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ABSTRACT decades, e.g., minimum volume constrained nonnegativeixmat
factorization (MVC-NMF) [7], minimum volume simplex analis
(MVSA) [8], minimum-volume enclosing simplex (MVES) [9]nd
simplex identification via split augmented Lagrangian (@Lp[10],
etc., but their performance and computational efficiency belim-
ited due to lots of complicated simplex volume calculatjcgensi-
tivity to initialization, and lack of rigorous performaneaalysis.
This paper proposes a fast Craig-criterion-based EEA based
the idea that Craig’s simplex witN vertices can be characterized by
N hyperplanes. Each hyperplane parameterized by its nometdv
and a constant can be efficiently estimated fi¥m- 1 pixels in the
data set via simple and effective linear algebraic fornoutest with-
out involving any simplex volume computations. The resigliEEA,
referred to as hyperplane-based Craig-simplex-identidioa(Hy-
perCSl) algorithm, yields reproducible, non-negativej,anost im-
portantly, high-fidelity endmember estimates without fggg the
PPA. We also present an endmember identifiability analysisif/-
perCSl algorithm. Some simulations are provided to dematesits
superior efficacy over state-of-the-art Craig-criterlmased EEAs in
both endmember estimation accuracy and computationaiegftiz.
Notation: conv .4 andaff A denote the convex hull and affine
Index Terms— Hyperspectral unmixing, Craig’s criterion, min- hull of a setA, respectively [11]R (RY, RM*¥) is the set of real

Hyperspectral unmixing (HU) is an essential signal process
ing procedure for blindly extracting the hidden spectrghsitures
of materials (or endmembers) from observed hyperspectiading
data. Craig’s criterion, stating that the vertices of theimum vol-
ume enclosing simplex (MVES) of the data cloud yield higlefigy
endmember estimates, has been widely used for designimgeznd
ber extraction algorithms (EEAs) especially in the scemafi no
pure pixels. However, most Craig-criterion-based EEAsegaity
suffer from high computational complexity due to heavy demp
volume computations, and performance sensitivity to ramdloi-
tialization, etc. In this work, based on the idea that Ceagimplex
with N vertices can be defined by associated hyperplanes, we de-
velop a fast and reproducible EEA by identifying these hplsares
from N(N — 1) data pixels extracted via simple and effective lin-
ear algebraic formulations, together with endmember iflability
analysis. Some Monte Carlo simulations are provided to eaemo
strate the superior efficacy of the proposed EEA over sththenart
Craig-criterion-based EEAs in both computational efficieand es-
timation accuracy.

imum volume enclosing simplex (MVES), hyperplane numbers (V-vectors, M x N matrices). RY (Rf“’) is the set
of non-negative reaN-vectors (/ x N matrices). The seIy =
1. INTRODUCTION {1,2,...,N}. X" is the pseudo-inverse of a matk. 1 andOx

are all-one and all-zerd&V-vectors, respectivelyly is the N x N
identity matrix. > and - stand for the componentwise inequality

Ing spectroscopy \.N'th numerous appll'c.atlons, SU(.:h as yanex- and strictly componentwise inequality, respectivélly|| denotes the
ploration, mineral identification, and military surveitiee [1,2]. The Euclidean norm.q;(X) denotes theth principal eigenvector of a
observed pixels in the hyperspectral imaging data are lyssaéc- matrix X with [|g; (X)|| = 1

tral mixtures of multiple substances [3] owing to limitechsipl res-
olution of the hyperspectral sensor used. Hyperspectnalixing 2. SIGNAL MODEL AND PROBLEM STATEMENT

(HV) [3, 4], an essential signal processing procedure fdraek  consider a given hyperspectral imaging datalopixels that con-
ing individual spectral signatures of the underlying maler(or  sists of N distinct substances (endmembers), each characterized by
endmembers) from the measured spectral mixtures, is treref 5 spectral signature vecte; € R (where M is the number of

