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ABSTRACT

In hyperspectral remote sensing, unmixing a data cube into spec-
tral signatures and their corresponding abundance fractions plays a
crucial role in analyzing the mineralogical composition of a solid
surface. This paper describes a convex analysis perspective to (un-
supervised) hyperspectral unmixing. Such an endeavor is not only
motivated by the recent prevalence of convex optimization in signal
processing, but also by the nature of hyperspectral unmixing (specif-
ically, non-negativity and full additivity of abundances) that makes
convex analysis a very suitable tool. By the notion of convex analy-
sis, we formulate two optimization problems for solving hyperspec-
tral unmixing, which have the intuitive ideas following the works by
Craig and Winter respectively but adopt an optimization treatment
different from those previous works. We show the connection of
the two hyperspectral unmixing optimization problems, by proving
that their optimal solutions become identical when pure pixels exist
in the data. We also illustrate how the two problems can be con-
veniently handled by alternating linear programming. Monte Carlo
simulations are presented to demonstrate the efficacy of the two hy-
perspectral unmixing formulations.

Index Terms— Hyperspectral unmixing, Convex analysis, Sim-
plex geometry, Endmember identifiability, Alternating optimization

1. INTRODUCTION

In exploration of a solid surface using a hyperspectral sensor, hyper-
spectral unmixing is essential in analyzing the mineralogical com-
position of the solid surface. It is a signal processing technique that
aims to decompose the spectrum of an observed pixel into a set of
spectral signatures (or endmembers) and their corresponding pro-
portions (or abundance fractions). Existing hyperspectral unmixing
algorithms can be classified into two groups, between which the ma-
jor distinction lies in whether pure pixels (i.e., pixels that are fully
contributed from an endmember) exist per endmember in the given
data set or not. Unmixing algorithms without involving pure pix-
els include minimum volume transform (MVT) [2], minimum vol-
ume constrained non-negative matrix factorization (MVC-NMF) [3],
and minimum volume simplex analysis (MVSA) [4], to name a few.
In [2], Craig reported an unmixing criterion that the endmembers
are determined by the vertices of the minimum-volume simplex en-
closing all the observed pixels. To find such a simplex, Craig sug-
gested a method (i.e., MVT [2]) that literally moves the faces of
a large initial simplex in toward the data cloud. In addition, some
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algorithms requiring the pure pixel assumption may be computa-
tionally less complex, such as pixel purity index (PPI) [5], N-finder
(N-FINDR) [6], and vertex component analysis (VCA) [7]. For in-
stance, N-FINDR [6] (proposed by Winter) is based on a criterion
that the volume of a simplex formed by the purest pixels (or end-
member estimates) is the maximum, and found such purest pixels by
inflating the volume of a simplex inside the data set.

In this paper, we provide a convex analysis and optimization
perspective to hyperspectral unmixing problems, which have the in-
tuitive ideas from Craig’s and Winter’s criteria, respectively. The en-
deavor is not only motivated by the prevalence of convex optimiza-
tion techniques in signal processing, but also by the fact that some
convex analysis concepts, such as affine hull and convex hull, are
quite a good match with the nature of hyperspectral unmixing (i.e.,
the non-negativity and full additivity of abundances). Using convex
analysis, we formulate two optimization problems for hyperspectral
unmixing using Craig’s and Winter’s criteria, and prove their optimal
solutions to be identical when pure pixels exist. We also demonstrate
how to use alternating linear programming to approximate the for-
mulated problems. Finally, some Monte Carlo simulation results are
presented, which show a good consistency with our analytical re-
sults.

2. PROBLEM STATEMENT
Suppose that a hyperspectral sensor with M spectral bands measures
solar electromagnetic radiation reflecting from the N distinct sub-
stances. Each pixel of the measured hyperspectral image cube can
be described by the following M ×N linear mixing model [1–7]:

x[n] = As[n] =

NX
i=1

si[n]ai, n = 1, . . . , L, (1)

where x[n] = [ x1[n], . . . , xM [n] ]T is the nth observed pixel vec-
tor comprising M spectral bands, A = [ a1, . . . , aN ] ∈ RM×N

denotes the signature matrix whose ith column vector ai is the ith
endmember, s[n] = [ s1[n], . . . , sN [n] ]T ∈ RN is an abundance
vector comprising N fractional abundances, and L is the total num-
ber of observed pixel vectors. The goal of hyperspectral unmixing is
to estimate A and s[n] from the the observed pixels x[n].

