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ABSTRACT

This paper considers weighted sum rate maximization of multiuser
multiple-input single-output interference channel (MISO-IFC) un-
der outage constraints. The outage-constrained weighted sum rate
maximization problem is a nonconvex optimization problem and is
difficult to solve. While it is possible to optimally deal with this
problem in an exhaustive search manner by finding all the Pareto-
optimal rate tuples in the (discretized) outage-constrained achiev-
able rate region, this approach, however, suffers from a prohibitive
computational complexity and is feasible only when the number of
transmitter-receive pairs is small. In this paper, we propose a convex
optimization based approximation method for efficiently handling
the outage-constrained weighted sum rate maximization problem.
The proposed approximation method consists of solving a sequence
of convex optimization problems, and thus can be efficiently imple-
mented by interior-point methods. Simulation results show that the
proposed method can yield near-optimal solutions.

Index Terms— Multiuser interference channel, weighted sum
rate maximization, outage probability, convex optimization

1. INTRODUCTION
Recently, interference management for improving spectral efficiency
of wireless multiuser systems has been a research topic drawing
significant attention [1]. This paper considers the K-user multiple-
input single-output interference channel (MISO-IFC) where K
multi-antenna transmitters simultaneously communicate withK re-
spective single-antenna receivers over a common frequency band.
This MISO-IFC arises, for example, in multicell wireless systems
where each of the base stations is equipped with multiple antennas
and each mobile station has only one antenna. Under the assumption
that the transmitters have the perfect channel state information, and
that the receivers employ single-user detection, it has been shown
that transmit beamforming is an optimal transmission scheme to
attain the Pareto boundary of the achievable rate region of MISO-
IFC [2]. The structure of the Pareto-optimal beamforming schemes
has also been studied in [3, 4]. A game-theoretic approach for
MISO-IFC has been presented in [5].

This paper assumes that the channel coefficients are block-faded,
and that the transmitters know only the statistical distribution of the
channels. Specifically, each channel is assumed to be circularly
symmetric complex Gaussian distributed, with a covariance matrix
known to the transmitters. Under limited delay constraints and due
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to channel fading, the receivers’ performance may suffer from out-
age. Assuming that the transmitters employ transmit beamforming,
the achievable rate region of MISO-IFC under outage constraints
on receivers’ performance has been investigated in [6]. While this
outage-constrained achievable rate region is not known analytically
so far, it has been shown that this region can be found numerically
using an exhaustive search method [6]. This method, unfortunately,
has a complexity that increases exponentially with K(K − 1), and
therefore is not feasible in practice.

In this paper, we investigate efficient approaches to achieving
Pareto-optimal beamforming solutions that maximize the achievable
weighted sum rate. To this end, we study the design formulation that
maximizes the weighted sum rate subject to outage constraints and
individual power constraints. Due to the nonconvextity of the out-
age constraints, solving the weighted sum rate maximization prob-
lem is a challenging task. To efficiently deal with this problem, we
propose a sequential convex approximation method. The proposed
approximation method is conservative in the sense that the obtained
approximate beamforming solutions are guaranteed to be feasible
and satisfy the outage constraints of the original problem. Since the
proposed method only involves solving convex optimization prob-
lems, it can be efficiently implemented by interior-point methods in
a polynomial-time complexity [7]. The presented simulation results
show that the proposed approximation method can provide near-
optimal performance and outperform the existing maximum-ratio
and zero-forcing transmission strategies.

2. SIGNALMODEL AND PROBLEM STATEMENT

We consider the K-user MISO interference channel where each of
the transmitters has Nt antennas and all the receivers are equipped
with a single antenna. All the transmitters employ transmit beam-
forming to transmit information signals to their respective receivers.
Let si(t) denote the information signal sent from transmitter i, and
let wi ∈ C

Nt be the associated beamforming vector. The received
signal at receiver i is given by

xi(t) = h
H
iiwisi(t) +

K∑
k=1,k �=i

h
H
kiwksk(t) + ni(t), (1)

where hki ∈ C
Nt denotes the channel vector from transmitter k

to receiver i, and ni(t) is the additive noise of receiver i. The
noise ni(t) is assumed to be complex Gaussian distributed with zero
mean and variance σ2

i > 0, i.e., ni(t) ∼ CN (0, σ2
i ). Assuming

that si(t) ∼ CN (0, 1) and that the receivers decode the informa-
tion message using single-user detection (which treats the cross-
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link interference as noise), the achievable rate of the ith transmitter-
receiver pair is given by

ri
(
{hki}Kk=1, {wk}Kk=1

)
= log2

(
1 +

∣∣hH
iiwi

∣∣2∑
k �=i |hH

kiwk|2 + σ2
i

)
.