Hyperspectral remote sensing (HRS) is a crucial technadégyag-

paramount importance in HRS. _ _ spectral bands). Then each pixdh] € R™ in the data set can be
Many existing endmember extraction algorithms (EEAS) asygpresented as [1, 3, 4]

sume the existence of pure pixels (i.e., the pixels that akelys N

contributed by a single endmember) [4]. Nevertheless, such x[n] = As[n] = Z silnja;, Vn eI, (1)

pixel assumption (PPA) may be seriously infringed in piadtap- Pt

plications like retinal analysis in the ophthalmology [SAnother

_ . MXxN ; f H
widely known criterion without requiring the PPA was propddy whereA = [ai---an] € R IS the spectral signature matrix

; ; . o ands[n] = [s1[n] -~ sn[n]]T € RY is the abundance vector. In this
gr:i:gsgﬁ]é zit:qtmgxtg?; tﬂ%r:/_ %ﬁgﬁi Zgéﬁem&?:gi\éo;g:& wqu, we assume tha{ 2_3 is known a priori as itcan be. _estlmated
EEAs based on this criterion have been proposed in the last tWusmg model-order selection methods, such as virtual démeality
prop (VD) [12] and hyperspectral signal subspace identificatipmini-
This work was supported in part by National Science Couio(C.) ~ mum error (HySiMe) [13]. )
under Grant NSC 102B2027N4 and in part by NTHU and Chang Gung  Hyperspectral unmixing is to blindly extract th¥ unknown
Memorial Hospital under Grant 103N2763E1. endmembers (i.e.ai,...,ay) from the observed spectral data
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(x[1], ...

ear mixing model (1) are as follows [1, 3, 4]:

(A1) si[n] >0, foralli € Zy andn € Zr.

(A2) N si[n] =1, foralln € Zr.

(A3) min{L, M} > N andA € R}"*N is of full column rank.

Under the above assumptions, the pix@t] in the original im-
age can be equivalently represented in a dimension-red{zejl
space via affine set fitting [14] as follows:

N

xX[n] = C'(x[n] —d) = Y _siln)a: e RV, (2)
where =1
1 L
d= ; x[n] € RM (mean of data set) 3)
C= [ql(UUT)7---,IIN71(UUT)] ERIWX(N_U (4)

a; = Cl(a; — d) € RY ! (endmembers in the DR space) (5)

inwhichU = [x[1] —d,...,x[L] —d] € R**L (mean removed
data matrix),C is semi-unitary (i.e.CTC = Ix_;), andd corre-
sponds to the origi®_; in the DR spac® ! (by (2)).

From (2) andAl1)-(A2), it can be seen that

X &2 {x[1],...,%[L] } C conv{a,.. (6)

i.e., the true endmembers’ simplexnv{a,...,an} C RV~!
itself is a data-enclosing simplex (in the noiseless séenparBy
Craig’s criterion,a1, . . ., an are estimated by solving the follow-
ing volume minimization problem [9]:

,,,,, V(B1,....Bx)

s.t. X[n] € conv{By,...

LN},

M
BN}V,
where V(8i,...,8n) denotes the volume of the simplex
conv{Bi,...,Bn} C RN~ Under some mild conditions on data
purity level, the optimal solution of the problem (7) can feetly
yield the true endmembers in the absence of pure pixels §15, 1

3. HYPERPLANE-BASED CSI ALGORITHM

In this section, without involving any simplex volume contgions,
we propose a computationally efficient and performancectite
algorithm based on the idea stated in the following propwsit

Proposition 1 If {a,...,an} € RY~! is affinely independent
(i.e.,{ai—an,...,an_1—an}islinearly independent), then the
simplex7 = conv{ai,...,anx} € RV~ can be reconstructed
from the associated hyperplanes{H, ..., Hn}, that tightly en-
closeT, whereH; £ aff( {au,...,an}\ {a:}).