Our convex analysis formulation for hyperspectral unmixing is
based on the following assumptions [1]:

(A1) Intensities of all the abundance vectors are non-negative, i.e.,
si[n] ≥ 0 for all i and n.

(A2) Abundance fractions are proportionally distributed for each
observed pixel, i.e.,

PN
i=1 si[n] = 1 for all n.

(A3) min{L, M} ≥ N and the endmember signatures are linearly
independent, i.e., A is of full column rank.



3. A REVIEW OF CONVEX ANALYSIS CONCEPTS
We review some convex analysis concepts, namely affine hull and
convex hull [8], for ease of the ensuing development. Given a set
of vectors {a1, . . . ,aN} ⊂ RM (a set of real M -vectors), the affine
hull of {a1, . . . ,aN} is defined as

aff{a1, . . . , aN} =

�
x =

NX
i=1

θiai

���� 1T
Nθ = 1, θ ∈ RN

�
, (2)

where θ = [ θ1, . . . , θN ]T and 1N is an N × 1 all-one vector. An
affine hull can always be represented by an affine set:

aff{a1, . . . , aN} =
�
x = Cα + d

�� α ∈ RP	 , A(C,d), (3)

where A(·, ·) is an affine set parameterized by some (non-unique)
full column rank C ∈ RM×P and d ∈ RM , and P ≤ N − 1
is the affine dimension. If a1, . . . ,aN are affinely independent (or
a1−aN , . . . , aN−1−aN are linearly independent), then P = N−1.

Given a set of vectors {a1, . . . , aN} ⊂ RM , the convex hull of
{a1, . . . , aN} is defined as

conv{a1, . . . , aN} =

�
x =

NX
i=1

θiai

���� 1T
Nθ = 1, θ º 0

�
, (4)

whereº denotes componentwise inequality, and 0 is an all-zero vec-
tor of proper dimension. A convex hull conv{a1, . . . ,aN} is called
a simplex if M = N − 1 and a1, . . . ,aN are affinely independent.

4. CONVEX ANALYSIS TO HYPERSPECTRAL
UNMIXING PROBLEMS

Now, let us present how we use convex analysis to formulate prob-
lem (1) in a simplex representation. Under (A2) and (A3), one can
infer from (1) that

x[n] ∈ aff{a1, . . . , aN} = A(C,d), ∀ n (5)

for some (unknown) (C,d) ∈ RM×(N−1) × RM and rank(C) =
N − 1. The endmember affine hull (or affine set parameters C and
d) can be readily recovered from the observed pixels x[1], . . . ,x[L],
as stated in the following lemma:

Lemma 1. (Endmember affine set construction [9]) Under (A2)
and (A3), the endmember affine hull is identical to the observed
pixel affine hull:

A(C,d) = aff{x[1], . . . ,x[L]}. (6)

Moreover, (C,d) can be obtained from {x[1], . . . ,x[L]} by the fol-
lowing closed-form solution

d =
1

L

LX
n=1

x[n], (7)

C = [ q1(UUT ), q2(UUT ), . . . , qN−1(UUT ) ], (8)

where U = [ x[1]−d, . . . ,x[L]−d ] ∈ RM×L, and qi(R) denotes
the eigenvector associated with the ith principal eigenvalue of R.

Since x[n] ∈ A(C,d), we can write its affine representation as

x[n] = C x̃[n] + d, (9)

where x̃[n] is the inverse image of x[n] under (9), i.e.,

x̃[n] = C†(x[n]− d) ∈ RN−1, (10)

where C† = (CT C)−1CT . The affinely transformed data x̃[1], . . . ,
x̃[L] can be viewed as the dimension-reduced pixels, and have a spe-
cial data structure to which the simplex geometry can be applied, as
stated in the following lemma:

Lemma 2. (Simplex geometry [10]) Under (A1) to (A3), all the
x̃[1], . . . , x̃[L] are confined by a simplex conv{α1, . . . , αN}:

x̃[n] =

NX
i=1

si[n]αi ∈ conv{α1, . . . , αN} ⊂ RN−1, ∀n (11)

where αi = C†(ai − d) ∈ RN−1 is the ith dimension-reduced
endmember.