In this paper, we assume that the channel coefficients hki are
block-faded, and that the transmitters can only acquire the statistical
distribution of the channels. In particular, the elements of hki are
assumed to be circularly symmetric complex Gaussian distributed
with covariance matrix equal to Qki � 0 (positive semidefinite),
i.e., hki ∼ CN (0,Qki), for all k, i = 1, . . . ,K. Let Ri > 0 be
the target transmission rate of receiver i. Due to channel fading, the
receivers’ performance may suffer from outage; that is, it would have
a nonzero probability such that ri

({hki}Kk=1, {wk}Kk=1

)
< Ri. The

εi-outage achievable rate region is defined as follows:

Definition 1 [6] Let Pi > 0 denote the power constraint of trans-
mitter i, and let εi ∈ (0, 1] denote the maximum tolerable out-
age probability of receiver i, for i = 1, . . . ,K. The rate tuple
(R1, . . . , RK) is said to be achievable if

Pr
{
ri
(
{hki}Kk=1, {wk}Kk=1

)
< Ri

}
≤ εi, i = 1, . . . , K

for some (w1, . . . ,wK) ∈ W1 × · · · × WK where Wi � {w ∈
C

Nt | ‖w‖2 ≤ Pi}. The εi-outage achievable rate region is given by
R =

⋃
wi∈Wi,
i=1,...,K

{
(R1, . . . , RK)| Pr

{
ri
({hki}Kk=1, {wk}Kk=1

)
< Ri

}
≤ εi, i = 1, . . . ,K

}
.

Given the outage specifications ε1, . . . , εK , it is desirable to
optimize the beamforming vectors {wk}Kk=1 such that the system
can operate on the so-called Pareto boundary of the achievable rate
region R [6], with system utilities such as the (weighted) sum of
R1, . . . , RK being maximized. To this end, we consider the follow-
ing weighted sum rate maximization problem

max
wi∈C

Nt ,Ri≥0,
i=1,...,K

K∑
i=1

αiRi (2a)

s.t. Pr
{
ri
(
{hki}Kk=1, {wk}Kk=1

)
< Ri

}
≤ εi,

i = 1, . . . ,K, (2b)

‖wi‖2 ≤ Pi, i = 1, . . . ,K, (2c)

where αi ≥ 0 is the priority weight for the ith transmitter-receiver
pair. Solving problem (2) is challenging because the outage con-
straints in (2b) are difficult to handle. One possible approach to solv-
ing problem (2) is to first obtain a set of Pareto-optimal rate tuples
(R1, . . . , RK) by discretizingR using an exhaustive search method
reported in [6], followed by picking the one that corresponds to the
largest value of

∑K

i=1 αiRi. The complexity of this approach, how-
ever, increases exponentially with K(K − 1)1. In the next section,
based on convex approximation techniques, we present a suboptimal
approach for efficiently handling problem (2).

1The exhaustive search method in [6] samples the achievable rate region
R by discretizing the cross-link interference into a finite number of levels.
LetM be the number of discretization levels. This method then needs to list
a total number of MK(K−1) rate tuples, and finds the one with maximum
∑K

i=1 αiRi. For a rough case ofM = 10 andK = 3, this method requires
to search over 106 rate tuples, which is computationally prohibitive.