Proof: It suffices to show thafa, ..., an} can be determined by

{Hi,...,Hn}. Note that hyperplang{; can be parameterized by

anormal vectob; € RV~! and a constarti; € R as [11]
Hi(bi,hi) = {x e RV | b/x=h; }. (8)

Asa; € aff( {a1,...,an}\ {a;}) = H, forall j # i, we have
from (8) thatb] cv; = h; forall j # i, i.e.,

B,iai = hfi, (9)

where
B ;2 [by,....bi1,bit1,...,by]T e RV-DXI=D " (1)
hoi 2 [hy, .. hica, higr,. o h] T € RV L (11)
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,x[L]}. Some standard assumptions pertaining to the lin

As T is a simplex inRV~!, B_; must be of full rank and hence
invertible [11]. Hence, we have from (9)

o; =B~lh_,, Vie Iy, (12)

implying that the simple¥ can be reconstructed. ]
Moreover, the outward-pointing normal vectoy (cf. Figure 1)
of hyperplane#; given by (8) has a closed-form expression [17]:

b; = vi(au,...,an) (13)
2 (IN,l - P(PTP)‘lPT> (o — o), foranyj # i,
whereP 2 Q — «; - 1%, € RV"VXN-2 and Q €

RW-1x(N=2) js the matrix|a; - - - an] € RV DXV with its ith
and jth columns removed. Besides (13) for obtaining the normal
vectorb; of #;, one can show thai; can also be alternatively ob-
tained from any given affinely independent Qp\(l”, e p%ll} C

H; as follows:

P P’ . pNy),  (14)
wherew;(+) is defined in (13). The proof of (14) is omitted due to
space limitation.

It can be inferred from(A3) that the set of DR endmembers
{a1,...,an} is affinely independent. By Proposition 1, problem
(7) can be decoupled inty subproblems of hyperplane estimation
or equivalently, estimation of the parameter vectérs k), i € Zn
(cf. (8)). In the following subsections, let us present howestimate
b; andh; from the DR data set’, respectively.

bi :v7(p(11)7 ON*17

3.1. Normal Vector Estimation
Based on (14), the idea of determining the normal vect@i ofs to
find N — 1 affinely independent points

(2)

{pl 7'~'7p5\i[),1}érpigx

that are as close t&(; as possible. Another important observation
from (6) is given in the following fact:

(F1) Allthe pixels inX lie on the same side G#; (cf. (6)), imply-
ing that the pixelp € X closest toH; is exactly the one with
maximum value ob? p.

Suppose that we are giveN “purest” pixelsa; € X, which
basically maximize the simplex volume inscribedAhand can be
obtained using the reliable and reproducible TRIP algorifti8].
Soa; can be viewed as the pixel ili “closest” toa; (cf. Figure 1).
Let b; be the outward-pointing normal vector of hyperpldde £
aff({Gn,...,an}\{&:}) ie.,

bi £ vi(ai,...,ay). (cf. (13)) (15)
ConsideringF1) and thatP; must containV — 1 distinct pixels, we
search for the desired affinely independent73eby:

p’

where

€ argmax {bip|peX OR,(:)}, VkeIn_1, (16)

17
B(dk+1,’f‘), if k Z i, ( )

RO 2 {B(dk,r), if k<,
in which B(ay,r) 2 {x € RY | ||x — ax|| < r} is the open
Euclidean norm ball with cente®, € RY and radius- £ (1/2) -
min{||é&;—é&;| | 1 <i<j < N} > 0. NotethattnR."” + 0 (as



Fig. 1. An illustration of hyperplanes and DR datal¥f for the
case of N = 3, whereas is a purest pixel int’ (a purest pixel
&; can be considered as the pixel closest¥td but not very close
to hyperplaneH; = aff{a2, a3}, leading to nontrivial orientation
difference betweeb; andb;.

it contains eithetyy, or &1, cf. (17)), i.e., problem (16) is feasible.
Then we obtain the estimated normal vector associatedAgjths

P, pi”, ..., PNy (cf. (14) (18)

In addition to assumption@A1)-(A3), with one more assump-
tion that is extensively used to characterize the behaitiveoabun-
dance vectors in the HRS context [19, 20]:

(A4) the abundance vectofs[n]} € RY are independent and
identically distributed (i.i.d.) following the Dirichletistribu-
tion [21] with parameter vectey = [v1,...,vx]" = On,

b; = v; (p(l) On_1,

the obtainedP; by (16) can be proved to be affinely independent as

stated in the following theorem (with proof given in Appexji

Theorem 1 AssumgAl)-(A4) hold true. Letp(” € P; be a solu-
tion to (16)with R\" defined in(17), for all i € Zn andk € Zn 1.
Then, the seP; is affinely independent with probability(w.p.1).

