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Chi et al. recently proposed two effective non-cancellation multistage (NCMS) blind source separation algorithms, one using
the turbo source extraction algorithm (TSEA), called the NCMS-TSEA, and the other using the fast kurtosis maximization
algorithm (FKMA), called the NCMS-FKMA. Their computational complexity and performance heavily depend on the dimension
of multisensor data, that is, number of sensors. This paper proposes the inclusion of the prewhitening processing in the NCMS-
TSEA and NCMS-FKMA prior to source extraction. We come up with four improved algorithms, referred to as the PNCMS-
TSEA, the PNCMS-FKMA, the PNCMS-TSEA(p), and the PNCMS-FKMA(p). Compared with the existing NCMS-TSEA and
NCMS-FKMA, the former two algorithms perform with significant computational complexity reduction and some performance
improvements. The latter two algorithms are generalized counterparts of the former two algorithms with the single source
extraction module replaced by a bank of source extraction modules in parallel at each stage. In spite of the same performance
of PNCMS-TSEA and PNCMS-TSEA(p) (PNCMS-FKMA and PNCMS-FKMA(p)), the merit of this parallel source extraction
structure lies in much shorter processing latency making the PNCMS-TSEA(p) and PNCMS-FKMA(p) well suitable for software
and hardware implementations. Some simulation results are presented to verify the efficacy and computational efficiency of the
proposed algorithms.
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1. Introduction

Blind source separation (BSS) (or independent component
analysis), a problem to extract unknown sources only from
observations over multiple sensors, has received wide atten-
tion in many areas such as array signal processing, wireless
communications, and biomedical signal processing. There
have been a number of statistical BSS algorithms reported
in the open literature basically including algorithms using
second-order statistics (SOS) (known as correlations) [1–
3], algorithms using higher order statistics (HOS) (known
as cumulants) [4–18], and a variety of linear and nonlinear
algorithms using principles such as maximum-likelihood
method and maximum entropy [4, 5, 19], or using char-
acteristics and features of source signals and the mixing
matrix such as nonstationarity and nonnegativity or their
combinations [20–23]. SOS-based algorithms such as the

algorithm for multiple unkown signals extraction (AMUSE)
proposed by Tong et al. [2, 6], the second-order blind
identification (SOBI) algorithm proposed by Belouchrani
et al. [1], and the matrix-pencil approach proposed by Chang
et al. [3] generally require the sources to be temporally
colored and spatially uncorrelated with different power
spectra, while HOS-based algorithms generally require the
sources to be non-Gaussian though their power spectra are
allowed to be the same. The AMUSE and SOBI algorithms
further require P > K (P is the number of sensors, K is the
number of sources) and the noise correlation matrix given
or estimated in advance, while the matrix-pencil approach
requires P ≥ K instead of P > K without need of the noise
correlation matrix [3].

Among HOS-based BSS algorithms, the kurtosis (a
fourth-order cumulant) maximization criterion has been
thought of as an effective source separation criterion, for
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example, Hyvärinen and Oja’s fast fixed-point algorithm
(also called the FastICA) [11], Ding and Nguyen’s kurtosis
maximization algorithm (KMA) [15], Shalvi and Weinstein’s
superexponential algorithm (SEA) [13, 14] and Chi and
Chen’s fast kurtosis maximization algorithm (FKMA) [16].
The FKMA also makes use of the SEA [17] and therefore
shares the superexponential convergence rate, and mean-
while guarantees the convergence for finite data length and
finite signal-to-noise ratio (SNR). However, the smaller
the normalized kurtosis magnitude of the extracted source
signal, the worse the performance of these algorithms. Chi
and Peng recently proposed another BSS algorithm, called
the turbo source extraction algorithm (TSEA) [24], whose
performance is quite insensitive to the kurtosis magnitude
of the extracted source signal. To extract all the unknown
sources, a number of the BSS algorithms have been used
in conjunction with a multistage successive cancellation
(MSC) procedure for the extraction of all the unknown
sources in a one-by-one manner. This procedure, however,
is susceptible to error propagation accumulated at each stage
and thus limits the quality of extracted source signals at
later stages. To circumvent this error propagation problem,
Chi and Peng [24] further proposed a non-cancellation
multistage (NCMS) framework for FKMA and TSEA, named
the NCMS-FKMA and NCMS-TSEA, respectively. It has
been shown [24] that the NCMS-FKMA and NCMS-TSEA
significantly outperform their MSC-based counterparts as
well as some existing BSS algorithms which do not involve
any successive deflation procedure. However, the compu-
tational complexity and performance of both the NCMS-
TSEA and the NCMS-FKMA are heavily dependent on the
dimension of multisensor data (i.e., the number of sensors).

In the paper, the prewhitening processing which is
effective for dimension reduction and noise reduction is
performed prior to source separation using the NCMS-
TSEA and NCMS-FKMA, straightforwardly providing two
computationally improved algorithms, referred to as the
PNCMS-TSEA and the PNCMS-FKMA. The proposed
PNCMS-TSEA and PNCMS-FKMA benefit not only from
the prewhitening processing but also from their internal
computational complexity reduction resultant from the fact
that the mixing matrix is converted to a unitary mixing
matrix. Specifically, the column vector estimation of the
unknown mixing matrix and the computation of orthogonal
complimentary projection matrix required in NCMS-TSEA
and NCMS-FKMA can be substantially simplified in their
PNCMS counterparts.

Since the NCMS-based algorithms require K stages to
extract all of the K source signals, they would yield a long
processing latency when K is large. Aiming at reducing
the processing latency, we further develop two algorithms,
namely PNCMS-TSEA(p) and PNCMS-FKMA(p), that are
able to extract all the sources with the number of stages that
is much smaller than K (typically less than 3 for K ≤ 10).
The idea is to employ multiple source extraction modules
at each stage for parallel source extraction, and meanwhile
maintain the same source extraction performance. Thanks to
the unitary mixing matrix involved in the prewhitened data,
we find that column vectors of an arbitrary unitary matrix

Table 1: Mathematical notations.

