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ABSTRACT

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) can characterize vascular heterogeneity, and
has potential utility in assessment of the efficacy of
angiogenesis inhibitors in cancer treatment. Due to the
heterogeneous nature of tumor microvasculature, the
measured signals can be represented as the mixture of the
permeability images corresponding to different perfusion
rates. We recently reported a hybrid convex analysis of
mixture framework for unmixing of non-negative yet
dependent angiogenic permeability distributions (APDs)
and perfusion time activity curves (TACs). In our last work,
we presented an underlying theory to infer the concept that
the TACs can be identified by finding the lateral edges of an
observation-constructed convex pyramid when the well­
grounded points exist for all APDs. For fulfilling this
concept, a hybrid method including non-negative clustered
component analysis, convex analysis, and least-squares
fitting with non-negativity constraints was developed. In
this paper, we use computer simulations to validate the
performance of our reported framework, and further apply it
to three sets of real DCE-MRI data, before and during the
treatment period, for assessing the response to
antiangiogenic therapy. The experimental results are not
only surprisingly meaningful in biology and clinic, but also
capable of reflecting the efficacy of angiogenesis inhibitors
in cancer treatment.

Index Terms-Blind source separation, compartment
latent variable model, convex analysis, dynamic contrast­
enhanced magnetic resonance imaging, antiangiogenic
therapy

1. INTRODUCTION

Dynamic functional imaging promises powerful tools for
the visualization and elucidation of important disease­
causing biological processes in the living tissue. In dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI),
recent effort aims to dissect the spatial-temporal patterns of
microvascular permeability with differential perfusion rates,
where the signal at each pixel often represents a composite

of more than one distinct permeability source independent
of spatial resolution [1-3].

Many approaches have been reported for decomposition
of the mixtures of biomarkers in dynamic image formation,
for example, non-negative independent component analysis
(nICA) [4], stochastic non-negative ICA (SNICA) [5], least­
correlated component analysis (nLCA) [6], non-negative
matrix factorization (NMF) [7] and the NMF-like
algorithms with smoothness constraint [8] and with
sparseness constraint [9]. The major limitations of these
existing algorithms may be the unrealistic assumptions of
the compartment model [4], intractable computational
complexity [5], and vulnerability to noise contamination [6]
and algorithm initialization [7]. To be practically applicable
to real DCE-MRI data which may heavily suffered from
noise effect and partial volume effect (PVE) [10], we
recently proposed a hybrid blind source separation (BSS)
approach [11] that utilizes convex analysis, scatter plot
clustering and least-squares fitting with non-negativity
constraint to recover the non-negative yet correlated
angiogenic permeability distributions (APDs) and the
associated perfusion time activity curves (TACs). Since
DCE-MRI has been suggested as a potential endpoint for
assessment of antiangiogenic therapy [12], we applied our
reported hybrid framework [11] to three sets of DCE-MRI
data before and during antiangiogenic therapy for
monitoring the response to therapy. In the longitudinal study,
we found that our experimental results are consistent with
clinical assessment of a responsive case, surprisingly
meaningful in biology and clinic, and indeed able to reflect
the efficacy of angiogenesis inhibitors in cancer treatment.

2. PROBLEM FORMULATION

Consider a compartment latent variable model [13] of
DCE-MRI as follows:

x(i) = Ak(i) (1)

fo i = I, ...,N , where x(i) = [x(i,ft ), x(i,f2), •.•,x(i,fL)]T

stands for the tracer activities at pixel i measured over L
time points, A = [af,as,ap ] is an Lx 3 mixing matrix

whose column vectors are the TACs of fast/slow flow and
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plasma input, k(i) = [kf(i), ks(i), kp(i)]T is a source vector

of APDs at the ith pixel, and N is the number of pixels.
Alternatively, the compartment latent variable model (1) can
be expressed as

x(i) = 2: kj (i)a j (2)
jE{f,S,p}

which also means that tracer activities x(i) is a linear

combination of a j where j E {f,s,p} , weighted by kf(i) ,

ks (i), and kp (i). Figure 1 illustrates the mixing process of

the source patterns k(i) .