Note that the orientation difference betwdenand the trueb;
may not be small (cf. Figure 1). Hends; itself may not be a good

estimate forb;. Nevertheless, it can be shown that the orientation

difference betweem; and b; tends to be very small for largé,
even in the absence of pure pixels (as stated in Remark 1 pelow

3.2. Hyperplane Estimation and Performance Analysis
With the estimated normal vectdr; (cf. (18)), as the hyperplanes
associated with the minimum-volume data-enclosing simpiest
be externally tangent to the data clod(d they can be determined as
Hi(bi, hi), Vi € In, whereh; is obtained by solving

hi = max {bip|peX}. (19)
Considering the volume expansion due to noise effect [22,tB8
estimated hyperplanes need to be properly shifted clostetori-
gin, so instead#; (b, hi/c), i € Iy, are the desired hyperplane
estimates for some > 1. Therefore, the corresponding DR end-
member estimates are obtained by (cf. (12))

&; =Bl h /e, VieTn, (20)
whereB_; andh_; are given by (10) and (11) with; andh; re-

which can be further shown to have a closed-form solution:
¢ =max {1, max{—v;/d; | i € In, j € In}}, (23)

whereu;; is the jth component ofC (B~} - h_;) € R andd, is
the jth component ofl.

Note thatc’ is just the minimum value far to yield non-negative
endmember estimates. Thus, we need tesetc’ /n > ¢’ for some
n € (0,1]. Moreover, the value of = 0.9 is empirically found to
be a good choice for signal-to-noise ratio (SNR) greaten #tedB;
typically the value of SNR in real hyperspectral data is miicfner
than20 dB, e.g., AVIRIS [24]. Let us emphasize that the larger the
value ofn (or the smaller the value af), the farther the estimated
hyperplanes from the origix_1, or the closer the estimated end-
members’ simplexonv{ai,...,ay} to the boundary of the non-
negative orthanR%}’. On the other hand, we empirically observed
that typical endmembers in the U.S. geological survey (USGS
brary [25] are close to the boundary®f’. That is to say, a reason-
able choice of) € (0, 1] should be large (i.e., close 19, accounting
for the reason why the preset valuenof 0.9 can always yield good
performance. The resulting HyperCSI algorithm is sumneafimn
Table 1.

Table 1. Pseudo-code for HyperCSI Algorithm

Given  Hyperspectral datgx[1],...,x[L]}, number of end-
membergV, andn = 0.9.

Step 1. Calculate(C, d) using (3)-(4), and obtain the DR data
X = {x[1],...,x[L]} using (2).

Step 2. Obtain{a,...,a&n} using TRIP algorithm [18].

Step 3. Obtainb; using (13).¥ i, andR\"” using (17)¥ i, k.

Step 4. Obtain(P;, bi, h;) by (16), (18), and (19) i € Zn.

Step 5. Obtainc’ by (23), and set = ¢ /7.

Step 6. Calculateq; by (20) anda; = C &; + d by (21),V i.

Output The estimated endmembeffa., ..., an}.

Asymptotic identifiability of the proposed HyperCSI algbm
can be guaranteed as stated in the following theorem:
Theorem 2 Under (A1)-(A4), the noiseless assumption and—
o0, the simplex identified by HyperCSI algorithm witk= 1 is ex-
actly the Craig’s minimum-volume simplex (i.e., solutiér{®)) and
the true endmembers’ simplesnv{a,...,an} in the DR space
w.p.1.

The proof is omitted due to space limit. Instead, the phipbses be-
hind the proof of Theorem 2 are given in the following two reksa

Remark 1 With the abundance distribution statedA), the N —1
pixels inP; can be shown to be arbitrarily close #5; as the pixel
numberL — oo, and they are affinely independent w.p.1 (cf. Theo-
rem 1). That is to sayp; can be uniquely obtained by (18), and its
orientation approaches to thatlof w.p.1.