0P P × 1 zero vector;

1P P × 1 all one vector;

IP P × P identity matrix;

∗ Convolution operator of
discrete-time signals;

E{·} Expectation operator;

‖ · ‖ Euclidean norm of vectors;

Superscript “T” Transpose of vectors or matrices;

R(B) Range space of matrix B;

rank(B) Rank of matrix B;

cum{z1, z2, z3, z4}
Fourth-order joint cumulant of
random variables z1, z2, z3 and
z4;

C4{z} = cum{z1 = z, z2 = z,
z3 = z, z4 = z} Kurtosis of random variable z;

SNR �
E{‖x[n]−w[n]‖2}/E{‖w[n]‖2} Signal-to-noise ratio.

can practically serve as a set of initial conditions (spatial
filters) for initializing iterative FKMAs or TSEAs operating
in parallel. As a result, the use of the parallel TSEA (FMKA)
source extraction modules in PNCMS-TSEA(p) (PNCMS-
FKMA(p)) can effectively extract most of the unknown
sources at each and every stage. In fact, the PNCMS-TSEA(p)
and PNCMS-FKMA(p) are, respectively, the generalized
counterparts of the PNCMS-TSEA and PNCMS-FKMA
since the former two algorithms reduce to the latter two
algorithms if they are artificially constrained to only one
source signal extraction at each stage. The performance and
computational complexity improvements of the proposed
PNCMS-TSEA and PNCMS-FKMA as well as the reduced
processing latency of the PNCMS-TSEA(p) and PNCMS-
FKMA(p) are verified by computer simulations.

The organization of the rest of this paper is as fol-
lows. In Section 2, we present the BSS problem and some
general model assumptions used. In Section 3, the exist-
ing FKMA, TSEA, NCMS-TSEA, and NCMS-FKMA are
briefly reviewed. After the presentation of the proposed
PNCMS-TSEA and PNCMS-FKMA in Section 4.1, their
parallel source extraction counterparts, PNCMS-TSEA(p)
and PNCMS-FKMA(p), are presented in Section 4.2. In
Section 5, some simulation results are then presented to
demonstrate the effectiveness and computational complexity
advantages of the proposed algorithms. Finally, some conclu-
sions are drawn in Section 6.

2. Problem Statement and Assumptions

For ease of later use, let us define the notations shown in
Table 1.

Given a set of P sensor measurements, denoted by a
P × 1 vector x[n] = [x1[n], x2[n], . . . , xP[n]]T, the BSS
problem is to extract K unknown source signals, denoted
by a K × 1 vector s[n] = [s1[n], s2[n], . . . , sK [n]]T, based on
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the following instantaneous (or memoryless) multiple-input
multiple-output (MIMO) model:

x[n] = As[n] + w[n]

=
K∑

k=1

aksk[n] + w[n],
(1)

where A = [a1, a2, . . . , aK ] is an unknown P × K mixing
matrix, and w[n] = [w1[n],w2[n], . . . ,wP[n]]T is a P × 1
noise vector. Here, x[n], A, s[n], and w[n] are assumed to
be real valued for simplicity. As made in [24], some general
assumptions for the MIMO system model in (1) are given as
follows.

(A1) The unknown P×K mixing matrix A is of full column
rank (i.e., P ≥ K and rank(A) = K), and K is known
a priori.

(A2) Each source signal sk[n], k ∈ {1, 2, . . . ,K}, is a non-
Gaussian causal linear process, that is, sk[n] can be
modeled as the output of a causal stable linear time-
invariant system bk[n] as follows:

sk[n] = bk[n]∗ uk[n]

=
∞∑

m=0

bk[m]uk[n−m],
(2)

where uk[n] is a stationary, zero-mean, non-
Gaussian, independent, and identically distributed
(i.i.d.) process with a nonzero kurtosis given by [25]

C4
{
uk[n]

} = cum
{
uk[n],uk[n],uk[n],uk[n]

}

= E
{∣∣uk[n]

∣∣4}− 3
(
E
{∣∣uk[n]

∣∣2})2
.

(3)

The uk[n], k = 1, . . . ,K , are mutually statistically
independent.

(A3) The noise w[n] is zero-mean Gaussian and is statisti-
cally independent of s[n].

Let v be a P× 1 source extraction filter (a spatial filter) for
processing the signal x[n]. Then the filter output is given by

e[n] = vTx[n]. (4)

Source separation algorithms are essentially developed for
designing a set of K source extraction filters, each of which
extracts a distinct source signal. Next, let us briefly review
the FKMA proposed by Chi and Chen [16, 17], the TSEA,
the NCMS-FKMA, and the NCMS-TSEA proposed by Chi
and Peng [24], respectively.

3. Review of FKMA, TSEA, NCMS-FKMA,
and NCMS-TSEA

3.1. FKMA [16]. The FKMA is an iterative algorithm for
finding the optimum spatial filter v by maximizing the
magnitude of normalized kutosis of e[n] [12, 15]:

J(v) = J(e[n]) =
∣∣C4{e[n]}∣∣
(
E
{∣∣e[n]

∣∣2})2 . (5)

With the assumptions (A1) and (A2) and the noise-free
assumption, the optimum spatial filter v is able to extract
one of the K source signals, that is, e[n] = αksk[n] for some
k ∈ {1, 2, . . . ,K}, where αk is an unknown nonzero constant.
At the ith iteration, this algorithm updates

v(i) = R−1
x d

(
e(i−1)[n]

)
∥∥R−1

x d
(
e(i−1)[n]

)∥∥ (6)

(basically with superexponential convergence rate), where
Rx = E{x[n]xT[n]} is the correlation matrix of x[n],
e(i−1)[n] = (v(i−1))Tx[n] and

d
(
e(i−1)[n]

) = cum
{
e(i−1)[n], e(i−1)[n], e(i−1)[n], x[n]

}

= E
{(
e(i−1)[n]

)3
x[n]

}− 3E
{∣∣e(i−1)[n]

∣∣2}

× E{e(i−1)[n]x[n]
}
.

(7)

In case of J(v(i)) < J(v(i−1)), a gradient-type algorithm is
used to update v(i) instead. This iterative algorithm stops
when a preassigned convergence tolerance is reached. The
computational load of the FKMA is determined by the total
number of iterations spent and the dimension of x[n].

3.2. TSEA [24]. The TSEA is a cyclically iterative
spatial-temporal processing algorithm which maximizes
J(vTSEA[n]) = J(ε[n]), where

vTSEA[n] = vg[n],

ε[n] = vT
TSEA[n]∗ x[n] = vT

( L∑

m=0

g[m]x[n−m]

)
,

(8)

in which g[n] is a single-input single-output temporal filter
of order equal to L, that is, g[n] /= 0, n = 0, . . . ,L. At the ith
cycle, the TSEA consists of the following two steps.

(S1) Compute y(i−1)[n] = g(i−1)[n] ∗ x[n] followed by
processing y(i−1)[n] using the FKMA(s) (with v(i−1) as
the initial condition) to obtain the optimum spatial
filter v(i) and ε[n] = (v(i))Ty(i−1)[n]. The superscript
“(s)” in FKMA(s) indicates that the FKMA is used for
the design of the spatial filter v.