meaning of the well-grounded points in 3D scatter plot of
APDs, where the well-grounded points are located at the
axes of the scatter plot. The observed pixels mixed from

well-grounded points k(iwGp,j)' j E {f,s,p} thus have the

same dynamic patterns as a j scaled by kj (i) , i.e.,

x(iWGP,j) = kj(iwGp,j)aj' j E {f,s,p}. (4)

Assumption (A3) is valid because of the heterogeneous
property of vascular permeability, and the number of image
acquisition time points L is usually greater than or equal to 3.
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Fig. 2: An illustration of 3D scatter plot of the APDs (blue dots), where the
red crosses on each axis are the well-grounded points.

Fig. 1: Compartment latent variable modeling. The 15 observed DCE-MRI
images are given in the left column; the supposed ground truth of TACs of
plasma input (blue curve), fast flow (red-broken curve) and slow flow
(green-dot curve) are shown in the center; the source patterns of interest
include the heterogeneous spatial distribution of vascular penneability
associated with fast/slow flow (top and middle) and plasma input (bottom)
are displayed in the right column.

The goal of recovering APDs k(i) and TACs A from the

observed tracer activities x(i) can be formulated as a blind

source separation problem, which aims to find a 3xL
unmixing matrix W from x(i) such that

k(i) = WX(i) = WAk(i) = Pk(i), (3)

where k(i) is the estimate of k(i) up to a permutation P .

To be practically meaningful in DCE-MRI, we shall
make some assumptions for k(i) and A as follows:

(A 1) All the elements of k(i) are non-negative.

(A2) For each source j E {f,s,p} , there exists a pixel index

iWGP,j such that kj (iWGP,j ) > 0 and k[ (iWGP,j ) =0 for all

1:1; j.

(A3) The mixing matrix A is of full column rank.
Assumption (AI) is true in DCE-MRI where the

intensities of APDs are represented by non-negative real
numbers. Assumption (A2) is made by the observation that
in DCE-MRI the vasculatures of different compartments
have their own unique perfusion patterns. This kind of

pixels in APDs k(iwGP,j)' j E {f,s,p} is referred to as well

grounded points (WGPs). Figure 2 illustrates the geometric

3. THEORY AND METHODS

The purpose of this section is to provide a concise and self­
contained description to our reported hybrid convex
analysis of mixture framework in [11]. One may refer to [14]
to have basic concepts of convex analysis which play an
important role in this framework.

3.1 Convex analysis to compartment model
We exploit convex geometry to analyze the compartment
latent variable model (1) in which the number of sources,
denoted by K , is never limited to 3. Hence, for ease of later
use we adopt the following signal model instead of (2):

K

x(i) = 2: kj(i)a j , (5)
j=1

and also define a set of all the observed tracer activities
X ~ {x(1), ..., x(N)} , as well as a set of all the column

vectors A ~ {a\ ,...,aK} . A convex pyramid ofA is the set of

all the non-negative combinations of a1, ••• ,aK , defined as

lP'eonvex {A} = {2:;=laj 8 j 18 j E A, aj ~ O}.
in which the vectors ap ...,aK are called lateral edges of

JIDconvex {A} when a1, ••• , aK are linearly independent.

Any observed pixel x(i) E X can always be represented

as (5), and under (AI) and (A3) it is easy to

show x(i) E JIDconvex {A} , so we can infer that X E JIDconvex {A}
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(6)

whose lateral edges are given by al'".,aK • This implies that

all the observed pixels x(i) are enclosed by a convex

pyramid of A. With the existence of WGPs [(A2)], we shall
be possible to obtain the information about al' ...,aK from

the set X , as described in the following theorem.

Theorem 1. (Identifiability [10)) Under (AI), (A2) and

(A3), the lateral edges of lP'convex {X} are al' ...,aK •

Theorem I suggests a possibility of identifying the

mixing matrix A by finding the lateral edges oflP'convex {X} .
A geometric illustration of Theorem 1 for K = 3 is shown
in Fig. 3. The blue dots are the observed pixels

x (1) ,...,x (N) forming the convex pyramid lP'convex {X} , and

the red arrows are the three lateral edges of lP'convex {X}
which are able to enclose all the observed pixels.