Compared to x[n] in (1) that has M dimensions, the formu-
lation (11) has only N − 1 dimensions, and thus will reduce the
computational complexity of the subsequent processing. Now, an
interesting question is that how we can exploit simplex geometry to
estimate α1, . . . , αN from x̃[1], . . . , x̃[L]. The idea from Craig’s
work [2] (or Winter’s work [6]) for hyperspectral unmixing that uses
minimum (or maximum) volume simplex fitting approach could be
adopted here. Figure 1 illustrates simplex geometry for the case of
N = 3, where the data cloud is confined by the true simplex (solid-
line triangle), and the short dashed-line triangle and long dashed-line
triangle are the possible solutions for Craig’s and Winter’s unmixing
criteria, respectively. In the ensuing development, we will formulate
two optimization problems for hyperspectral unmixing using the two
unmixing criteria.
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Fig. 1. Scatter plot of the dimension-reduced pixels for N = 3, illus-
trating the Craig’s and Winter’s criteria for hyperspectral unmixing.

4.1. Minimum volume simplex fitting approach
According to Craig’s criterion [2], the unmixing problem of finding a
minimum volume simplex enclosing all the dimension-reduced pix-
els can be written as the following optimization problem [10]:

min
β1,...,βN∈RN−1

V (β1, . . . , βN )

s.t. x̃[n] ∈ conv{β1, . . . , βN}, ∀ n,
(12)

where V (β1, . . . , βN ) is the volume of the simplex conv{β1, . . . ,
βN} given by [11]

V (β1, . . . , βN ) =
|det (∆(β1, . . . , βN ))|

(N − 1)!
, (13)

where

∆(β1, . . . , βN ) =

�
β1 · · · βN

1 · · · 1

�
. (14)

Let us consider the endmember identifiability of Craig’s crite-
rion, that is, a condition under which the optimal solution of (12) is
identical to {α1, . . . , αN}. Consider the following assumption



(A4) (Pure-pixel assumption) There exist at least one index set {`1,
`2, . . . , `N} such that x̃[`i] = αi for i = 1, . . . , N .

The above assumption is frequently employed in pure-pixel based
unmixing methods [5–7], and can be proven to be a sufficient end-
member identifiability condition of Craig’s unmixing criterion. This
is stated in the following theorem:

Theorem 1. (Endmember identifiability of Craig’s criterion)
Under (A4), the optimal solution of (12) is uniquely given by
α1, . . . , αN .

The proof of Theorem 1 is given in Appendix.
For ease of algorithm development for problem (12) (to be pre-

sented in Section 5), an explicit form of (12) is derived as follows.
An alternative expression of the cost function in (12) is given by [11]

V (β1, . . . , βN ) =
|det(B)|
(N − 1)!

, (15)

where B = [ β1 − βN , . . . , βN−1 − βN ] ∈ R(N−1)×(N−1). In
addition, by (4), we rewrite the constraint of (12) in terms of B as

x̃[n] = βN + Bθn, (16)

where θn º 0 and 1T
N−1θn ≤ 1. Hence, problem (12) can be

equivalently written as

min
B∈R(N−1)×(N−1),

βN ,θ1,...,θL∈RN−1

|det(B)|

s.t. θn º 0, 1T
N−1θn ≤ 1,

x̃[n] = βN + Bθn, ∀ n.

(17)

By letting θn = Hx̃[n] − g for all n where H = B−1 and g =
B−1βN , one can eliminate the variables θn for all n in (17) and
come up with

max
H∈R(N−1)×(N−1), g∈RN−1

|det(H)|

s.t. Hx̃[n]− g º 0,

1T
N−1(Hx̃[n]− g) ≤ 1, ∀ n,

(18)
where the objective function is nonconvex but the constraints are
affine (or convex). Problem (18) is a nonconvex problem.