(S2) Compute e[n] = (v(i))Tx[n] and then find the
optimum temporal filter gi = [g(i)[0], g(i)[1], . . . ,
g(i)[L]]T using the FKMA(t) (with gi−1 as the initial
condition) and obtain ε[n] = e[n]∗g(i)[n] = gT

i e[n],
where e[n] = [e[n], e[n − 1], . . . , e[n − L]]T. The
superscript “(t)” in FKMA(t) indicates that the FKMA
is used for the design of the temporal filter g[n].

As the TSEA converges, e[n] is the estimate of a source
signal sk[n]. Note that the temporal filter g[n] is used to
transform the original source signal sk[n] into a temporally
processed source signal g[n] ∗ sk[n] with larger normalized
kurtosis magnitude (and meanwhile reduce the normalized
kurtosis magnitude of g[n] ∗ si[n] for all i /= k), and that
if g[n] = δ[n] (i.e., no temporal processing involved) and
(S2) is removed at each cycle, the TSEA reduces to the
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FKMA. Therefore, the TSEA outperforms the FKMA. For
extraction of all the unknown sources without involving
any successive cancellation processing, the NCMS-TSEA and
NCMS-FKMA have been proposed in [24] and are briefly
reviewed in the next subsection.

3.3. NCMS-TSEA and NCMS-FKMA [24]. The NCMS-
TSEA is a non-cancellation multistage source separation
algorithm which, at stage �, extracts a distinct source signal
estimate, denoted by e�[n], and obtains the associated
column vector estimate of A, denoted by a� . Let C� =
[a1, a2, . . . , a�−1] and let C⊥� be a P × P projection matrix
for which R(C⊥� ) is orthogonal to R(C�). The NCMS-TSEA
includes the following steps.

(T1) Set � = 0, C⊥1 = IP and x1[n] = x[n].

(T2) Update � by �+1. If � ≥ 2, obtain C⊥� through singular
value decomposition (SVD) of C� , and compute the
projected data x�[n] = C⊥� x[n] (which basically
consists of all the contributions associated with the
sources that have not yet been extracted).

(T3a) Source extraction with x�[n] (constrained source
extraction). Obtain vTSEA[n] = υ�g�[n], ε�[n] =
vT

TSEA[n] ∗ x�[n], and e�[n] = υT
� x�[n] using the

TSEA. Then estimate the associated column vector
in the mixing matrix by the input-output-cross-
correlation (IOCC) method [16], that is,

a� =
E
{

x[n]e�[n]
}

E
{∣∣e�[n]

∣∣2} (9)

and obtain

v� = C⊥� υ� . (10)

(T3b) Source extraction with x[n] (unconstrained source
extraction). Obtain the optimum vTSEA[n] = vg[n],
ε�[n] = vT

TSEA[n] ∗ x[n], and e�[n] = vTx[n] using
the TSEA (with v� and g�[n] obtained in (T3a) as the
initial conditions for v and g[n], resp.).

(T4) If � < K , go to (T2); otherwise, all the source signal
estimates {e�[n], � = 1, 2, . . . ,K} have been obtained.

The NCMS-FKMA is nothing but a special case of the
NCMS-TSEA, where the TSEA is replaced by the FKMA
in (T3a) and (T3b). The latter outperforms the former
simply because the TSEA performs better than the FKMA.
It should be mentioned that the NCMS-TSEA and NCMS-
FKMA exhibit better performance than their counterparts
involving MSC procedure because they are free from error
propagation [24].

4. Improvements of NCMS-TSEA and
NCMS-FKMA by Prewhitening

In the section, we present the PNCMS-TSEA and PNCMS-
FKMA by incorporating the prewhitening processing in
the NCMS-TSEA and NCMS-FKMA, respectively. The

prewhitening processing transforms the P × K mixing
matrix A into a K × K unitary mixing matrix. As we
will show in the first subsection that this simple prepro-
cessing not only can reduce the computational load in
source extraction that follows but also can improve the
source extraction performance. In the later subsections,
we further present a parallel implementation counterpart
for the PNCMS-TSEA (PNCMS-FKMA), referred to as
the PNCMS-TSEA(p) (PNCMS-FKMA(p)), that is able to
extract multiple unknown sources in parallel at each stage
and thus able to significantly shorten the processing latency.

4.1. NCMS-TSEA with Prewhitening (PNCMS-TSEA). In the
subsection, let us present the PNCMS-TSEA and PNCMS-
FKMA that share the advantages of dimension reduction and
noise reduction together with further internal computational
complexity reduction over the NCMS-TSEA and NCMS-
FKMA. The idea is motivated by the following lemma.

Lemma 1. Suppose that the mixing matrix A in x[n] given
by (1) is a unitary matrix (i.e., P = K and AAT = IK ) and
that the assumptions (A1), (A2) and the noise-free assumption
hold. Then the optimum source extraction filter v by finding a
local maximum of J(v) (see (5)) is given by v = ±ak for some
k ∈ {1, 2, . . . ,K}, and the associated extracted source signal is
e[n] = vTx[n] = ±sk[n].

The proof of Lemma 1 is presented in the Appendix. This
lemma implies that when the mixing matrix A is a unitary
matrix, the optimum source extraction filter v itself provides
an estimate of the column vector ak associated with the
extracted source sk[n], and thereby the estimation of ak in
(T3a) of the NCMS-TSEA is not needed any more. Moreover,
step (T2) in the NCMS-TSEA can be fulfilled without SVD.
By Lemma 1, one can simply set C� = [v1, v2, . . . , v�−1] which
is a semiunitary matrix (i.e., (C�)

TC� = I�−1), and thus the
corresponding C⊥� is given by [26]

C⊥� = IK − C�CT
� . (11)

Fortunately, the widely used prewhitening processing
through eigenvalue decomposition of the correlation matrix
Rx = E{x[n]xT[n]} for both dimension reduction and noise
reduction of x[n] can transform the P × K mixing matrix
A into a K × K unitary matrix [9, 11]. With the above
computational reduction, noise reduction, and the removal
of column vector estimation and SVD in NCMS-TSEA, the
proposed PNCMS-TSEA is summarized as follows.

(P1) Prewhitening. Obtain the prewhitening matrix

W = [h1/
√

(λ1 − σ̂2
w), . . . , hK/

√
(λK − σ̂2

w)]T, where
λ1, . . . , λK are the K largest eigenvalues of Rx and
h1, . . . , hK are the associated eigenvectors. The noise
variance estimate σ̂2

w is obtained as the average of the
other P − K eigenvalues of Rx. Update x[n] by the
prewhitened data Wx[n] (K × 1 vector).