• lP'convex {X}., .;

Fig. 3: An illustration of 3D scatter plot of observed pixels.

By performing a normalization procedure to the observed

pixels x(I), ..., x(N) in the following manner

( .) K (k (i)1TaJ(a J KX(i)=~= L j T • j + = Lkj(i)aj ,
1 x(z) j=1 1 x(z) 1 a j j=1

where ~(i) = kj (i)ITa j lIT x(i) and aj = a j lIT a j such that

~~ k.(i) = 1 and tTa. = 1, we can show that the problem
~J=I } }

for identifying the lateral edges of a convex pyramid
suggested by Theorem 1 is then converted into the search of
the extreme points of a convex hull of the normalized

observed pixels X ~ {x(I), ..., x(N)} , say

JH[coovex {l'} = {L~=laiX(i) Ix(i) E X, a j :<: 0, L~=,a; = I},

as stated in the following lemma.

Lemma 1 (Normalization [II)). Under (AI), (A2) and (A3),

the convex pyramid JIDconvex {X} becomes a convex hull

lHI {X} whose extreme points are the normalized lateralconvex

edges (oral' ... ,aK ).

A geometric illustration of Lemma 1 is shown in Fig. 3.
The gray crosses are the normalized observed pixels which
form a triangle in 3D scatter plot space. The region of the
triangle is exactly the convex hull of the normalized lateral
edges a1' ...,aK • Such problem to search for the extreme

points of a convex hull is called an extreme point
enumeration problem in optimization context, and can be
solved by quickhull algorithm [15].

3.2 Methods
Let us tum our attention back to DCE-MRI applications
where K=3. The real data may be heavily affected by noise
and partial volume effect (PVE) [10] which are not
considered in our theoretical derivations, thus exploring its
application to DCE-MRI in practice is the subject of
ensuing developments.

3.2.1 Non-negative clustered component analysis
The non-negative clustered component analysis (nCCA)

[16] is designed to remove noise effect in this framework,
assuming the following Gaussian mixture model for pure­
volume pixels

xn(i)=aj+E(i), je{f,s,p}, (7)

where xn(i) is the noisy observed pixel and E(i) is a zero­

mean Gaussian noise vector. The EM algorithm is employed
to cluster the normalized noisy observed pixels xn(i) for

noise removal. For instance, the resulting cluster centers
xc(i) for i = 1, ...,P are thought of as the noise-removed

observed pixels, where P is the pre-assigned number of
Gaussian kernels to be clustered.

3.2.2 Convexity measure
Although nCCA can be pre-applied for noise removal,

selecting 3 extreme points capable of enclosing all the
noise-removed observed pixels is still unrealistic due to
PVE. Here we reported a convexity measure (CM) [11] to

choose 3 cluster centers in Xc ~{xc(1), ...,xc(P)}which can

construct a convex hull such that the margin between the
convex hull and other cluster centers outside it is minimized.
Mathematically, the CM is an optimization problem as
follows,

CM=min ~~ei(II,12,13)' (8)
11,/2 '/3 L.Jz-I

where {/I,12,!3} c {1,. .. ,P}, Ii =1= lj for i -:f. jare the indices

of the selected cluster centers, and the margin between the
ith cluster center Xc (i) and the convex hull can be obtained

by
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ej (11,12'/3) = min IliAi)-I 3
_ ()jiAlj )11

2

, (9)
O!,02,03 i-I 2

subject to I~=I()j =1, ()j ~O Vj=1,2,3. The problem (9)

is a convex optimization problem and the problem (8) could

be solved by an exhaustive search of cj combinatorial

possibilities, where P is not very large and usually less than
30.

Suppose that the three clustered centers with minimum
CM are estimated, say af' as'ap' we then can estimate

APDs k(i) by the least-squares fitting under non-negative

constraint of k(i) , Le.,

k(i) =ar~~in (IIX(i) - Ak(i)IIJ (10)

s.t. kj(i) ~ 0 for} E {f,s,p}

where A= [af' as'ap ] is the estimated mixing matrix.

