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Abstract— Physical-layer secrecy in wireless fading channels
has been studied extensively in recent years to ensure reliable
communication between the transmitter and the receiver subject
to constraints on the information attainable by the eavesdropper.
With multiple antennas at the transmitter, Goel and Negi
proposed the use of artificial noise (AN) in the null space of the
receiver’s channel to corrupt the eavesdropper’s reception, which
helps guarantee secrecy without knowledge of the eavesdropper’s
channel. It has been shown that the secrecy capacity can be made
arbitrarily large by increasing the transmission power, when
perfect knowledge of the receiver’s channel direction information
(CDI) is available. However, in practice, this is not possible due
to rate-limitations on the feedback channel. This paper studies
the impact of quantized channel feedback on the secrecy capacity
achievable with artificial noise. We show that, with imperfect CDI
at the transmitter, the AN that was originally intended only for
the eavesdropper may leak into the receiver’s channel and limit
the achievable secrecy rate. To maintain a constant performance
degradation, the number of feedback bits must increase at
least logarithmically with the transmission power. Moreover, we
observe that the portion of power allocated to the transmission of
AN should decrease as the number of quantization bits decreases
to alleviate the degradation due to noise leakage.

I. INTRODUCTION

Wireless networks have gained much popularity in recent

years due to its ease of accessibility and mobility. However,

owing to the broadcast nature of wireless media, wireless

transmissions are often susceptible to eavesdropping and,

therefore, the task of guaranteeing secrecy between legitimate

transmitters and receivers are quite important, but difficult.

In the past, these issues have mostly been addressed with

application-layer cryptography which faces challenges in de-

signing reliable encryption and key distribution algorithms.

Physical-layer secrecy was first introduced by Wyner [1]

in the so called wiretap channels which consist of a trans-

mitter, a legitimate receiver, and an eavesdropper. The notion

of secrecy capacity is defined as the maximum achievable

rate that the transmitter can reliably communicate with the

legitimate receiver without allowing the eavesdropper to re-

trieve any information from the communication. It has been

shown that, under perfect secrecy constraints, a non-zero
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secrecy capacity can be achieved in wireless environments

thanks to the channel fading characteristics. With advances

in multiple-input multiple-output (MIMO) technologies, the

secrecy capacity achievable in wireless channels have been

further enhanced with multiple antennas at the transmitters

and/or at the receivers, e.g., in [2]–[5].

In [5], Goel and Negi proposed the use of artificial noise

(AN) in the null space of the legitimate receiver’s channel

to disrupt the eavesdropper’s reception. It has been shown

that secrecy capacity can be made arbitrarily large by in-

creasing the transmission power, even without knowledge of

the eavesdropper’s channel at the transmitter. Yet, perfect

knowledge of the receiver’s channel direction information

(CDI) is required at the transmitter, although this is typically

not attainable in practice. Our main contribution in this paper

is then on the study of the impact of quantized CDI feedback

on guaranteeing secrecy when using AN. The intuition is that,

with only quantized CDI, the AN that was originally intended

against the eavesdropper may leak into the legitimate receiver’s

channel and degrade the achievable secrecy capacity.

The impact of quantized channel feedback on transceiver

design has been studied extensively in the literature for both

single user and multi-user MIMO systems (without the pres-

ence of eavesdroppers). See [6]–[8] and [9], [10], respectively.

Aiming at studying the effect of quantized channel feedback

on secrecy capacity, we consider the case where the CDI at

the transmitter is provided through a rate-limited feedback

channel from the legitimate receiver. The CDI is first quantized

into one of 2B vectors in a quantization code book, and

the corresponding index in the code book is sent back to

the transmitter. We assume that the transmitter has multiple

antennas but both the receiver and the eavesdropper have only

a single antenna. The secrecy message is beamformed to the

legitimate receiver according to the feedback quantized CDI,

and AN is generated in the associated null space. We see

that a significant decrease in secrecy capacity is observed due

to the leakage of AN into the legitimate receiver’s channel.

To maintain a constant signal-to-interference-plus-noise ratio

(SINR) degradation at the legitimate receiver, we show that the

number of feedback bits B must increase logarithmically with

the transmit power or linearly with the number of transmitter

antennas. Moreover, to achieve the optimal performance, the

power allocated to the transmission of AN should decrease as
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Figure 1. A network diagram consisting of a multi-antenna trans-
mitter, a single-antenna legitimate receiver and eavesdropper. With
the feedback CDI of the legitimate receiver, the transmitter transmits
the secrecy message along this channel direction together with some
artificial noise in its null space.