(P2) Set � = 0, C⊥1 = IK and x1[n] = x[n].
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(P3) Update � by � + 1. If � ≥ 2, calculate C⊥� using (11),
where C� = [v1, v2, . . . , v�−1] and then obtain the
projected data x�[n] = C⊥� x[n].

(P4) Perform source extraction with the projected data
x�[n] as in (T3a) followed by source extraction with
x[n] as in (T3b) of the NCMS-TSEA to obtain v�
(normalized by ‖v�‖ = 1) and e�[n].

(P5) If � < K , go to (P3); otherwise, all the source signal
estimates {e�[n], � = 1, 2, . . . ,K} have been obtained.

Three remarks about the proposed PNCMS-TSEA are as
follows.

(R1) The proposed PNCMS-TSEA basically extracts all
the sources through the same signal processing
procedure as the NCMS-TSEA except that (P3) for
the former is much simpler than (T2) for the latter
at each stage, and meanwhile the SVD is not needed
in (P3) and no column vector estimation of the
mixing matrix is involved in (P4). The inclusion
of the prewhitening processing (P1) for the former
substantially reduces the computational complexity
because the major processing involving FKMA in
(P4) is dependent upon the dimension K of the
prewhitened data instead of the dimension P (≥K)
of the original data, especially when P 	 K . The
extra computational load due to the prewhitening
processing in (P1) is negligible compared with the
amount of computation load reduction in source
extraction.

(R2) The performance of the proposed PNCMS-TSEA is
basically similar to that of the NCMS-TSEA because
the former can be thought of as a more efficient
implementation based on the same source sepa-
ration criterion (kurtosis maximization). However,
some performance improvements of the proposed
PNCMS-TSEA over the NCMS-TSEA can still be
gained for low SNR because twofold noise reduction
is performed: Prewhitening processing and source
extraction in lower dimension space.

(R3) With the TSEA used in (P4) replaced by the FKMA,
the proposed PNCMS-TSEA reduces to the one,
called the PNCMS-FKMA. The performance of the
former is also superior to the latter simply due to the
better performance of the TSEA over the FKMA.

4.2. PNCMS-TSEA and PNCMS-FKMA with Parallel Source
Separation Structure. Since the NCMS algorithms extract
only one source at each stage, the total number of stages
spent by the NCMS algorithms for extracting all the source
signals equals the total number of unknown sources. If K
is large, a long processing latency is apparently inevitable.
In order to reduce the processing latency, in the subsection,
by making use of a parallel source extraction structure
for the PNCMS-TSEA and PNCMS-FKMA we propose
two more algorithms, referred to as the PNCMS-TSEA(p)
and PNCMS-FKMA(p), respectively. The PNCMS-TSEA(p)
(PNCMS-FKMA(p)) basically has the same performance as

the PNCMS-TSEA (PNCMS-FKMA), but at each stage the
former uses multiple TSEA (FKMA) modules in parallel
for multiple source extractions followed by source signal
classification. The parallel source extraction will be shown
to be effective in cutting down the total number of stages
in extracting all the source signals and thus effective in
shortening the processing latency.

4.2.1. Initial Conditions for Parallel Source Extraction. Prior
to presenting the proposed PNCMS-TSEA(p) in detail, let us
first address the idea of how to efficiently extract as many
distinct source signals as possible via the use of parallel
TSEA modules at each stage. Since different initial conditions
for the spatial filter v to initialize either FKMA or TSEA
may result in different source signals to be extracted, this
fact implies the need of proper initial conditions for each
TSEA module. Thanks to the prewhitening processing which
transforms the mixing matrix A into a unitary matrix, we
empirically found that K distinct initial conditions taken
from the K columns of an arbitrary K × K unitary matrix
can end up with distinct source signals to be extracted with
a high fraction of K . To illustrate this, given a K × K unitary
mixing matrix A = [a1, . . . , aK ] we define a K × K matrix
B = [b1, . . . , bK ] in which

b j = arg max
a∈A

vT
j a = arg min

a∈A

∥∥v j − a
∥∥2

, j = 1, 2, . . . ,K ,

(12)

where

A = {± a1, . . . ,±aK
}

, (13)

and V = [v1, . . . , vK ] is an arbitrary K × K unitary matrix.
Then the column vector b j represents the column vector
in A that is closest to v j . Hence by maximizing J(v) with
v j as the initial condition, the optimum spatial filter v may
well converge to b j implied by Lemma 1 and the associated
output ej[n] = bT

j x[n] ∈ {±s1[n], . . . ,±sK [n]}. Therefore,
one can anticipate that the larger the number of distinct
column vectors in B, the larger the number of distinct source
signals that will be extracted by K TSEA (or FKMA) modules
operating simultaneously. In order to get some idea about
the average number of distinct column vectors in B, denoted
as d(B), let us present some simulation results for a given
K × K unitary matrix A for the cases of K = 2, 3, . . . , 10. For
each K × K mixing matrix A, 105 unitary matrices V were
randomly generated and the associated matrices B in (12)
were calculated. Table 2 lists the obtained simulation results
of d(B).

From Table 2, it can be observed that there are larger
than 80% distinct columns in B on average for K ≤ 10,
indicating that the use of the K columns of an arbitrary
K × K unitary matrix to simultaneously initialize a bank
of K TSEA (or FKMA) modules may well yield over 80%
distinct sources extracted in the first stage, and thus less than
20% unknown source signals are yet to be extracted at later
stages. From these simulation results, one can expect that if
at each stage a bank of TSEA (or FKMA) modules is used
(each initialized by a column vector of an arbitrary unitary
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Table 2: Average number of distinct columns in B, d(B), for K = 2 to K = 10.

K 2 3 4 5 6 7 8 9 10

d(B) 2 2.8499 3.6517 4.447 5.2262 5.9683 6.7247 7.469 8.181

d(B)/K (%) 100 95 91.29 88.94 87.1 85.26 84.06 82.99 81.81

matrix), the total number of stages required to extract all of
the source signals can be appreciably reduced, thus effectively
reducing the processing latency.