Remark 2 Remark 1 together with (6) implies that; is upper
bounded byh; w.p.1 (assuming thatb;|| = ||b;|)), and this up-

placed byb; andh;,V j # i, respectively. It is necessary to choose per hound can be shown to be achievable w.p.LL as co. Thus, as

¢ such that the associated endmember estimates in the dsgiaee

a4, =Céi+d> 0y, VicIy. (cf. (5)and(A3))  (21)
By (20) and (21), it is required that> ¢’ where
J A r/r/li>nl{c” | C (ﬁ:zl . 12171) +c"-d >0, Vi}  (22)
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c = 1, we have that; = hl/c w.p.1.

It can be further inferred, from the above two remarks, hats
exactly the truex; w.p.1 (cf. (20)) asl. — oo in the absence of
noise. Actually, with a moderat& and finite SNR, the proposed
HyperCSl algorithm can yield high-fidelity endmember esties as
demonstrated in the simulation results below.



4. SIMULATION RESULTS Simulation results also demonstrated its superior efficaey some
Six endmembers (i.e., Jarsoite, Pyrope, Dumortierite, dBigt §tate-of-§h§-art algorithms in both solution accuracy eahputa-
tonite, Muscovite, and Goethite) with/ — 224 spectral bands tional efficiency.
randomly selected from the USGS library [25] are used to geae 6. APPENDIX: PROOF OF THEOREM 1
L = 10000 synthetic hyperspectral dadn|, where the abundance
vectorss[n] are i.i.d. generated according to Dirichlet distribution ) i ) ) )
with parametery = 1 /N (automatically enforcingAl)-(A2)) for 0, ¥k # £, implying that theV — 1 pixelsp,”, V k € Zn—1, iden-
various values of SNR (Gaussian noise added) and differeatgii- tlflfsd by soIV|_ng (16) must be distinct. H(Aance, it sufficeshiow that
rity levels p = max{|[s[n]||,n € Z1.} [9,15,23]. The average root- © IS affinely independent w.p.1 foramy = {ps, ..., py-1} C X
mean-square (RMS) spectral anglg, between the true endmem- that satisfies
bers{ai,...,anx} and their estimate¢a,,...,an} [9, 26] over pr #pe, foralll <k </{<N-—-1 (24)
100 independent runs is used as the performance measur@nfer ¢ Then, asp, € X, V k € Zn_1, we have from(A4) and (24) that
parison of the proposed HyperCSI algorithm and four bencketh  there exist i.i.d Dirichlet distributed random vectdes, .. ., sy —1}
Craig-criterion-based EEAs, including MVC-NMF [7], MVSA], such that (cf. (2))
MVES [9], and SISAL [10]. It should be mentioned that the per- P =[on - -on]sk, forallk eIy ;. (25)
formances of these four EEAs are dependent on their respeety-
ularization parameters, and we have tried our best to séiese
parameters so as to yield their best performances.

For a fixedi € Zx, one can see from (17) th&\”’ N R\ =

For ease of the ensuing presentationPlef- } denote the probability
function and define the following events:

The simulation results of average RMS spectral angle and El The setP is affinely dependgnt.
average computation tinf€ per realization are shown in Table 2, E2 The set{s1,...,sy_1} is affinely dependent.
where bold-face numbers indicate the best performance the E3® s, caff{{s1,....sn_1}\{sk}},Vk €Ty 1.

smallesté.,, or T') for a specific scenario gf and SNR. From this
table, it can be seen that HyperCSlI algorithm significantiyper-
forms all the other EEAs in terms @f.,, andT for almost all the
cases, especially for lower value of SNR or lower valug ofvhile
SISAL outperforms the other three EEAs for SNR20dB. These
results also indicate thdt = 10000 (typically several ten thousands

Then, to prove thaP; is affinely independent w.p.1, it suffices to
provePr{E1} = 0.

