆n+1 = 0.

Note thatp̆uln+1 = 0 is for the case that the energy leftsn at the cur-
rent time block is below the circuit power consumptionPc. Under
this assumption, the third term in the objective function of(11) be-
comes independent of the unknown variablespuln andsn, and hence
problem (11) can be simplified as

max
pul
n ,sn

P |gn|
2 + Eleft

n−1 − sn
puln + P |gn|2 + Pc

log2

(

1 +
puln |hn|

2

σ2

)

+ E

[

P |Gn+1|
2 + sn

max{sn − Pc, 0}+ P |Gn+1|2 + Pc

log2

(

1 +
max{sn − Pc, 0}|Hn+1|

2

σ2

)]

(12)

s.t. (11b), (11c).

To solve problem (12), one needs to consider two cases,sn ≥ Pc

andsn ≤ Pc, that are presented respectively below.
Case I(sn ≥ Pc ⇒ p̆uln+1 = sn − Pc)

max
pul
n ,sn

P |gn|
2 +Eleft

n−1 − sn
puln + P |gn|2 + Pc

log2

(

1 +
puln |hn|

2

σ2

)

+ E

[

log2

(

1 +
(sn − Pc)|Hn+1|

2

σ2

)]

(13a)

s.t. 0 ≤ P |gn|
2 + Eleft

n−1 − sn ≤ puln + P |gn|
2 + Pc, (13b)

sn ≥ Pc, puln ≥ 0. (13c)

2Noticing that, by definition,sn = E
left
n , we have replacedEleft

i by si

for all i ≥ n, and have used̆si for all i ≥ n + 1 to emphasize that they
are random variables. Analogous to UL channels, the future DL channels are
denoted byGi for i ≥ n+ 1.

Case II (sn ≤ Pc ⇒ p̆uln+1 = 0)

max
pul
n ,sn

P |gn|
2 + Eleft

n−1 − sn
puln + P |gn|2 + Pc

log2

(

1 +
puln |hn|

2

σ2

)

(14a)

s.t. 0 ≤ P |gn|
2 + Eleft

n−1 − sn ≤ puln + P |gn|
2 + Pc, (14b)

0 ≤ sn ≤ Pc, puln ≥ 0. (14c)

It is obvious that the optimal value of problem (12) is the maximum
of the optimal values of (13) and (14), and the correspondingoptimal
solution is hence optimal to problem (12).

4.3. Efficient Implementation

In this subsection we present an efficient algorithm for solving the
nonconvex problems (13) and (14). First, let us consider case I, i.e.,
problem (13). By the change of variables

tn =
1

puln + Pc + P |gn|2
, rn = P |gn|

2+Eleft
n−1 − sn, (15)

problem (13) can be equivalently written as

max
tn,rn

tnrn log2

(

1 +
(1− tn(Pc + P |gn|

2))|hn|
2

tnσ2

)

+ E

[

log2

(

1 +
(P |gn|

2 +Eleft
n−1 − rn − Pc)|Hn+1|

2

σ2

)]

(16a)

s.t. 0 ≤ tn ≤ r−1
n , (16b)

0 ≤ tn ≤ (Pc + P |gn|
2)−1, (16c)

0 ≤ rn ≤ P |gn|
2 + Eleft

n−1 − Pc. (16d)

For ease of exposition, let

α(tn, rn) = tnrn log2

(

1 +
(1− tn(Pc + P |gn|

2))|hn|
2

tnσ2

)

,

β(rn) = E

[

log2

(

1 +
(P |gn|

2 + Eleft
n−1 − rn − Pc)|Hn+1|

2

σ2

)]

Then problem (16) can be expressed as

max
rn

f(rn) ,

[

max
0≤tn≤min

{

1
rn

, 1

Pc+P |gn|2

}

α(tn, rn)

]

+ β(rn)

(17a)

s.t. 0 ≤ rn ≤ P |gn|
2 + Eleft

n−1 − Pc. (17b)

It can be shown that, for fixedrn, α(tn, rn) is concave intn (the
proof is omitted due to space limitations), and hence for anyfixed
value ofrn, f(rn) can be efficiently evaluated by solving the inner
maximization problem using bisection search. Moreover, itcan be
proved thatf(rn) is a unimodal function ofrn. Therefore, the op-
timal rn can be efficiently obtained by the golden section search
method [12]. The proposed efficient algorithm for solving prob-
lem (17) is hence summarized in Algorithm 1. For case II, prob-
lem (14) can be analogously reformulated as problem (17) except
for β(rn) = 0 and constraint (17b) replaced by

P |gn|
2 + Eleft

n−1 − Pc ≤ rn ≤ P |gn|
2 + Eleft

n−1.