Now let us elaborate upon the parallel NCMS structure
of PNCMS-TSEA(p). Suppose that before stage �, there have
been i(�) distinct source signals already extracted, and thus
at stage � there are

k(�) = K − i(�) (14)

source signals yet to be extracted. Let

C� =
[

C�−1 C′�−1
]
, (15)

where C′�−1 contains the spatial filters that are obtained at
stage � − 1 and C�−1 contains all the obtained spatial filters
before stage �−1. As illustrated in Figure 1, for the projected
data x�[n] = C⊥� x[n] at stage �, the proposed PNCMS-
TSEA(p) employs k(�) parallel TSEA modules each using a
distinct column vector of an arbitrary K × K unitary matrix
as the initial condition to obtain k(�) source signal estimates.
Denote by υ′r , r = 1, . . . , k(�), the k(�) source extraction
filters and let v′r = C⊥� υ

′
r (by (10)) for r = 1, . . . , k(�). Since

the k(�) extracted sources may not be distinct altogether,
they are needed to identify those source signal estimates and
spatial filters associated with distinct sources. To this end,
a source classification algorithm that follows the k(�) TSEA
modules as shown in Figure 1 is presented next.

4.2.2. Source Signal Classification. According to Lemma 1,
the obtained spatial filters v′r , r = 1, . . . , k(�) are also the
estimates of the column vectors of the unknown unitary
mixing matrix A. Consider the spatial filters v′i and v′j that
maximize J(e[n] = vTx[n]) with the respective outputs given
by

ei[n] = (v′i
)T

x[n], (16)

ej[n] = (v′j
)T

x[n]. (17)

Under the assumptions (A1), (A2) and the noise-free
assumption, the correlation of ei[n] and ej[n] is given by

E
{
ei[n]ej[n]

} = (v′i
)T
E
{

x[n]xT[n]
}

v′j

= (v′i
)T
( K∑

k=1

γkakaT
k

)
v′j

=
K∑

k=1

γk
((

v′i
)T

ak
)(

aT
k v′j

)
,

(18)

where γk = E{|sk[n]|2}, k = 1, . . . ,K , are the source signal
powers. Since v′i , v′j ∈A (see (13)) by Lemma 1 and all ak are
orthonormal to each other, (18) implies that

E
{
ei[n]ej[n]

} =
{

0 if v′i /= ± v′j
±γi if v′i = ±v′j .

(19)

Therefore, the distinct extracted source signals can be iden-
tified according to the pairwise correlation of v′1, . . . , v′k(�).

In other words, if |(v′i )
Tv′j| > η (a threshold between

0 and 1), ei[n], and ej[n] are actually estimates of the
same source signal. With our experience, η = 0.5 is a
good choice for signal classification. Based on the above
analysis, we present a source signal classification algorithm
in Table 3, where j(�) represents the number of distinct
source signals among the k(�) extracted sources, and
(v1, g1[n]), (v2, g2[n]), . . . , (v j(�), gj(�)[n]) are the associated
spatial filters and temporal filters. Note that the compu-
tational load for source signal classification is negligible
compared with source extraction. As illustrated in Figure 1,
the PNCMS-TSEA(p) at stage � ends up with the j(�)
unconstrained source extractions using j(�) parallel TSEA
modules with (v1, g1[n]), (v2, g2[n]), . . . , (v j(�), gj(�)[n]) as
the initial conditions. The PNCMS-TSEA(p) then repeats
the above processing procedures (namely, k(�) parallel TSEA
source extractions with the projected signal x�[n], source
classification and j(�) parallel TSEA source extractions with
the nonprojected signal x[n]) stage by stage until all the K
source signals are extracted.

4.2.3. The Proposed PNCMS-TSEA(p). Here let us summa-
rize the detailed steps of the proposed PNCMS-TSEA(p) as
follows.

(F1) Prewhitening. Obtain prewhitening matrix W and
then update x[n] by the prewhitened data Wx[n] as
in (P1) of the PNCMS-TSEA.

(F2) Set i(0) = j(0) = � = 0, C⊥1 = IK and x1[n] = x[n].

(F3) Update � by � + 1, set i(�) = i(� − 1) + j(� − 1) (total
number of sources having been extracted) and k(�) =
K−i(�) (number of sources yet to be extracted). If � ≥
2, obtain C� and C⊥� using (15) and (11), respectively,
and then obtain the projected data x�[n] = C⊥� x[n].

(F4a) Parallel source extractions with the projected data
x�[n]: obtain k(�) pairs of spatial and temporal filters
{(υ′r , g′r [n]), r = 1, . . . , k(�)} by using the k(�) TSEA
modules in parallel with the initial condition pairs
{(υ(0)

r , g(0)[n]), r = 1, . . . , k(�)}, where υ(0)
r , r =

1, . . . , k(�) are randomly selected k(�) columns of an
arbitrary K × K unitary matrix and g(0)[n] = δ[n].
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�
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PNCMS-TSEA(p):
i(�) = i(� − 1) + j(� − 1)

k(�) = K − i(�)

PNCMS-TSEA:
i(�) = � − 1
k(�) = 1

x�[n]

υ
(0)
1
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υ′1

g′1[n]

υ
(0)
2

TSEA
υ′2

g′2[n]

...

υ
(0)
k(�)

TSEA
υ′k(�)

g′k(�)[n]

g(0)[n] = δ[n]

...

· · ·

g1[n]
v1

Source signal
classification

(Table 3)

C⊥�

...

...

TSEA

TSEA

ei(�)+1[n]

ei(�)+ j(�)[n]

gj(�)[n]
v j(�)

C′� = [v1, · · · , v j(�)]

Figure 1: The source extraction processing of the proposed PNCMS-TSEA(p) and PNCMS-TSEA at stage �.

Given: the obtained pairs of spatial and temporal filter

(v′r = C⊥
� υ

′
r , g

′
r [n]), r = 1, . . . , k(�), and a threshold η > 0.

Step 1: Set p = 0, S = {(v′r , g
′
r [n]), r = 1, . . . , k(�)}

and S1 = {v′r , r = 1, . . . , k(�)}.
Step 2: Update p by p + 1. If p ≥ 2, Sp = S1 \ {C1 ∪ · · · ∪Cp−1}.
Step 3: Choose an arbitrary reference spatial filter

up ∈ Sp. Then find the set

Cp =
{

v | v ∈ Sp,
∣∣uT

pv
∣∣ > η

}
.

Step 4: Obtain the pair (vp, gp[n]) ∈ S where

vp = arg max
v∈Cp

{
J
(
e[n] = vTx�[n]

)}
.

Step 5: Repeat Step 2 to Step 4 until
⋃p
i=1Ci = S1,

where j(�) = p is the total number of distinct sources.

Table 3: Source signal classification algorithm.

(F4b) Obtain the pairs of spatial and temporal filters
{(vr , gr[n]), r = 1, . . . , j(�)} using the source signal
classification algorithm in Table 3 and set C′� =
[v1, . . . , v j(�)], where j(�) is the number of distinct
sources extracted at stage �.