Next, let us show thaEl impliesE2. AssumeELl is true. Then
pi € aff{P\{psx}} for somek € Zn_1. Without loss of generality,
let us assumé = 1. Then,

in HRS applications) is large enough for the proposed algarito p1=02-pat- +On-1-PN-1, (26)
achieve the asymptotic performance as stated in Theorem 2. for somed;,i =2,..., N — 1, satisfying
. 0 oo+ 0Ono1 =1 27
Table 2. Performance comparison of the proposed HyperCSl algo- o ) 2t @7)
rithm and four state-of-the-art Craig-criterion-based®SE By substituting (25) into (26), we have
N—-1
ben (degrees) a1 ---QpN| s = (e 2R O - Sm.)- 28
Methods P SNR (dB T (seconds) [ ! N] ! mz;z [ ' N] ( ) ( )
20 25 [ 30 [ 35 | 40 - . ) .
08 1 287 T 238 150 124 | 118 Then, from the fact tha;{al,l.v. . ay } is affinely independent (cf.
MVC-NMF | 0.9 | 298 | 1.87 | 0.93 | 0.54 | 0.44 347.77 A L O sm)) =
AR AR AR AR (A3)) and;he fact thalN(Zm.:2 (Q sm)) = 1 (by (27) and the
0.8 | 1105 | 623 | 341 | 1.87 | 1.03 factthatlys,, = 1, V k), (28) implies
MVSA 09 | 11.58 | 6.46 | 3.48 | 1.90 | 1.05 3.18 —¢ P
1 | 1165 654 | 354 | 1.93 | 1.06 si=0x-S2+ - +0n_1-Sn-1,
0.8 | 1066 | 6.06 | 3.39 | 1oL | 1.16 ; : P ;
MVES 09 | 1017 | 606 | 348 | 197 | 112 27.97 which together wnh (27_) further implies th&2 is true. Thus we
1 9.95 | 596 | 355 | 2.19 | 1.30 have proved thaE1 impliesE2, and hence
0.8 | 401 | 231 | 1.30 | 0.72 | 0.39
SISAL | 09 | 419 | 2.43 | 136 | 0.74 | 0.40 0.69 Pr{E1} < Pr{E2}. (29)
1 | 449 | 259 | 145 | 0.79 | 0.42 - PP . _ _—
08 T 185 1281 09T 08T 039 As Dirichlet distribution |s]\z;1 contlr_luous multlvarlgte tlibution
HyperCSI | 0.9 | 1.34 | 0.90 | 0.61 | 0.44 | 0.31 0.43 [27] for a random vectos € R™ to satisfy(A1)-(A2) with an (N —
1 | 115 | 078 | 054 ] 037 0.26 1)-dimensional domain, any given affine hull C RY with affine
dimensionP must satisfy [21]
5. CONCLUSIONS Pr{scA}=0,if P<N—1 (30)
We have presented a new fast Craig-criterion-based EERdHl-  Moreover, ass, ..., sy _1} arei.i.d. random vectors and the affine
perCSil algorithm, given in Table 1, based on the convex gegyme Lyl aff {{s1,...,sn_1}\ {sk}} must have affine dimensioR <
concept—hyperplane. It has several remarkable charsiitsri N — 1, we have from (30) that
o |t never requires the presence of pure pixels in the data. Pr{E3"™W} =0, forallk € In_,. (31)
e Itis reproducible without involving random initializatio Then we have the following inferences:

e It estimates Craig’s minimum-volume simplex by finding only
N(N — 1) pixels (regardless of, cf. (16)) without involving 0 < Pr{E1} < Pr{E2}  (by(29))
any simplex volume computation, accounting for its high pam =Pr{UY ' E3"1  (by the definitions o2 andE3™"))
tational efficiency.

N—-1
e The estimated endmembers are guaranteed non-negativiheand < Z Pr{E3"™} = 0, (by the union bound and (31))
identified simplex was proven to be both Craig’s simplex aod t k=1

endmembers’ simplex & — oo for the noiseless case w.p.1.
P > P i.e.,Pr{E1} = 0. Therefore, the proof is completed. |
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