The resulting problem can also be solved by Algorithm 1 with the
initial conditions changed tor1 := P |gn|

2 +Eleft
n−1 − Pc andr2 :=

P |gn|
2 + Eleft

n−1. After obtaining the optimalrn andtn, the optimal
solution of (12) can be obtained by (15).
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Algorithm 1 Efficient Algorithm for Solving Problem (17)

1: Setr1 := 0, r2 := P |gn|
2 + sn−1, RG :=

√
5−1

2
and tolerance

ǫ > 0.
2: repeat
3: SetL := r2 − r1.
4: Setr3 := r2 −RG × L andr4 := r1 +RG × L.
5: Computef(r3) andf(r4) by bisection search.
6: if f(r3) > f(r4), updater2 := r4.
7: elseupdater1 := r3.
8: until |r2 − r1|< ǫ(|r3|+|r4|)
9: Output r⋆ := r1+r2

2
as the optimal solution of problem (17).

5. SIMULATION RESULTS AND CONCLUSIONS

In the simulations, the number of time blocks is set toN = 200,
and the user is randomly allocated in a 4-meter× 4-meter room.
With the center of the square room being the origin, E-AP and I-AP
are allocated on(0.1, 0) and (−0.1, 0) respectively. Note that the
expectation term in (13a) is approximated by sample averagewith
200 channel realizations. The distance-dependent pass loss model is
given byPL = A0(dl/d0)

−3, whereA0 = 10−3, dl denotes the
distance between the user and AP andd0 = 1 meter. Considering
the Rician fading channel model, the DL channelg and UL channel
h can be expressed respectively as

g =

√

KR

1 +KR

gLOS +

√

1

1 +KR

gNLOS, (18)

h =

√

KR

1 +KR

hLOS +

√

1

1 +KR

hNLOS. (19)

whereKR = 3 denotes the Rician factor,gLOS ∈ C (the set of com-
plex numbers) andhLOS ∈ C are the line of sight (LOS) deterministic
components,gNLOS ∈ C andhNLOS ∈ C denote the Rayleigh fading
components with zero mean and unity variance.
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Fig. 1. Average throughput performance versus transmit powerP of
E-AP forσ2 = 10−6 (Watt) andPc = 10−5 (Watt).

Figures 1, 2 and 3 show the average throughput performance
(versus different transmit powerP of E-AP, noise powerσ2 at I-AP
and circuit powerPc) of the offline optimization (solving problem
(9) usingCVX [14]), the proposed online optimization algorithm (Al-
gorithm 1 for solving problem (12)) and a heuristic greedy method,
which solves (14) in every time block (without any prediction on
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Fig. 2. Average throughput performance versus noise powerσ2 at
I-AP for P = 1 (Watt),Pc = 10−5 (Watt).
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Fig. 3. Average throughput performance versus circuit powerPc for
P = 1 (Watt) andσ2 = 10−6 (Watt).

the throughput rate for any future time block). Some observations
from these three figures are as follows. The average throughput per-
formances of the three methods are better for largerP , smallerσ2,
and smallerPc, and the offline optimization performs best and the
greedy method performs worst. The performance gap between the
offline optimization and the online optimization is smaller, and that
between the latter and the greedy method is larger for largerP (see
Fig. 1) and smallerσ2 (see Fig. 2). However, Fig. 3 shows that
the performance gap between the offline optimization and theonline
optimization is roughly constant, while that between the online op-
timization and the greedy method decreases with the circuitpower
Pc, and reduces to zero (due tosn < Pc for all n) asPc is large.

In conclusion, we have presented a low-complexity online op-
timization method for the throughput maximization of WPCN over
multiple independent channel fading states provided by thetime di-
versity. The proposed online optimization method (Algorithm 1),
the first algorithm for online processing to the best of our knowl-
edge, significantly outperforms a heuristic greedy method.Though
the offline optimization solved byCVX [14], provides a performance
upper bound to the proposed online algorithm, the latter performs
well with the computation time about ten times less than the former
in the presented simulation results. However, the development of
more advanced online algorithms to reduce the gap below the per-
formance upper bound is left as a future study.
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