(F4c) Parallel source extractions with the prewhitened data
x[n] obtained in (F1): obtain ei(�)+1[n], ei(�)+2[n], . . . ,
ei(�)+ j(�)[n] by using j(�) TSEA modules in parallel
with the pairs {(vr , gr[n]), r = 1, . . . , j(�)} as the
initial conditions.

(F5) If i(�) + j(�) < K , go to (F3); otherwise, all the source
signal estimates {eq[n], q = 1, 2, . . . ,K} have been
obtained.

Five remarks about the proposed PNCMS-TSEA(p) are
given as follows.

(R5) The proposed PNCMS-TSEA(p) basically extracts
all the sources through the parallel NCMS sig-
nal processing and shares the same performance
and computational complexity advantages of the
PNCMS-TSEA due to the prewhitening processing as
described in (R1) and (R2).

(R6) The proposed PNCMS-TSEA(p) reduces the process-
ing latency in separation of all the K source signals
since it can simultaneously extract as many distinct
sources as possible at each stage in contrast to a single
source extracted by the NCMS-TSEA/PNCMS-TSEA
at each stage. Specifically, for the scenario within ten
sources (K ≤ 10), we empirically found that all of the
sources can be extracted within 3 stages.

(R7) With the TSEA used in (F4a) and (F4c) replaced by
the FKMA and all the temporal filters gr[n] ignored in
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the source classification algorithm used in (F4b), the
proposed PNCMS-TSEA(p) reduces to the PNCMS-
FKMA(p), and again the former is superior to the
latter owing to the superior performance of TSEA.

(R8) The proposed PNCMS-TSEA (PNCMS-FKMA) can
also be thought of as a special case of the proposed
PNCMS-TSEA(p) (PNCMS-FKMA(p)). In particu-
lar, by setting k(�) = 1 and i(�) = � − 1 at (F3),
the PNCMS-TSEA(p) reduces to the PNCMS-TSEA
presented in Section 4.1, that is, the bank of parallel
source separation modules in Figure 1 is replaced by
a single source separation module.

(R9) The proposed parallel NCMS structure is not limited
to the use with the FKMA and the TSEA. Instead, it
can be used with any BSS algorithms which basically
extract one source at each stage, such as the KMA
[13] and the SEA [12], to avoid the error propagation
issue in multistage source deflation on one hand,
and reduce the processing latency on the other hand.
The FastICA [11], though extracting one source at
each stage, cannot be directly applied to the proposed
parallel NCMS structure because from the second
stage (� ≥ 2), the projected signal

x�[n] = C⊥� x[n] = C⊥� As[n] (20)

involves a mixing matrix C⊥� A which is no longer a unitary
matrix required by FastICA. Therefore, the FastICA cannot
be used unless further prewhitening processing is applied to
x�[n].

5. Simulation Results

To justify the efficacy of the proposed BSS algorithms, namely
the PNCMS-TSEA, PNCMS-FKMA, PNCMS-TSEA(p), and
PNCMS-FKMA(p), three parts of simulation results are
presented in the section. The first part considers the
performance comparison of the proposed BSS algorithms
with the existing NCMS-TSEA and NCMS-FKMA for
the case of all the source signals with the same power
spectrum. The second part focuses on the performance
comparison of the proposed BSS algorithms with the existing
FastICA [11], SOBI [1], and AMUSE [2] for the case of
all the source signals with different power spectra. The
third part then presents some results on the computational
complexity and processing latency of the proposed four
algorithms.

The i.i.d. ui[n]’s used for generating si[n]’s were
equiprobable random binary sequences of ±1, and the fifth-
order FIR models bi[n]’s in [3]

bi[n] = exp

(
− n + 1

10 · μi

)
, n = 0, 1, . . . , 5 (21)

were used for the generation of si[n] in (2), where the
parameter μi specifies the power spectrum of the source
signal si[n]. The noise vector w[n] was real, zero-mean,
spatially independent, and temporally white Gaussian dis-
tributed with covariance matrix equal to σ2

wIP . Three mixing

matrices, denoted by A1 (a 5 × 4 matrix taken from [3]), A2

(an 8× 4 matrix), and A3 (an 8× 6 matrix) were considered
in the simulations as follows:

A1 =

⎡
⎢⎢⎢⎢⎢⎣

0.2380 0.2887 −0.7120 0.4914
0.3397 −0.7494 −0.1157 0.2097
0.6107 0.4959 0.2661 0.2504
0.3558 0.2644 −0.4216 −0.6640
−0.5731 −0.1983 −0.4807 0.4593

⎤
⎥⎥⎥⎥⎥⎦

,

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 0.0959 0.3289 −0.5280 −0.4884
−0.0026 −0.3121 −0.4222 −0.1935
−0.4471 −0.0808 0.1546 −0.5032
0.2243 0.5828 0.1975 −0.1199
−0.2813 0.2465 −0.1867 0.1891
0.7191 −0.3865 0.1083 −0.4206
0.3542 0.4562 −0.0700 −0.4800
−0.1376 0.1732 −0.6576 0.1161

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A3 =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2415 −0.1613 −0.2896 0.2196 −0.2784 −0.4142
0.1651 0.2562 0.6645 0.0542 −0.5012 −0.2600
−0.3876 −0.2380 0.0910 0.7412 −0.1555 −0.2018
−0.3148 0.4242 −0.0396 0.5011 0.2359 0.4286
−0.4422 −0.4576 0.5581 −0.2493 0.1933 −0.4125
0.0860 0.5666 −0.0679 −0.0673 0.4288 −0.3286
−0.5157 0.1873 −0.3264 −0.1224 −0.4897 −0.3409
0.4430 0.3260 −0.2051 0.2582 0.3611 −0.3770

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

The synthetic data x[n] with length of 2000 (N = 2000)
were generated according to (1) for different values of SNR
and processed by each algorithm under test. The convergence
criterion used for all the BSS algorithms under test was [24]

2− 2
∣∣(v(i−1))T · (v(i))∣∣< 10−4, (23)

whenever the FKMA was employed, where v(i) denotes the
spatial filter obtained at the ith iteration, and that for the
TSEA was

∣∣J
(
ε(S2)
i [n]

)− J(ε(S1)
i [n]

)∣∣

J
(
ε(S1)
i [n]

) < 10−4, (24)

where ε(S1)
i [n] and ε(S2)

i [n] were the ε[n] obtained in (S1)
and (S2), respectively, at the ith cycle. Moreover, the initial
conditions used for the spatial filter design were v(0) =
1T
P/
√
P for NCMS-TSEA as well as for NCMS-FKMA and

v(0) = 1T
K/
√
K for PNCMS-TSEA as well as for PNCMS-

FKMA. For PNCMS-TSEA(p) and PNCMS-FKMA(p), the
initial conditions for the parallel spatial filters at stage �
were randomly selected from k(�) columns of an arbitrary
K × K unitary matrix and the threshold η = 0.5 was
used for the source signal classification algorithm given in
Table 3. Without specific mention, the temporal filters in
TSEA modules were initialized by g(0)[n] = δ[n] with L = 5
(the order of the temporal filter g[n]).