B decreases.

II. SYSTEM MODEL AND BACKGROUND

Consider a network that consists of a multiple-antenna

transmitter and a single-antenna legitimate receiver and eaves-

dropper, as shown in Figure 1. We assume that there are

nt antennas at the transmitter which transmits a data vector

x[m] ∈ Cnt at time m. The signals observed at the receiver

and the eavesdropper are respectively given by

yr[m] = hT
r x[m] + zr[m], (1)

ye[m] = hT
e x[m] + ze[m], (2)

where hr,he ∈ Cnt denote the channel vectors at the receiver

and eavesdropper, respectively, and zr[m] and ze[m] are inde-

pendent and identically distributed (i.i.d.) complex Gaussian

noise with zero mean and unit variance, i.e., zr[m], ze[m] ∼
CN(0, 1). The transmitted signal x[m] satisfies the average

power constraint

E
[
||x[m]||2

]
≤ P, (3)

where E[·] stands for the statistical expectation.

Suppose that the transmitter transmits a secret message

w with rate R using a length-n codeword. The transmitted

message w is assumed to be uniformly distributed within

the index set Wn = {1, 2, . . . , 2nR}. Each message is en-

coded into a length-n codeword {x[m]}n
m=1 and decoded

at the legitimate receiver based on the observed sequence

{yr[m]}n
m=1. With ŵ ∈ Wn being the decoded message, the

error event can be defined as En = {ŵ 6= w}. The information

obtained by the eavesdropper is measured by the equivocation

I(w; {ye[m]}n
m=1).

Definition 1 (Secrecy Capacity [3], [11]) A secrecy rate, R,

is achievable if there exists a sequence of (2nR, n) codes such

that Pr(En) → 0 and I(w; {ye[m]}n
m=1)/n → 0 as n → ∞.

The secrecy capacity, denoted by Csec, is the supremum of all

achievable secrecy rates, and is lower bounded by

Csec ≥ Csec,L , I(w; {yr[m]}n
m=1) − I(w; {ye[m]}n

m=1).
(4)

In [5], Goel and Negi proposed the use of artificial noise

(AN) as a method to guarantee secrecy without knowledge of

the eavesdropper’s channel he at the transmitter. Specifically,

this scheme proposes to transmit the signal along the direction

of the legitimate receiver’s channel hr while imposing AN in

the associated null space in order to corrupt the eavesdropper’s

reception. To illustrate this method, let us define

gr = hr/‖hr‖ (5)

as the channel direction information (CDI) of the legitimate

receiver. Suppose that the transmitter has perfect knowledge

of gr. In [5], the transmitted signal x[m] is proposed to be

x[m] = g∗
ru[m] + w[m], (6)

where {u[m]}n
m=1 is the transmitted codeword with u[m] ∼

CN(0, σ2
u), and w[m] is the imposed AN. Let column vectors

of Ng ∈ Cnt×(nt−1) be an orthonormal basis of the null space

of g∗
r , i.e., gT

r Ng = 0T . The AN is generated by taking

w[m] = Ngv[m], (7)

where v[m] is an (nt − 1) vector of i.i.d. complex Gaussian

random variables with distribution CN(0, σ2
v). As a result, the

signals observed at the legitimate receiver and the eavesdrop-

per can be expressed respectively as

yr[m] = hT
r g∗

ru[m] + zr[m], (8)

ye[m] = hT
e g∗

ru[m] + hT
e w[m] + ze[m]. (9)

According to (4), the secrecy capacity lower bound of (8)

and (9) can be obtained as

Csec,L = I(u; yr) − I(u; ye)

= log(1+E[
∣∣hT

r g∗
ru[m]

∣∣2])− log

(
1+

E[
∣∣hT

e g∗
ru[m]

∣∣2]
E[|hT

e w[m]|
2
]+1

)

= log(1 + ‖hr‖
2σ2

u)−log

(
1+

|hT
e g∗

r |
2σ2

u

‖hT
e Ng‖2σ2

v +1

)
. (10)