3. PROPOSED CONVEX APPROXIMATIONMETHOD

3.1. Closed-Form Expression of Outage Probability

While the probability constraints in (2b) seem intractable, there ac-
tually exist closed-form expressions. To show this, it is noted that
each of the probability in (2b) can be expressed as

Pr

{ ∣∣hH
iiwi

∣∣2∑
k �=i

|hH
kiwk|2 + σ2

i

< 2Ri − 1

}
(3)

which is the left tail probability of the ratio of the exponential ran-
dom variable |hH

iiwi|2 to the sum of independent exponential ran-
dom variables |hH

kiwk|2 for k �= i. According to [8, Appendix I],
(3) has a closed-form expression as

1− e

−(2Ri−1)σ2
i

w
H
i

Qiiwi

∏
k �=i

w
H
i Qiiwi

w
H
i Qiiwi + (2Ri − 1)wH

k Qkiwk

. (4)

Hence problem (2) can be equivalently represented by

max
wi∈C

Nt ,Ri≥0,
i=1,...,K

K∑
i=1

αiRi (5)

s.t. ρie
(2Ri−1)σ2

i

w
H
i

Qiiwi

∏
k �=i

(
1+

(2Ri − 1)wH
k Qkiwk

w
H
i Qiiwi

)
≤ 1,

‖wi‖2 ≤ Pi, i = 1, . . . , K,

where ρi � 1− εi. It can be seen that (5) is a nonconvex optimiza-
tion problem. Next, we show how to approximate problem (5) by a
convex optimization problem.

3.2. Proposed Convex Approximation Formulation
The approximation method to be presented is conservative, in the
sense that the obtained approximate solution is guaranteed to be fea-
sible to problem (2). To illustrate the proposed method, let us define

exki � Tr(WkQki), eyi � 2Ri − 1, (6a)

zi �
2Ri − 1

Tr(WiQii)
= eyi−xii , (6b)

Wi � wiw
H
i , (6c)

where xki, yi, zi ∈ R are introduced slack variables for k, i =
1, . . . ,K, and Tr(·) denotes the trace of a matrix. Substituting (6)
into (5) yields the following problem

max
Wi∈H

Nt ,Ri≥0,
xki,yi,zi∈R,
k,i=1,...,K

K∑
i=1

αiRi, (7a)

s.t. ρieσ
2
i
zi

∏
k �=i

(
1 + e−xii+xki+yi

) ≤ 1, (7b)

Tr(WkQki) ≤ exki , k ∈ Kc
i , (7c)

Tr(WiQii) ≥ exii , (7d)

2Ri ≤ eyi + 1, (7e)

eyi−xii ≤ zi, (7f)
Tr(Wi) ≤ Pi, (7g)
Wi � 0, rank(Wi) = 1, i = 1, . . . ,K, (7h)

3369



where Kc
i � {1, . . . ,K}\{i}, and (7h) is due to (6c). Notice that

we have replaced the equalities in (6a) and (6b) with inequalities as
in (7c) to (7f). It is not difficult to verify that all the inequalities in
(7c) to (7f) would hold with equalities at the optimum; otherwise a
larger optimal weighted sum rate can always be obtained. Therefore,
problem (7) is equivalent to problem (5).

One can see that the objective function and most of the con-
straints of problem (7) are convex, except the constraints in (7c)
and (7e), and the nonconvex rank-one constraints in (7h). Let
({w̄i}Ki=1, {R̄i}Ki=1) be a feasible point of problem (2). Define

x̄ki � ln(w̄H
k Qkiw̄k), k ∈ Kc

i , (8a)

ȳi � ln(2R̄i − 1), (8b)

for i = 1, . . . ,K. Then {{x̄ki}k �=i, ȳi}Ki=1 together with R̄i, x̄ii �

ln(w̄H
i Qiiw̄i), W̄i � w̄iw̄

H
i and z̄i � eȳi−x̄ii for i = 1, . . . ,K,

are feasible to problem (7). We aim to conservatively approximate
(7c) and (7e) with respective to the point {{x̄ki}k �=i, ȳi}Ki=1. Since
exki is convex, its first-order approximation at x̄ki, i.e., ex̄ki(xki −
x̄ki + 1), is a global underestimate of exki . Hence it is sufficient to
achieve (7c) by considering the following linear constraint

Tr(WkQki) ≤ ex̄ki(xki − x̄ki + 1), (9)

for k ∈ Kc
i . To approximate (7e), we consider the following lower

bound for eyi + 1:(
eyi

θi1(ȳi)

)θi1(ȳi)
(

1

θi2(ȳi)