One hundred independent trials were conducted for
performance evaluation of each BSS algorithm under test.
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Let v̂ and ŝk[n] denote the optimum spatial filter and
the associated source estimate at the ith simulation trial,
respectively. The estimate ŝk[n] can be expressed as

ŝk[n] = fT
i s[n] + 
i[n], (25)

where 
i[n] = v̂Tw[n] and fi = ATv̂. The average out-
put signal-to-interference-plus-noise ratio (SINR) associated
with ŝk[n] over the 100 independent trials was calculated as

Output SINRk

= 1
100

100∑

i=1

∣∣ fi,k
∣∣2
E
{∣∣sk[n]

∣∣2}

∑K
j=1, j /= k

∣∣ fi, j
∣∣2
E
{∣∣s j[n]

∣∣2}
+ E

{∣∣
i[n]
∣∣2} ,

(26)

where fi, j denotes the jth entry of the K × 1 vector fi. The
total averaged output SINR defined as

Output SINR = 1
K

K∑

k=1

Output SINRk (27)

was used as the performance index of each BSS algorithm.

Part A: Performance Comparison for Sources with the Same
Power Spectrum. In this part, we used mixing matrices A1

(P = 5,K = 4) and A2 (P = 8,K = 4), respectively,
and set the parameters μi = 0.6 in bi[n] given by (21) for
i = 1, 2, 3, 4, in order to make all the four source signals have
the same power spectrum. Because SOS-based algorithms
require different source power spectra, we only focused on
the performance comparison between the existing NCMS-
TSEA/FKMA and the proposed four algorithms. Figures 2
and 3 show the simulation results (output SINR versus SNR)
for A = A1 and A = A2, respectively. One can observe
from these two figures that the proposed PNCMS-TSEA(p)
(�), which almost has the same performance as the PNCMS-
TSEA (�), signficantly outperforms the proposed PNCMS-
FKMA(p) (�), and that the proposed PNCMS-FKMA(p)
(�) and PNCMS-FKMA () have similar performance.
Moreover, the proposed PNCMS-TSEA (�) performs better
than the NCMS-TSEA (�) for SNR lower than 15 dB in spite
of the same performance for SNR higher than 15 dB, and
the proposed PNCMS-FKMA () outperforms the NCMS-
FKMA (�), especially when A = A2 as shown in Figure 3.
These simulation results, which are also consistent with (R2),
(R3), (R5), and (R7), well demonstrate the efficacy of the
proposed BSS algorithms.

Part B: Performance Comparison for Sources with Different
Power Spectra. In this part, we compare the proposed algo-
rithms with the SOS-based algorithms, namely the AMUSE
[2] and SOBI [1] algorithms, and the FastICA using kurtosis
[11]. The mixing matrix A = A1 (P = 5,K = 4) was
used, and parameters (μ1,μ2,μ3,μ4) = (1, 0.4, 0.3, 0.2) were
set for bi[n], i = 1, 2, 3, 4, so that the four source signals
would have different power spectra. Both of the AMUSE and
SOBI algorithms design the P × K source separation matrix
(demixing matrix) V = [v1, v2, . . . , vK ] = WTU using SOS,
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Figure 2: Performance comparison results of Part A (output SINR
versus SNR) for A = A1.
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Figure 3: Performance comparison results of Part A (output SINR
versus SNR) for A = A2.

where W is the K × P prewhitening matrix as presented in
step (P1) in the proposed PNCMS-TSEA and U is a K × K
unitary matrix. All the sources are extracted simultaneously
without involving temporal processing as follows:

ŝ[n] = VTx[n] = UTWx[n] = UTz[n], (28)

where z[n] = Wx[n] is the prewhitened data vector.
The unitary matrix U obtained by the AMUSE is through
eigen decomposition of the correlation matrix Rz[τ] =
E[z[n]zT[n− τ]] of the prewhitened signal z[n] for a chosen
τ [2], while that obtained by the SOBI algorithm is through
joint diagonalization of a set of Rz[τj] [1]. The simulation
results to be presented below were obtained with τ = 1 for
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the AMUSE and with (τ1, τ2, τ3) = (1, 2, 3) for the SOBI
algorithm.

Figure 4 shows the simulation results (output SINR
versus SNR). It can be seen that all the observations about
the performance of the proposed algorithms from Figures 2
and 3 also apply to Figure 4. One can also observe from this
figure that the proposed PNCMS-TSEA(p) (�) and PNCMS-
TSEA (�) perform best (with highest Output SINR) while
the proposed PNCMS-FKMA(p) (�) and PNCMS-FKMA
(	) algorithms perform second, and all of them exhibit
superior performance over the AMUSE (�) and SOBI (×)
algorithms. Moreover, the proposed PNCMS-FKMA (	) and
the FastICA () exhibit similar performance since both the
PNCMS-FKMA and the FastICA [11] are NCMS kurtosis
maximization algorithms with prewhitening processing per-
formed prior to source extraction, except that the former
employs the FKMA while the latter employs a gradient search
algorithm (which may not be very computationally efficient)
in source extraction.

Part C: Comparison of Computational Complexity and Pro-
cessing Latency. In this part of simulations, we demon-
strate the computational complexity improvements of the
PNCMS-TSEA/PNCMS-FKMA over the existing NCMS-
TSEA/NCMS-FKMA as well as the processing latency reduc-
tion of the PNCMS-TSEA(p)/PNCMS-FKMA(p). For the
simulation using mixing matrix A = A1 (P = 5,K = 4)
and A = A2 (P = 8,K = 4), the parameters μi in bi[n],
i = 1, . . . , 4 were set to (μ1,μ2,μ3,μ4) = (1, 0.4, 0.3, 0.2),
while for the simulation using the mixing matrix A = A3

(P = 8,K = 6) the parameters μi in bi[n], i = 1, . . . , 6 were
set to (μ1,μ2,μ3,μ4,μ5,μ6) = (1, 0.8, 0.6, 0.4, 0.3, 0.2). Again,
all the simulation results in this part were obtained over 100
simulation trials.