In real DCE-MRI applications, some preprocessing such
as region of interest (ROI) extraction and pixel filtering are
also essential to making the outcome more successful and
meaningful before directly applying unmixing methods to
real data set. We summarize the processing steps of our
framework as follows:

Given DCE-MRI data X and the number of TACs, K=3.
Step 1. ROI extraction. The surrounding normal tissues
including the external/internal dark area (i.e., completely
dead tissue) are totally removed.
Step 2. Removal of· first few DCE-MRI time segments
before the agent uptake actually takes place. It shall be very
careful since the important information may also be lost
here.
Step 3. Observed pixel filtering with hybrid criteria: (a)
very low average signal intensity or (b) very low signal
variation even with high average signal intensity. Due to
physical nature of the signals derived from compartment
model, there shall not be any impulse or flat type TACs,
while plasma input TAC will be most short-lasting. Note
that this step also helps reduce the error of tumor ROI
masking in some cases such as internal dark areas.
Step 4. Normalization of the observed pixels in the manner

of (6), yielding the set of the normalized observed pixels X .
Step 5. Initialization of nCCA by visual aid and human­
computer interaction. In medical research, most of people
do not consider "automatic" as important as "informative",
thus, this step is helpful and potentially effective.

Step 6. Apply nCCA to the data set X to obtain P noise­
removed observed pixels (clustered centers).
Step 7. Solve convexity measure problem of the P noise-

removed observed pixels to estimate three TACs af ,8s ,8p •

Step 8. Estimate APDs k(i) by solving the non-negative

least-squares problem given by (10).

4. COMPUTER SIMULATIONS

We present some simulation results of our framework for
examining the separation capability of the reported
framework [II] and compare the performance with two
existing unmixing algorithms, nlCA [4] and NMF [7] in this
section. The simulated data, fifteen DCE-MRI images, were
generated by mixing the given 3 TACs and the APDs as
shown in Fig. I. We also added zero mean Gaussian noise
to the 15 generated DCE-MRI images such that signal-to­
noise ratio (SNR) equals 25 dB, where SNR is defined as

SNR = I:lllx(i)112
/ (j2 LN in which (j2 is the noise

variance. To numerically measure the performance of the
various unmixing algorithms, we use the correlation
coefficient between TACs and their estimates, given by

I K [a j - m(a j )]T[a71o - m(a71o )]

p= K~~~ 118i -m(8i )lllla,,;'-m(a,,;')11
where m(a j ) = (1 T a j / L)1 is the mean vector of TAC 8 j ,

and OK = {n = (1rI, ... ,1rN) 11r; E {1, ... ,K},1r; #-1r/"di #- J}
is the set of all permutations {I, ... K} . The larger the value

of p , the better the performance of the algorithm under

evaluation. The simulation results are given in Table I. The
estimated TACs are shown in Fig. 4. Both of Table I and
Fig. 4 show that the framework is promising due to much
better estimation accuracy for the obtained estimates of
TACs and APDs, compared with NMF and nICA.

Methods Framework NMF nlCA

p I TACs 0.9194 0.8743 0.7835
I APDs 0.7718 0.6636 0.5777

Table I: Perfonnance comparison of p over our reported framework,

NMF, andnlCA.

/ 0.0>

.........~<~.·...•l
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Fig. 4: (a) The true APDs and the estimated APDs obtained by (b) our
reported framework, (c) NMF, and (d) nICA. The blue solid, red-broken,
and green-dot curves stand for the TACs associated with plasma input, fast
flow, and slow flow, respectively.
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5. EXPERIMENTS AND DISCUSSION

We report herein the application of our convex analysis of
mixtures framework [11] in a longitudinal study to monitor
a breast tumor's response to anti-angiogenic therapy. DCE­
MRI has been suggested as a potential endpoint in
assessment of the response to therapy [12]. Three sets of
DCE-MRI data were acquired before and during the
treatment period, each with three-months apart. Figure 5
shows three sets of DCE-MRI images and the highlighted
regions presenting the same tumor's functional appearance.
We can apparently observe that the tumor sizes vary over a
half year of longitudinal study, and thus the spatial
permeability maps (the APDs or sources) must change for
sure. However, we do not know whether the TACs shall
change over the treatment period or not. Hence, we consider
two hypotheses as follows: in a longitudinal study, (H 1)
both of TACs and APDs change, and (H2) TACs remain the
same but APDs change.