Notice that, since

E[‖x[m]‖2] = E[‖g∗
ru[m] + w[m]‖2]

= σ2
u + (nt − 1)σ2

v ≤ P, (11)

one can set σ2
u = αP , and σ2

v = (1−α)P
nt−1 . By maximizing (10)

over the value of 0 < α ≤ 1, the average secrecy capacity can

be lower bounded as

(E[Csec])
+
≥ max

0<α≤1

(
E

[
log(1 + ‖hr‖

2αP )

− log

(
1 +

|hT
e g∗

r |
2αP

‖hT
e Ng‖2(1 − α)/(nt − 1)P + 1

)])+

. (12)

Taking P → ∞, one can see that

lim
P→∞

(E[Csec])
+

= ∞, (13)

implying that high secrecy capacity can be achieved if the

transmit power P is large.
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III. SECRECY CAPACITY WITH IMPERFECT CDI

In [5], the use of AN was proposed by assuming that perfect

knowledge of the legitimate receiver’s CDI is available at the

transmitter. However, this is not achievable in practice due to

limitations in the feedback channel. In particular, the receiver

is limited to a finite number of feedback bits, say B, to the

transmitter, and thereby only the quantized version of CDI is

available at the transmitter. This section studies the impact of

limited channel feedback on the secrecy capacity. In the first

subsection, the secrecy capacity lower bound under quantized

CDI at the transmitter is derived. In the second subsection, the

performance degradation due to imperfect CDI is analyzed.

A. Secrecy Capacity with Quantized CDI

Following the studies on quantized channel feedback given

in [9] and [10] , we assume that the legitimate receiver knows

perfectly its own CDI but sends back only the quantization of

it to the transmitter. Specifically, suppose that the CDI gr is

quantized into one of 2B unit-norm channel vectors in the code

book C , {c1, c2, ..., c2B}, and the corresponding index is

sent back to the transmitter. The quantization vector is chosen

according to the minimum distance criterion [9] so that the

feedback index is given by

ℓ⋆ = arg max
ℓ=1,...,2B

|gH
r cℓ|. (14)

We define the quantized CDI vector as ĝr , cℓ⋆ and rewrite

the actual CDI vector as

gr = (ĝH
r gr)ĝr + ĝ⊥

r , (15)

where ĝ⊥
r is the projection of gr onto the orthogonal comple-

ment subspace of ĝr (thus (ĝ⊥
r )H ĝr = 0). Notice that gr can

also be expressed as

gr = ĝr cos θ + g̃r sin θ, (16)

where cos θ = |ĝH
r gr| (which basically approaches one as B

increases) and g̃r = (gr − ĝr cos θ)/ sin θ.

With the quantized CDI at the transmitter, it follows from

(6) and (7) and that the transmitted signal vector becomes

x[m] = ĝ∗
ru[m] + N̂gv[m], (17)

where N̂g ∈ Cnt×nt−1 contains an orthonormal basis of

the null space of ĝ∗
r (i.e., ĝT

r N̂g = 0T ). Hence, the signal

observed by the legitimate receiver is given by

yr[m] = (hT
r ĝ∗

r)u[m] + hT
r N̂gv[m] + zr[m]

= ‖hr‖(ĝ
H
r gr) · u[m]

+ ‖hr‖ sin θ ·
(
g̃T

r N̂gv[m]
)

+ zr[m], (18)

where in the second equality we have applied (15) and (16) to

the first and second terms, respectively. We observe from (18)

that the AN is leaked into the legitimate receiver’s channel,

thus degrading the achievable secrecy capacity. For this case,

the secrecy capacity lower bound can be shown to be

Ĉsec,L , log



1+
‖hr‖

2(cos θ)2 · αP

‖hr‖2 · (sin θ)2‖g̃T
r N̂g‖2

(
1−α
nt−1

)
P + 1





− log



1 +

∣∣hT
e ĝr

∣∣2 · αP

‖hT
e N̂g‖2

(
1−α
nt−1

)
P + 1



 . (19)

It is interesting to observe from (19) that, as P → ∞, Ĉsec,L

converges to a finite value given by

lim
P→∞

Ĉsec,L = log

(
1+

α(cos θ)2

‖g̃T
r N̂g‖2(sin θ)2(1 − α)/(nt − 1)

)

− log

(
1 +

|hT
e ĝr|

2α

‖hT
e N̂g‖2(1 − α)/(nt − 1)

)
(20)

because the amount of noise leakage also increases with P .