)θi2(ȳi)

≤ eyi + 1, (10)

where θi1(ȳi) = eȳi/(eȳi + 1) and θi2(ȳi) = 1/(eȳi + 1). Equa-
tion (10) is obtained from the inequality of arithmetic and geometric
means. By (10), a sufficient condition for (7e) can be obtained as

(θi1(ȳi))
θi1(ȳi)(θi2(ȳi))

θi2(ȳi)e(ln 2)Ri−θi1(ȳi)yi ≤ 1, (11)

for i = 1, . . . , K, which are convex constraints. By replacing (7c)
and (7e) with (9) and (11), respectively, and by ignoring the noncon-
vex rank-one constraints in (7h), we obtain the following approxi-
mation formulation for problem (7):

max
Wi∈H

Nt ,Ri≥0,
xki,yi,zi∈R,
k,i=1,...,K

K∑
i=1

αiRi, (12)

s.t. ρieσ
2
i
zi

∏
k �=i

(
1 + e−xii+xki+yi

) ≤ 1,

Tr(WkQki) ≤ ex̄ki(xki − x̄ki + 1), k ∈ Kc
i ,

Tr(WiQii) ≥ exii ,

Θi(ȳi)e
(ln 2)Ri−θi1(ȳi)yi ≤ 1,

eyi−xii ≤ zi,

Tr(Wi) ≤ Pi, Wi � 0, i = 1, . . . ,K,

where Θi(ȳi) � (θi1(ȳi))
θi1(ȳi)(θi2(ȳi))

θi2(ȳi). Problem (12) is a
convex optimization problem; it can be efficiently solved by standard
convex solvers such as CVX [7].

The idea of removing the nonconvex rank-one constraints of
{Wi}Ki=1 in (12) is known as semidefinite relaxation (SDR) in con-
vex optimization theory [9]. SDR is in general an approximation
because the optimal {Wi}Ki=1 of problem (12) may not be of rank

one. Surprisingly, it is found that, for all the problem instances we
tested in simulations, problem (12) always yields rank-one optimal
solution, {Wi}Ki=1, i.e., Wi = wi(wi)

H for all i, provided that
Wi �= 0. This implies that an approximate beamforming solution to
(2) can be directly obtained by decomposing the optimal {Wi}Ki=1

of (12).

3.3. Sequential Convex Approximations
The formulation (12) is obtained by approximating problem (2) with
respect to the feasible point ({w̄i}Ki=1, {R̄i}Ki=1) [see (8)]. It is pos-
sible to further improve the approximation performance by solving
problem (12) iteratively with the optimal ({wi}Ki=1, {Ri}Ki=1) at the
current iteration used as the feasible point ({w̄i}Ki=1, {R̄i}Ki=1) for
the next iteration. The proposed sequential approximation algorithm
is summarized in the following Algorithm 1:

Algorithm 1 Proposed sequential convex approximation algorithm
for solving problem (2)
1: Input a feasible point ({w̄i}Ki=1, {R̄i}Ki=1) of problem (2), and
a solution accuracy δ > 0.

2: Obtain {{x̄ki}k �=i, ȳi}Ki=1 by (8) and obtain θi1(ȳi) =
eȳi/(eȳi + 1) and θi2(ȳi) = 1/(eȳi + 1) for i = 1, . . . , K.

3: Solve problem (12) to obtain the optimal beamforming matrices
{W�

i }Ki=1 and rates {R�
i }Ki=1.

4: Obtain w
�
i by decomposition of W�

i = w
�
i (w

�
i )

H for i =
1, . . . ,K.

5: Output the approximate beamforming solution (w�
1 , . . . ,w

�
K)

and achievable rate tuple (R�
1 , . . . , R

�
K) if |∑K

i=1 αiR
�
i −∑K

i=1 αiR̄i|/∑K

i=1 αiR̄i < δ; otherwise update w̄i := w
�
i

and R̄i := R�
i for all i, and go to Step 2.