and very few pixels of slow perfusion remained; see the top
row of Fig. 6. Upon administration of angiogenic inhibitor,
a transient "tumor vasculature normalization" takes place
[17]. Explicitly, in the beginning of anti-angiogenic therapy,
the phenomenon "vessel normalization" occurs in many
pixels where the perfusion is significantly reduced; see the
middle row of Fig. 6. After treatment, the perfusion in most
area is further normalized with slower perfusion, and the
original normal microvasculature remains stable as expected;
see the bottom row of Fig. 6. The corresponding 3D scatter
plot of these three sets of estimated APDs are shown in Fig.
7. Most of the estimated APD pixels are either in the
vicinity of the axes or near the coordinate planes of the first
quadrant, indicating that all the observed pixels are totally
unmixed and bounded by non-negativity.

Table II: The percentage of the discarded observed pixels for each data set
via pixel filtering with hybrid criterion.

(d)(c)(b)(a)

Fig. 6: Three sets of TACs and APDs estimated respectively by our
framework in a longitudinal study. (a) The estimated TACs corresponding
to fast/slow perfusions and plasma input, and the estimated APDs
associated with (b) fast flow, (c) slow flow, and (d) plasma input.(b)(a)

Fig. 7: The 3D scatter plots of the APDs estimated separately via our
framework for (a) the data set before treatment, (b) during treatment, and (c)
after treatment. The blue dots are the estimated APDs and gray crosses are
the normalized APDs.

Fig. 5: Three sets of DCE-MRI data of the same tumor were acquired and
shown in (a). The tumor sites were depicted via human-computer
interaction and are highlighted in (b). The date in the left-bottom area of
each data set denotes the acquisition date.

To verify the above two proposed hypotheses, we design
two experiments as follows. For hypothesis (H1), we shall
apply our reported framework to each of DCE-MRI data
sets separately. In the processing steps of the framework,
the resultant percentage of the discarded pixels through
observed pixel filtering for each data set is listed in Table II,
and the pre-assigned number of clusters using in nCCA, say
P, is set to 15. The experimental results are shown in Fig. 6.
Before treatment starts, most pixels exhibit fast perfusion

(a) (b) (c)
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For hypothesis (H2), we may consider the estimated TAC
before the therapy starts as a baseline, and then
subsequently estimate the APDs in the follow-up studies to
see whether the spatial distribution of fast/slow permeability
and plasma input changes. We would expect that the
permeability map associated with fast flow shall take less
fraction of the total tumor volume during and after the
antiangiogenic therapy. The 3D scatter plots of the
estimated APDs are shown in Fig. 8. The similar
observation as Fig. 7 can be seen that all the observed pixels
are unmixed to axes or the coordinate planes of the first
quadrant.

(a) (b) (c)
Fig. 8: The 3D scatter plots of the APDs estimated by non-negative least­
squares fitting using the estimated TAC before therapy as a baseline. (a)
The data set before treatment, (b) during treatment, and (c) after treatment.

Although the case in the longitudinal study does not
display a clear active angiogenesis peripheral ring and a
hypoxia core which usually appear in spatial permeability
maps associated with fast/slow flows, it indicates a more
homogeneous spatial mixture or we can say it is a relatively
early-stage and very active angiogenic tumor. On the other
hand, our results also show that the abnormal structure and
function of tumor vasculature are normalized via the
administration of anti-angiogenic agents. This observation is
surprisingly consistent with the concept reported in [17].

6. CONCLUSION

We have applied our reported hybrid convex analysis of
mixture framework [11] to a longitudinal study in DCE­
MRI. Our preliminary experimental results coincide with
underlying biomedical expectations and this longitudinal
study indicated a promising and successful utility of the
reported framework for assessing the efficacy of the anti­
angiogenic therapy. Given the difficulty of the task, while
the optimality of this method may be data-dependent, we
would expect it to be a very effective tool in efficacy
analysis of angiogenesis inhibitors in cancer treatment.
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