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ABSTRACT

The max-min-fair transmit beamforming problem in multigroup broa-
deasting has been shown to be NP-hard in general. Recently, a poly-
nomial time approximation approach based on semidefinite relax-
ation (SDR) has been proposed [1]. Tt was found [1]. through com-
puter simulations, that this method is capable of giving a good ap-
proximate solution in polynomial time. This paper shows that the
SDR based approach can guarantee as least an O(1/M) approxima-
tion quality, where M 1s the total number of receivers. The existence
of such a data independent bound certifies the worst case approxima-
tion quality of the SDR algorithm for any problem instance and any
namber of transmit antennas.

Index Terms— Transmit beamforming, broadcasting, semidef-
mite relaxation, approximation bound.

1. INTRODUCTION

The multicast transmit beamforming problem has become a subject
of great interest recently [1-5]. In contrast to traditional broadcast-
ing methods which radiate signal power isotropically and separate
groups using non-overlapping spectra, the multicast transmit beam-
forming uses the multiple antennas at the base station to form appro-
priate beampatterns for multiple receivers in different groups over
a common frequency band. The beampatterns can be specially de-
signed to reduce the cochannel interference between groups and to
achieve desired quality of service at each receiver.

For the max-min-fair transmit beamformer {1, 3], the beampat-
terns are designed such that minimum signal to mterference plus
noise ratio (SINR) at recetvers is maximized under a power con-
straint at the base station. In the single-group broadcasting sce-
nario [5], the max-min-fair transmit beamforming problem has been
shown to be NP-hard in general. Fortunately, 1t is possible to obtain
a good approximate solution by a semidefinite relaxation (SDR) ap-
proach [5]. The SDR approach requires solving an associated semi-
definite program followed by a simple randomization procedure to
generate a feasible solution, all of which can be completed in poly-
nomial time. It has been proved in [6] that, in the single-group case
the SDR approach essentially guarantees a worst case O(1/m1) ap-
proximation quality, where m denotes the total number of receivers.
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In the general multigroup scenario, it was found [1] through ex-
tensive computer simulations that the solution of the max-min-fair
transmit beamforming problem can also be approximated well by a
SDR based approach. This approach solves a generalized linear frac-
tional program (in polynomial time) followed by arandomization/mul-
tigroup-power-control loop {1]. In this paper, we present an analy-
sis which shows that the SDR based approach can provide at least
o/ Zf: | ™) approximation quality, where (7 denotes the num-
ber of groups and my, is the number of recetvers in group k. Some
simulation results are also presented to illustrate the empirical worst
case and average approximation qualities of the SDR based approach.

2. MULTICAST TRANSMIT BEAMFORMING

Consider a scenario where a base station equipped with N trans-
mit antennas broadcasts & (G > 1) independent data streams to
M (M = Zf: 1 M) single-antenna receivers over a common fre-
quency band. Each of the receivers belongs to one of the G groups,
and the receivers in a group are interested in a common data stream.
Letsp(t) and wy, € TN denote the broadcasting data stream and the
transmit weight vector for the &th group, respectively. The transmit-
ted signal in the base station is given by Z;; L wi (). Assume
that sx(2), k = 1,..., G, are statistically independent and are tem-
porally white with zero mean and unit variance. Let by ; € C N
denote the random channel vector between the base station and the
ith receiver in group k. The SINR of the ¢th receiver in group k& is
given by

wi Ry iws

(77
SINRg Zj/’k wf Ry w; + (I}‘iﬂ:

where Ry ; = L{hp,hfil} is the channel correlation matrix and
afvz is the noise variance.

The idea of transmit bearforing 1s to design the weight vectors
wy, such that each receiver can retrieve the signal of interest with
desired quality of service. The quality of service is usually measured
in terms of SINR. The max-min-fair transmit beamforming [1,3] is
one of the effective criteria to achieve this goal. It maximizes the
mintmum SINR among M receivers subject to the power constraint
of P > 01in the base station. Mathematically, it can be formulated
as the following optimization problem

wka?iwk

' = max min
S — ol 2

‘wk€‘~@1\’ zr:;l,...,m_;; 22 i lL‘j R};yi'lﬂj + 0-;%2‘

k=1,...,G k=1..G

o
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1t has been shown in [1] that problem (1) is NP-hard in general |,
therefore an approximation method for obtaining a good approxi-
mate solution in polynomial time is desired. In [1], Karipidis et al.
proposed an approximation method based on SDR. To illustrate this,
we define Wi, = wiwil and rewrite problem (1) as

X U"(R;; ,iWk )
max min

A . . . 2
\Ykgcl\fjl\« zliﬂzlc 2tk tI (Rk-,v/wj) +O—k,i
h=1,...,& = 2 ’

*
w

2

a
8.1, Ztr(wk) < P,
k=1
Wi = 0, rank(Wi)=1,k=1,...,G,

where tr(-) stands for the trace of a matrix. By dropping the only
non-convex constraint rank(Wy) = 1, we obtain the following re-
laxation counterpart of problem (1)

X ill‘(Rk,iW;J

4 . )
9 2o TR W) +0f

3

8.1 Z tr(Wp) < P,
k=1
Wi -0, k= LG

Note that v* > 4 since the feasible set of problem (2) is a subset of

that of problem (3). Instead of being NP-hard as problem (1), prob-
lem (3) 1s a generalized convex linear fractional program and can be
solved by the bisection algorithm [8] in polynomial time. The SDR
based approximation method proposed in [ 1] 1s to solve problem (3)
m the first stage. In the second stage, based on the solution of (3)
a randomization/multigroup-power-control loop is applied to obtain
an approximate solution of problem (1). Please refer to [1] for the
details.