4.2. Maximum volume simplex fitting approach
We now turn our attention to Winter’s criterion [6]. Based on that,
the unmixing problem of finding a maximum volume simplex within
the set of the dimension-reduced pixels can be formulated as an op-
timization problem below:

max
ν1,...,νN∈RN−1

V (ν1, . . . , νN )

s.t. νi ∈ conv{x̃[1], . . . , x̃[L]}, ∀ i.
(19)

Following the proof in Theorem 1, the endmember identifiabil-
ity of Winter’s criterion can also be proven under the pure-pixel as-
sumption (see Appendix for the proof):

Theorem 2. (Endmember identifiability of Winter’s criterion)
Under (A4), the optimal solution of (19) is uniquely given by
α1, . . . , αN .

Likewise, we here formulate an explicit form of (19) for
ease of algorithm development. By (4), (13), and letting X =
[ x̃[1], . . . , x̃[L] ] ∈ R(N−1)×L, problem (19) can be expressed as

max
νi∈RN−1

θ1,...,θN∈RL

|det(∆(ν1, . . . , νN ))|

s.t. νi = Xθi, θi º 0, 1T
Lθi = 1 ∀ i.

(20)

Again, problem (20) is nonconvex since its objective function is non-
convex. Nevertheless, the constraints are affine (or convex).

Summarizing all the above results (Theorem 1 and Theorem 2),
we can readily conclude that

Corollary 1. (Equivalence of Craig’s and Winter’s criteria) Sup-
pose that there exist at least one pure pixel per endmember in the
data set [(A4)]. Then, problems (12) and (19) can identically yield
the true dimension-reduced endmembers α1, . . . , αN .

5. ALGORITHMS
In this section, we provide an alternating optimization approach to
the non-convex optimization problems (18) and (20). The idea is
motivated by the cofactor expansion [11]. Since such an approach
to problem (18) has been reported in [10], we here only demonstrate
how we use the similar approach to tackle problem (20). Now, con-
sider the cofactor expansion for det(∆(ν1, . . . , νN )) as follows:

det(∆(ν1, . . . , νN )) = bT
j νj + (−1)N+jdet(VNj), (21)

where bj = [(−1)i+jdet(Vij)]
N−1
i=1 ∈ RN−1 and the matrix

Vij ∈ R(N−1)×(N−1) is a submatrix of ∆(ν1, . . . , νN ) with the
ith row and jth column removed [11]. It is apparent from (21) that
det(∆(ν1, . . . , νN )) is affine in each νj . Hence, we consider the
partial maximization of (20) with respect to νj and θj , while fixing
νi and θi for i 6= j; that is,

max
νj∈RN−1,θj∈RL

��� bT
j νj + (−1)N+jdet(VNj)

���

s.t. νj = Xθj , θj º 0, 1T
Lθj = 1.

(22)

Problem (22) is still nonconvex due to the nonconvex objective func-
tion, but it can be solved in a globally optimal manner by breaking it
into two linear programs (LPs):

p? = max
νj∈RN−1,θj∈RL

bT
j νj + (−1)N+jdet(VNj)

s.t. νj = Xθj , θj º 0, 1T
Lθj = 1,

(23)

q? = min
νj∈RN−1,θj∈RL

bT
j νj + (−1)N+jdet(VNj)

s.t. νj = Xθj , θj º 0, 1T
Lθj = 1.

(24)

The optimal solution of (22) is chosen as that of (23) if |p?| > |q?|,
and that of (24) if |q?| > |p?|. The partial maximization is con-
ducted cyclically until some stopping rule is satisfied. Once the op-
timal solutions of (20), denoted by ν?

1 , . . . , ν?
N , are obtained, one

can simply recover the endmember estimates by âi = Cν̂i + d for
all i. To initialize the above approach, we can find some feasible
ν1, . . . , νN by randomly selecting the N dimension-reduced pixels
from x̃[1], . . . , x̃[L]. The proposed alternating linear programming
for (20) is then termed as alternating volume maximization (AV-
MAX). Similarly for problem (18), we call the approach reported
in [10] as alternating volume minimization (AVMIN) in this paper
for ease of comparison with AVMAX for (20).