This is in strong contrast to the result in (13) and [5] where,

with perfect CDI, the secrecy capacity can be made arbitrarily

large by increasing P . Two remarks regarding the above

analysis are given as follows.

Remark 1 One can see from (19) and (20) that the optimal

value of α varies with the accuracy of the channel quantization

(i.e., the value of cos θ). In fact, as the number of feedback bits

B decreases, less power should be allocated to transmitting

AN since the noise leakage would be more severe. This will

be illustrated through computer simulations in Section IV.

Remark 2 From (10) and (19), one can see that, for a

fixed quantization accuracy, the difference between Csec,L and

Ĉsec,L goes to infinity as P → ∞. To keep this difference

a finite constant, intuitively the number of feedback bits B
should be increased along with the transmit power P . Indeed,

we will show in the next subsection that B has to be scaled up

at least logarithmically with P in order to maintain a constant

performance degradation.

B. Analysis of Performance Degradation

In the subsection, we first show that the average secrecy

capacity loss due to imperfect CDI

∆Csec,L , (E[Csec,L])+ −
(
E[Ĉsec,L]

)+

(21)

is upper bounded by a function which depends only on the

SINR at the legitimate receiver. Second, we show that B has

to be increased at least logarithmically with P or linearly with

nt in order to maintain a constant average SINR degradation.

To this end, it is noted from [9] that, for any two indepen-

dent and isotropically distributed unit-norm vectors w1,w2 ∈
Cnt , the inner product |wT

1 w2|
2 is a Beta-distributed random

variable with parameters (1, nt − 1), which is denoted by

β(1, nt − 1). The mean of the Beta random variable is

E[β(1, nt − 1)] = 1/nt. Since ĝr and he are independent
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and isotropically distributed in C
nt , we have in the second

term in (10) that

|hT
e ĝ∗

r |
2 = ‖he‖

2β(1, nt − 1). (22)

Similarly, with he being independent of each column of N̂g,

we can write that

∥∥∥hT
e N̂g

∥∥∥
2

= ‖he‖
2

nt−1∑

j=1

β(1, nt − 1). (23)

The above arguments hold also for the second term in (19).

Therefore, we observe that the second term in (10) and that

in (19) are identically distributed. Besides, one can easily see

that the first term in (10) is always greater and equal to that

in (19). Thus we can upper bound (21) as

∆Csec,L ≤ E[log(1 + ‖hr‖
2 · αP )]−

E

[
log



1+
‖hr‖

2(cos θ)2 · αP

‖hr‖2
∥∥∥g̃T

r N̂g

∥∥∥
2

(sin θ)2
(

P (1−α)
nt−1

)
+ 1




]
,

which implies that the worst secrecy capacity degradation is

caused only by the SINR decrease at the legitimate receiver.

It is worthwhile to remark that the above upper bound is tight

when (E[Ĉsec,L])+ > 0, which typically happens when P or

B is large. From the above analysis, we therefore investigate

the average ratio between the legitimate receiver’s SINR under

perfect CDI and that under quantized CDI, i.e.,

∆SINR = E




‖hr‖

2
∥∥∥g̃T

r N̂g

∥∥∥
2

(sin θ)2
(

1−α
nt−1

)
P + 1

(cos θ)2





≥ E




‖hr‖

2
∥∥∥g̃T

r N̂g

∥∥∥
2 (

1−α
nt−1

)
P

(cot θ)2



 . (24)

To further analyze (24), let us consider the quantization cell

approximation model used in [8]–[10], where it is assumed

that each quantization cell is a Voronoi region of a spherical

cap with surface area approximately equal to 2−B of the total

surface area of the nt-dimensional unit sphere. For a given

codebook C , {c1, c2, ..., c2B}, the quantization cell for each

vector, say ci, is given by

Ri = {gr : |gH
r ci|

2 ≥ |gH
r cj |

2, ∀j 6= i}. (25)

In the quantization cell approximation model, Ri is instead

approximated with

Ri ≈ {gr : |gH
r ci|

2 ≥ 1 − δ}, (26)

where δ = 2−
B

nt−1 so that Pr(Ri) = 2−B . With this approx-

imation model, the ‖hr‖
2, ‖g̃T

r N̂g‖
2 and cot θ in (24) are

statistically independent [9], and thus the SINR degradation

∆SINR can be lower bounded as

∆SINR ≥ E
[
‖hr‖

2
]
· E

[∥∥∥g̃T
r N̂g

∥∥∥
2
]

·
1

E [(cot θ)2]
·

(
(1 − α)P

nt − 1

)
, (27)

where we have applied Jensen’s inequality to the third term.