A feasible point to initialize Algorithm 1 can be easily obtained
by some heuristic transmission strategies. For example, one can ob-
tain a feasible point ({w̄i}Ki=1, {R̄i}Ki=1) of problem (2) through the
simple maximum-ratio transmission (MRT) strategy. In this strategy,
the beamforming vectors {w̄i}Ki=1 are simply set to w̄i =

√
Piqi

where qi ∈ C
Nt , ‖qi‖ = 1, is the principal eigenvector of Qii for

i = 1, . . . ,K. For the ith transmitter-receiver pair, the associated
εi-outage achievable rate of MRT is given by the maximum R̄i that
satisfies the following inequality [see (5)]

ρie

(2R̄i−1)σ2
i

w̄
H
i

Qiiw̄i

∏
k �=i

(
1+

(2R̄i − 1)w̄H
k Qkiw̄k

w̄
H
i Qiiw̄i

)
≤ 1.

Analogously, one can also obtain a feasible point of (2) by the zero-
forcing (ZF) transmission strategy, provided that the column space of
Qii is not subsumed by the column space of

∑K

k �=i Qik , for all i =
1, . . . ,K. In the next section, we present some simulation results to
demonstrate the efficacy of the proposed approximation algorithm.

4. SIMULATION RESULTS AND DISCUSSIONS
In the simulations, we consider the multiuser MISO-IFC as de-
scribed in Section 2. For simplicity, all the receivers are assumed
to have the same noise power, i.e., σ2

1 = · · · = σ2
K � σ2, and all

the power constraints are set to one, i.e., P1 = · · · = PK = 1.
The channel covariance matricesQki were randomly generated. We
normalize the maximum eigenvalue of Qii, i.e., λmax(Qii), to one
for all i, and normalize λmax(Qki) to a value η ∈ (0, 1] for all
k ∈ Kc

i , i = 1, . . . ,K. The parameter η, thereby, represents the
relative cross-link interference level. If not mentioned specifically,
the ranks of Qki are all set to Nt. We consider the sum rate maxi-
mization problem by setting α1 = · · · = αK = 1 for problem (2),
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Fig. 1. Average achievable sum rate versus η for K = 2, Nt = 4,
and rank(Qki) = 4 for all k, i.

and set ε1 = · · · = εK = 0.1, i.e., 10% outage probability. For the
proposed approximation algorithm (Algorithm 1), we set δ = 10−2

and use CVX [7] to handle the associated problem (12). All the
simulation results were obtained by averaging over 500 trials.

In the first example, we examine the approximation accuracy
of the proposed method by comparing with the optimal sum rate
obtained by the exhaustive search method in [6]. Figure 1 shows the
simulation results of average achievable rate versus η for K = 2
and Nt = 4. The achievable rate of the simple TDMA scheme
is also shown in this figure. Firstly, one can see from this figure
that the sum rate achieved by the proposed method approaches that
of TDMA with increased η; TDMA exhibits a constant sum rate
for all η because there is no cross-link interference for this scheme.
Secondly, we observe that the proposed method can exactly attain the
average optimal sum rate for 1/σ2 = 0 dB and 1/σ2 = 10 dB. For
1/σ2 = 20 dB and for η ≥ 0.5 (interference dominated scenarios),
it can be observed that there is a small gap between the rate achieved
by the proposed method and the optimal rate. Nevertheless, this gap
is within 3% of the optimal sum rate on average.

In the second example, we compare the proposed method with
the MRT scheme and TDMA for Nt = K = 4. Figure 2 shows
the results of average sum rate versus 1/σ2. Note that, for the case
of K = 4, the exhaustive search method in [6] is too complex to
implement, and thus no result for the optimal sum rate is shown.
From Fig. 2, we can observe that the proposed method achieves the
highest sum rate among the three methods, no matter when η = 0.2
or η = 1. One can also see that, for η = 0.2 and 1/σ2 < 5 dB,
MRT can yield a sum rate comparable to the proposed method and
outperforms TDMA; whereas TDMA performs better for η = 1.

In order to compare with the ZF scheme, in the third example,
we extend the number of antennas to 8 (Nt = 8) and constrain the
ranks of all channel covariance matrices to 2. The simulation results
are shown in Fig. 3. As seen from this figure, the proposed method
still performs best compared to the other three schemes. On the other
hand, one can see that ZF can achieve a higher average sum rate than
TDMA, and also outperforms MRT for η = 1.
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