3. ANALYSIS OF APPROXIMATION BOUND

In this section. we show that the SDR based approximation approach
mentioned in Section 2 has at least O(1 /M) approximation quality.
To this end, let us consider the following problems which is closely
related to problem (1)

. wl A jw
min  —————
1,....,.0M u}Hiju) -+ 1

s.t. waw < P.

w” 4)

max

By defining w = [wlT w%]T € C" where n = GN, one can
reformulate problem (1) into the same form as problem (4) with ma-
trices Ay and B; being block diagonal matrices defined by channel
correlation matrices Ry ; and noise variance (rfg Thus problem
(4) serves as a generalization of problem (1), and the approximation
bound for (4) can directly apply to problem (1). It follows from (2)
and (3) that the relaxation counterpart of problem (4) 1s given by

tr(A,; W)
oM (B, W 4 1
st tr(W) < P,
W 0.

* .
v = max 11

WegnRn =l

3)

The main theoretical result of this paper is presented in the following
theorem.

T Two special scenarios for which problem (1) can be solved in polynomial
time can be found in [7] and {2].
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Theorem 1 For problem (4) and its velaxation problem (5), the ratio
v fut == 1 for M < 3, and for M > 3

*

]

Y < 300
u?’(

1< (6)

Besides, for M > 3 consider the randomization procedure:

(S1) Solve (5) using bisection algorithm and let W™ be an optimal
solution. Let L > 0 be an integer.

ek
L)

(82) For € = 1,2,..., L, generate a random vector & &
the complex Gaussian distribution N.(0, W™), and let

Jrom

w' — VPe/|g|
and (ONH )
) (DY A
© ) (1 ) ju .
wor P (wO) B w® 1 "
(83) Suppose

%

) )
£ =arg max {u'h
'(1:1,2,.“71/{ }

/oK
Then select w'®) as the approximate optimum solution of

(4), and let 0 = )
Then
4%
e i < 8
P e ©

with probabiliry at least 1 — (0.9393)F.

Note that (8) implies that the SDR based method can achieve at least
1/(30M) approximation quality in randomized polynomial time.
3.1. Proof of Theorem 1

The following lemmas are developed for the proof of Theorem 1:

Lemma 1 The rank of the optimum solution W™ of problem (3) is
upper bounded by v/ M.

Proof: For the function f(z,y) = x> 0and y > 0,
Bz, By) > fla,y) forany B > 1. Consider the optimization

problem

=z
y+17

X*

min
Ke(nin

tr{A;X) .
tr(B,X)+1 —
X >0

= tr(X) )

arg

*

Ci= 1, M,

It can be readily checked that W™ is feasible for problem (9), and the
power constraint in problem (5) would be active, i.e., tr(W*) = P.
Hence tr(X*) < tr(W*). Suppose that tr(3*) < tr(W*) = P.
One can scale X* to X* = 8X* where 3 = P/tr(X*) > 1, and
obtain

. tI(AjX*)
mm —m———
J=le M tr(B; X5y + 1

which contradicts the optimality of W™ for (5). Thus tr(X*) =
tr(W™), i.e., W is also an optimum solution of (9). Since problem
(9) 1s a semidefinite program, it has been shown [9] that

rank(W*) < v M.
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Lemma2 let A € C"" and B € C™*" be two Hermitian posi-
tive semidefinite matrices (A > 0,B = 0,B £ 0), and &€ € C" be
a random vector with complex Gaussian distribution N,(0, W*).
Then

o (€ Ag
' <£HB5 F

B Ag
'E(€7BE) 1+ 1

2
3y 5
< max | T
o2y \ =5 — 3y

where 7 = min{rank(A),rank(W*)}, 0 < v < min{ g, 1 2=2},
and 0 < o < L.

Due to space limit, the proof of Lemma 2 (which will be reported
in [10]) is omitted here. With Lemmas 1 to 2, we can prove Theorem
1.