In addition, the probability density function of cot2 θ can be

shown to be [9]

fcot2 θ(x) =

{
2B(nt−1)
(x+1)nt

, x > δ−1 − 1,

0, 0 < x < δ−1 − 1,
(28)

and, for nt > 2, its expectation can be computed as

E[cot2 θ] =

[(
3 − nt

2 − nt

)
· 2

B

nt−1

]
− 1. (29)

Since both g̃r and each column of N̂g are isotropically

distributed in the (nt − 1)-dimensional null space of ĝr, we

have as in [10] that

∥∥∥g̃T
r N̂g

∥∥∥
2

=

nt−1∑

j=1

β(1, nt − 2) (30)

(i.e., sum of Beta-distribution random variables each with

parameters (1, nt − 2)), and hence

E

[∥∥∥g̃T
r N̂g

∥∥∥
2
]

= 1. (31)

Substituting (29) and (31) into (27) gives rise to

∆SINR ≥
E
[
‖hr‖

2
] (

1−α
nt−1

)
P

[(
3−nt

2−nt

)
· 2

B

nt−1

]
− 1

. (32)

By reordering the terms, we obtain for nt > 2,

B ≥ (nt −1)

[
log2

(
(1−α)P

nt − 1
·
E
[
‖hr‖

2
]

∆SINR
+1

)

− log2

(
3−nt

2−nt

)]
. (33)

Remark 3 Equation (33) shows that the number of feedback

bits B must increase with the order of O(log2 P ) in order

to maintian a constant SINR degradation. Moreover, since

E
[
‖hr‖

2
]

is proportional to nt, with fixed P and ∆SINR,

B must scale linearly with nt.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present simulation results to illustrate the

impact of quantized CDI feedback on the secrecy capacity. We

set the number of transmit antennas nt to 4, and the channel

vectors hr and he as i.i.d. complex Gaussian random variables

with zero mean and unit variance. The secrecy capacity lower

bound with perfect CDI and that with quantized CDI were

evaluated by (10) and (19), respectively. Given a number of

feedback bits B, the quantization code book proposed in [12]

was used in our simulation. The SNR was defined as the

transmit power P (SNR = P ), and each simulation result

was obtained by averaging over 1500 channel realizations.

Figures 2 and 3 present the simulation results of average

secrecy capacity lower bound (bits/pcu) versus α for SNR=
20 dB, and versus SNR for α = 0.9, respectively. The

average secrecy capacity loss due to imperfect CDI can be
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Figure 2. Simulation results of secrecy capacity lower bound versus
α with AN for SNR= 20 dB.

observed from these figures. From Figure 2, it is noticed that

the optimal α (which maximizes the secrecy capacity lower

bound) increases with decreased B. Moreover, we observe that

the performance is more sensitive to the value of α under

quantized CDI. From Figure 3, we can see that the secrecy

capacity lower bound with imperfect CDI is upper limited to

a ceiling with respective to SNR, in sharp contrast to that with

perfect CDI. To verify our analysis in Section III-B, simulation

results of average secrecy capacity lower bound versus SNR

for α = 0.9 is presented in Figure 4. Instead of being fixed, B
was increased with SNR according to (33) for both ∆SINR
equal to 1.5 and 3. The results without using AN (α = 1) were

also presented. As seen from this figure, the average secrecy

capacity loss due to imperfect CDI remains almost constant

for different SNR values. We can also observe from this figure

that the advantages of using AN for physical-layer secrecy is

still significant even with quantized CDI.

In summary, we have presented the effect of quantized

channel feedback on the secrecy capacity achievable using

AN. We have shown that the average secrecy capacity loss

depends only on the SINR at the legitimate receiver. More-

over, to maintain a constant SINR degradation, we have also

shown that the number of feedback bits must increase at least

logarithmically with the transmit power.
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