6. SIMULATIONS AND CONCLUSION
We performed one hundred independent runs of our proposed
AVMIN and AVMAX for performance evaluation. In each run,
5000 observed pixels were synthetically generated following the
signal model in (1), where the 5 endmembers with 224 spectral
bands were randomly selected from U.S. geological survey (USGS)
library [12], and the abundance vectors s[n] were generated fol-
lowing Dirichlet distribution D(s[n], µ) with µ = 1

N
1N . We also

tested MVSA [4] and N-FINDR [6] for performance comparison.
Two simulation scenarios are considered. One is for the data

containing pure pixels, while the other for the data set without them.
For the former case, we added the pure pixels in the data set. For
the latter case, we discarded the observed pixels with the 2-norm
of abundance vectors larger than 0.7. The sum square error (SSE)
between the true endmembers and estimated ones is used as the per-
formance index. The results are shown in Table 1. One can see
that AVMIN and AVMAX (and MVSA and N-FINDR) achieve per-
fect endmember separation (with zero SSEs) when pure pixels exist.
This observation directly supports our analytical results [Corollary
1]. For the data set without pure pixels, the performance of AVMIN
and MVSA (and AVMAX and N-FINDR) are very competitive.

In conclusion, we have presented two convex analysis based for-
mulations with intuitive ideas from Craig’s and Winter’s works. We
have proven that these two formulated problems achieve endmem-
ber identifiability and lead to identical optimal solutions under the
pure-pixel assumption. The AVMIN and AVMAX for approximat-
ing the two problems (18) and (20) respectively were also presented.
Simulation results provide a validation of our analytical results.

Table 1. Performance evaluation (SSE) for the two scenarios.
Methods AVMIN MVSA AVMAX N-FINDR

Pure pixels 0 0 0 0
No pure pixels 0.0087 0.0565 10.3687 10.7585

7. APPENDIX
Proof of Theorem 1. The constraint of (12) is equivalent to

conv{x̃[1], . . . , x̃[L]} ⊆ conv{β1, . . . , βN}. (25)

Under (A4), we can have

conv{x̃[1], . . . , x̃[L]} = conv{α1, . . . , αN}. (26)

Hence, (25) becomes conv{α1, . . . , αN} ⊆ conv{β1, . . . , βN},
which means αi ∈ conv{β1, . . . , βN}, i.e.,

αi =

NX
j=1

θijβj (27)

where
PN

j=1 θij = 1 and θij ≥ 0 for i = 1, . . . , N . Then, from
(14) and (27), one can easily infer that

∆(α1, . . . , αN ) = ∆(β1, . . . , βN )ΘT , (28)
where Θ = [θij ] ∈ RN×N

+ and Θ1N = 1N . By (28) and (13), we
can have

V (α1, . . . , αN ) =
���det

�
∆(β1, . . . , βN )ΘT

���� /(N − 1)! (29)

= V (β1, . . . , βN ) |det (Θ)| . (30)

According to Lemma 1 reported in [13] that |det (Θ)| ≤ 1 for which
the equality holds if and only if Θ is a permutation matrix, one can
easily see that

V (α1, . . . , αN ) ≤ V (β1, . . . , βN ), (31)

and the equality holds (or the the optimality of (12) is achieved) if
and only if Θ is a permutation matrix, implying that the optimum
solution for {β1, . . . , βN} is exactly {α1, . . . , αN} by (27).

Proof of Theorem 2. The approach to proving Theorem 2 is similar
to that in Theorem 1. Under (A4), the constraint of (19) becomes
νi ∈ conv{α1, . . . , αN} for all i, and can be written as

νi =

NX
j=1

θijαj , (32)

where
PN

j=1 θij = 1 and θij ≥ 0 for all i. By the definition of Θ in
(28), we can write an equivalent form of (32) given by

∆(ν1, . . . , νN ) = ∆(α1, . . . , αN )ΘT . (33)

By (13) and Lemma 1 in [13], we can easily infer from (33) that

V (ν1, . . . , νN ) = V (α1, . . . , αN ) |det (Θ)| , (34)
≤ V (α1, . . . , αN ), (35)

and the equality holds (or the the optimality of (19) is achieved) if
and only if Θ is a permutation matrix. This implies that the optimum
solution for {ν1, . . . , νN} is exactly {α1, . . . , αN} by (32).
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