Proof of Theorem I: By Lemma 1, for M < 3 there exists a
solution of problem (3) with rank(W”™) = 1. Hence for M < 3,
v* = w*. This rank-1 solution, which is feasible to (4) and has an
objective value 4* equal to u*, can always be obtained via a matrix
decomposition procedure [9]. Therefore, ~eqr == 1 for M < 3. To
obtain (6) for M > 3, we consider to prove that

o §7AGL

br (,33.1.1%1 iB,E 1=
fory =1/(16M) and . = 15/8, where &€ € C" is a random vector
with complex Gaussian distribution AV (0, W LI (10 1s true, then
there exists a realization of £ which sansﬁes 3 f < (15/8)P and

mm £HA < > ! v
Ge= M EHB; jE-41 16M )

, & £<;1P>>O (10)

Leté = v/ 8/15{3 which then is feasible for problem (4) (i.e., e <
Py and satisfies

‘L v* < min ﬁ < u, (11
30M =t M EHBE 1

which is part of (6).
‘We now prove (10). Note that the left hand side (1..11.5.) of (10)
can be lower bounded as follows

HA, . ,
w—ng 451 > 0", e < uP)

M A, 7
>1—ZP1 ({HfB ﬁil < Yo ) —Pr(£H£>uP>

Pr ( ~ min

§7A¢

L tr(A,; W*)
>1=S Pr{— > ]
- ]Zl ' <£HB.7£ 1 Tum W + 1>

= Pr (g6 > ur (W) (by 5)
M ”A {

- A,RK”A£}>
- ZP <£HB €11 "E{eFBE) 1 1

Pr ({ﬂﬁ > p/F‘/{éHﬁ}) (since £ ~ N (0, W™))
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where (}2) is b} M(ukov incqudlitv and the hst stcp (B) 1s due to

2
3y 5
o i . (14)
o — 27y T =3y

Hence, for M > 3and g = 15/8,

) . A ok GH,
P, gy 2 €S
7 3y 7 3
> oMl = L2 50,0607, (I5
=15 a_2y 15 TR0 —2/M 7, (13

which establishes (10). This further implies that (11) holds.

To complete the proof, let &* be generated by the SDR procedure
for solving (4). Then, for each ¢, it follows from (7), (11) and (15)
that w'® = /P¢/||€]|| satisfies

w (/Z))HA

1 . W L
(:?.{)M)“ S My OB @ 1 19

with probability at least 0.0607. If one generates [ independent real-
izations of £ from the distribution AV {0, W), then itis at least with
probability” 1 — (1 —0.0607)% to obtain one £ which can achieve the
approximation quality in (16). Since 4~ max{u(l), e ,’lL(L)}, it
follows that (8) holds with probability at least 1 — (0.9393)%. The-
orem 1 is proved. | ]

4. SIMULATIONS AND DISCUSSIONS

In Section 3, we have presented a worst case analysis for the SDR
based approximation method [1] for the multicast max-min-fair trans-
mit beamforming problem. We have shown that the SDR based
method can guarantee at least an O(1/M) approximation quality
for any problem instance (e.g., any channel correlation matrix Ry ;
and noise variance 0}%75) and any number of transmit antennas V.

While the worst case approximation bounds in (6) and (8) have
their own theoretical sigmficance, the empirical approximation qual-
ity may be of great interest in practical applications. Here let us
present the empirical approximation qualities for problems (4) and
(5) from 1000 randomly generated problem instances. For each
problem instance, the positive semidefinite matrices A ; and B ; were
generated as follows [11]. For full rank A ;, we set

A; = QY

where *“+” and “randn” are Matlab notations, and Q@ € C"*" is a
unitary matrix obtained by QR factorization of a randomly generated
n X n complex matrix. For rank-1 A;, we set

x diag{randn{n, 1)} * Q an

A= Q x diag{randn(1),0,,_,} * Q, (18)
where 0,1 is the (n — 1) X 1 zero vector. Matrices B ; were gener-
ated in the same way as full rank matrices A ;. The pr()bkm (5) was
solved by the bisection algorithm [8] wharum SeDuMi [12] was em-
ployed to handle the associated feasibility problems. The random-
1zation procedure was performed as in Theorem 1 with L = 500.
Because the empirical quality bound v* /4" is greater than the true
ratio v* /u*, the former was used to approximate the latter.

2For L = 50, this probability is 0.0563.
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Figure 1. Empirical approximation qualities for n = 10, P = 10
and full rank A ;.
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Figure 2. Empirical approximation qualities for n = 10, P = 10
and rank one A ;.

Figures 1 and 2 present the empirical qualities for n = 10 and
P = 10 when A; are full rank and are rank one, respectively. The
symbols “0” (“A”) denote the maximum (minimum) value of v* /4
for 1000 problem instances, and the symbols “o” represent the aver-
age value. One can see from these figures that in the average sense
the SDR based approximation method provides very good approx-
imation quality (v*/u* < v*/4* < 3), and the bounds get larger
when M increases. From Fig. 2, one can also observe that the sym-
bol “{” of maximum value increases with M roughly in a linear
manner. In fact, one can show [10] that the presented bound in (6)
can be tight (up to a constant scalar) in a special problem scenario
where all A ; are rank one. Figure 3 shows the histogram of empiri-
cal qualities for n = 10, P = 10 and M = 45. From Figures 1 to
3, one can see that the approximation quality when A ; are full rank
is much better than that when A ; are rank one.
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Figure 3. Histogram of empirical approximation qualities for n =

10, P = 10and M = 45.
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