Case A (number of iterations per source versus SNR). In
the case, we calculated the average number of iterations
(spent by FKMA) in extracting a single source signal
spent by the NCMS-TSEA/NCMS-FKMA and the PNCMS-
TSEA/PNCMS-FKMA. Figures 5(a) and 5(b) show the
simulation results (average number of iterations per source
versus SNR) for mixing matrices A = A1 and A = A2,
respectively. One can observe from these two figures that the
computational complexity (in terms of the average number
of iterations per source) of the proposed PNCMS-TSEA (�)
is smaller than that of the NCMS-TSEA (�) and their com-
putational complexity differences for A = A2 are much larger
than those for A = A1. Furthermore, the source extraction
involved in the proposed PNCMS-TSEA was performed with
prewhitened data of dimension K = 4 while that involved
in the NCMS-TSEA was performed with the original data
of dimension P = 5 for the case of A = A1 and P = 8
for the case of A = A2 indicating that their computational
complexity differences are substantial. These observations
also apply to the computational complexity comparison
between the PNCMS-FKMA (�) and the NCMS-FKMA (�).

To show the effectiveness of the parallel source extraction
structure of the PNCMS-TSEA(p)/PNCMS-FKMA(p) about
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Figure 4: Performance comparison results of Part B (output SINR
versus SNR) for A = A1.

processing latency reduction, we, respectively, calculated
their average number of stages and the average total process-
ing latency defined as

Average total processing latency = 1
100

100∑

q=1

Fq∑

�=1

I(�)
q , (29)

where Fq is the total number of stages required in trial q and
I(�)
q stands for the maximum number of iterations (spent in

extracting one source) among the k(�) parallel TSEA/FKMA
modules in (F4a) plus that in (F4c). For the PNCMS-
TSEA/PNCMS-FKMA, the average processing latency was
simply the total number of iterations spent in extracting all
the source signals averaged over 100 independent runs.

Case B (average number of stages versus SNR). The simu-
lation results for the average number of stages spent by the
proposed BSS algorithms are presented in Figure 6(a) for
A = A1 and in Figure 6(b) for A = A3, respectively. One
can observe from these two figures that the average number
of stages of the proposed PNCMS-TSEA(p) (�) for the case
of A = A1 is less than 2 and that for the case of A = A3 is
less than 3 in contrast to the 4 stages and 6 stages required by
the NCMS-TSEA (�) for A = A1 and A = A3, respectively.
These observations also apply to the comparison between the
PNCMS-FKMA(p) () and the NCMS-FKMA (�).

Case C (average processing latency versus SNR). Figures
7(a) and 7(b) show the simulation results of the average
processing latency (defined in (29)) for mixing matrices A =
A1 and A = A3, respectively. It can be observed from these
two figures that the average total processing latency of the
proposed PNCMS-TSEA (�) is much less than that of the
NCMS-TSEA (�), and the average total processing latency of
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Figure 5: Complexity comparison results of Case A in Part C
(number of iterations per source versus SNR): (a) A = A1 and (b)
A = A2.

the proposed PNCMS-TSEA(p) (•) can be further reduced.
Compared to the PNCMS-TSEA, the PNCMS-TSEA(p) has
around 44% reduction (e.g., from around 225 iterations
down to 125 iterations for SNR = 5 dB) in the average total
processing latency for A = A1, while around 33% reduction
(e.g., from around 450 iterations down to 310 iterations
for SNR = 5 dB) for A = A3. The PNCMS-FKMA(p) (◦)
provides around 25% reduction in both cases compared to
the PNCMS-FKMA (�).

6. Conclusion

By incorporating the prewhitening processing (which has
been widely used for noise reduction and dimension reduc-
tion) into the existing NCMS-TSEA and NCMS-FKMA, we
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Figure 6: Complexity comparison results of Case B in Part C
(average number of stages versus SNR): (a) A = A1 and (b) A = A3.

have presented four improved non-cancellation multistage
BSS algorithms, the PNCMS-TSEA, the PNCMS-FKMA, the
PNCMS-TSEA(p), and the PNCMS-FKMA(p), respectively.
In contrast to the NCMS-TSEA (NCMS-FKMA), we have
shown that the proposed PNCMS-TSEA (PNCMS-FKMA)
has much simplified processing in source extraction and
column vector estimation of the mixing matrix along with
significant computational savings on one hand, and some
performance improvements on the other hand, especially
when the number of sensors is much larger than the num-
ber of sources. The proposed PNCMS-TSEA(p) (PNCMS-
FKMA(p)) not only enjoys the same performance advantages
as the PNCMS-TSEA (PNCMS-FKMA) but also has much
smaller processing latency owing to the parallel source
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Figure 7: Processing latency comparison results of Case C in Part
C (average total processing latency versus SNR): (a) A = A1 and (b)
A = A3.

extraction structure at each stage. We have shown that
parallel TSEA (FKMA) modules in the PNCMS-TSEA(p)
(PNCMS-FKMA(p)) can extract most of the unknown
source signals at each stage by simply using columns of an
arbitraryK×K unitary matrix as the initial conditions for the
spatial filters of TSEA or FKMA. Our simulation results have
demonstrated performance and computational complexity
improvements by the PNCMS-TSEA and PNCMS-FKMA
as well as substantial processing latency reduction by the
PNCMS-TSEA(p) and PNCMS-FKMA(p). In particular, we
empirically found that the PNCMS-TSEA(p) and PNCMS-
FKMA(p) can extract all the source signals within 3 stages
for K ≤ 10, meanwhile with more than 30% reduction in

the processing latency compared to the PNCMS-TSEA and
PNCMS-FKMA, respectively.

Appendix

Proof of Lemma 1. With the assumptions (A1), (A2) and the
noise-free assumption, it has been proven in [15] that J(e[n])
given by (5) attains maximum (either locally or globally
regardless of whether A is unitary or not) if and only if

e[n] = vTx[n]

= αksk[n]

= vTAs[n]

(A.1)

= (vTak
)
sk[n] +

K∑

i=1,i /= k

(
vTai

)
si[n], (A.2)

where αk is an unknown nonzero constant and the unknown
integer k ∈ {1, 2, . . . ,K}. Note that the columns ai,
i = 1, 2, . . . ,K , of the K × K unitary matrix A form an
orthonormal basis for R(A), that is, ‖ai‖ = 1 and aT

i a j = 0
for all i /= j. Therefore, it can be inferred from (A.1) and (A.2)
that vTak = αk and vTai = 0 for all i /= k, and therefore it must
be true that v = βkak . Since ‖v‖ = 1 we have αk = βk = ±1.
Lemma 1 then is proved.
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