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ABSTRACT In the general multigroup scenario, it was found [1] through ex-
tensive computer simulations that the solution of the max-min-fairThe ax-m-firtansit eamfrmig pohle inmuligrop hoa- transrmit beamforming problemn can also be approximated well by a

dcastinlg has been shownl to be NP-hard In genleral. Recently, a poly- trnmtbafmigpolmcnlsbeprxmtdwllya
dcmiasting haspheenrhowationheaNpprhbaredigener. Redefintl aepo- SDR based approach. This approach solves a generalized linear frac-

ation apprac bas on seIdeinte rea- tional program (in polynomial time) followed by a randomization mul-
putersimulation(D hs,been proposmethd[ it wasableofound ig

[ rou co- tigroup-power-control loop [1]. In this paper, we present an analy-
puter simulaionstat thi metho iscpablefgivigagodap- sis which shows that the SDR based approach can provide at least

proximate solution in polynomial time. This paper shows that the 0(1/ ZG Mk) approximation quality where G denotes the num-
SDR based approach can guarantee as least an (0(1/lMA) approxima- ,k=l.ber of groups and mk is the number of receivers in group k. Some
tion quality, where M is the total number of receivers. The existence simulation results are also presented to illustrate the empirical worst
of such a data independent bound certifies the worst case approxima- case and average approximation qualities of the SDR based approach.
tion quality of the SDR algorithm for any problem instance and any
number of transmit antennas.

2. MULTICAST TRANSMIT BEAMFORMING
Index Terms- Transmit beamforming, broadcasting, semidef-

inite relaxation, approximation bound. Consider a scenario where a base station equipped with N trans-
mit antennas broadcasts G (G > 1) independent data streams to

1. INTRODUCTION Ml (MI =-ik mO) single-antenna receivers over a common fre-
quency band. Each of the receivers belongs to one of the G groups,

The multicast transmit beamforming problem has become a subject and the receivers in a group are interested in a common data stream.
of great interest recently [1-5]. In contrast to traditional broadcast- Let Sk (t) and w k CN denote the broadcasting data stream and the
ing methods which radiate signal power isotropically and separate transmit weight vector for the kth group, respectively. The transmit-
groups using non-overlapping spectra, the multicast transmit beam- ted signal in the base station is given by EG W Sk (t). Assume
forming uses the multiple antennas at the base station to form appro- that Sk (t), k = 1, ..., G, are statistically independent and are tem-
priate beampatterns for multiple receivers in different groups over porally white with zero mean and unit variance. Let hk,i C CN
a common frequency band. The beampatterns can be specially de- denote the random channel vector between the base station and the
signed to reduce the cochannel interference between groups and to ith receiver in group k. The SINR of the ith receiver in group k is
achieve desired quality of service at each receiver. given by

For the max-min-fair transmit beamformer [1, 3], the beampat- SINR - WkRk_iWk
terns are designed such that minimum signal to interference plus WH Rk,SNRjW 7

noise ratio (SINR) at receivers is maximized under a power con- Li kwJRewj+ kki
straint at the base station. In the single-group broadcasting sce- e Re'} , s l io m ixl

2
narin [5], the max-min-fair transmit beamforming problem has been o'e iS the noise variance.
shown to be NP-hard in general. Fortunately, it is possible to obtain The idea of transmit beamfoming is to design the weight vectors
a good approximate solution by a semidefinite relaxation (SDR) ap- wk such that each receiver can retrieve the signal of interest with
proach [5]. The SDR approach requires solving an associated semi- desired quality of service. The quality of service is usually measured
definite program followed by a simple randomization procedure to in terms of SINR. The max-min-fair transmit beamforming [1, 3] is
generate a feasible solution all of which can be completed in poly- one of the effective criteria to achieve this goal. It maximizes the
nomial time. It has been proved in [6] that in the single-group case minimum SINR among IA receivers subject to the power constraint
the SDR approach essentially guarantees a worst case 0(1/mi) ap- of P > 0 in the base station. Mathematically it can be formulated
proximation quality where mi denotes the total number of receivers, as the following optimization problem
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It has been shown in [1] that problem (1) is NP-hard in general 1, Theorem 1 Forproblem (4) and its relaxation problem (5) the rtio
therefore an approximation method for obtaining a good approxi- v*/u* = 1 forM < 3, andfor Al > 3
mate solution in polynomial time is desired. In [1], Karipidis et al.
proposed an approximation method based on SDR. To illustrate this, V < 30M. (6)
we define Wk = WkWk and rewrite problem (1) as u

U* max min
tr(Rk,iWk) Besides for 1I > 3 consider the randomization procedure:

WA CNXN i=l,. ,h Z tr(Rk,iW ) + k7 (Si) Solve (5) usingbisectionalgorithm andletW*be an optimal
k:1,...,G k-L...,G k + solution. Let L > 0 bean integer
G

t V t(W) .< (S2) For f = 1 2,..., L generate a random vector ( C'S fromS.
1

. iL fv ky_,the complex Gaussiandistribution c(O, W*), and let
k=1

Wk FO, rank(Wk) = 1, k = 1, ...,G, wP(t)

where tr(.) stands for the trace of a matrix. By dropping the only and
non-convex constraint rank(Wk) = 1, we obtain the following re- (w())HAj)wH()
laxation counterpart of problem (1) u m in (w ) B + . (7)

)=.f(W(f))HI3jw(e) + I
v WA.mill tr(Rk,iWk)

v =Amax mrnW (3) (S3) Suppose
Wk iENgk Ej.+ tr(Rk,iWi) + Ck7i (rg mx )

k c k 1G arg max Lik=l, . ,G - X X t~~~~~~~~~~~~~~~~~~~=1,2, ...,L
s.t. ZtrWk) ._ P, Then select w(t ) as the approximate optimum solution of

k=1 (4), and let 1t*= i/.
WkHO, k=1, ... G. Then

Note that v* > u* since the feasible set of problem (2) is a subset of 30 * K 3U (8)
that of problem (3). Instead of being NP-hard as problem (1), prob- I
lem (3) is a generalized convex linear fractional program and can be with probability t l
solved by the bisection algorithm [8] in polynomial time. The SDR Note that (8) implies that the SDR based method can achieve at least
based approximation method proposed in [l] is to solve problem (3) 1/(30AI) approximation quality in randomized polynomial time.
in the first stage. In the second stage, based on the solution of (3)
a randomization/multigroup-power-control loop is applied to obtain 3.1. Proof of Theorem 1
an approximate solution of problem (1). Please refer to [1] for the
details. The following lemmas are developed for the proof of Theorem 1:

3. ANALYSIS OF APPROXIMATION BOUND Lemma 1 The rank of the optimum solution W* of problem (5) is
upper bounded by Al.

In this section we show that the SDR based approximation approach
mentioned in Section 2 has at least 0(1/A1) approximation quality. Proo: Forthefunction f(X, Y) - y+i x > 0andy > 0,
To this end, let us consider the following problem which is closely f (3x, /3y) > f(x y) for any 3 > 1. Consider the optimization
related to problem (I) problem

WHA* - max i w Ajw X arg min tr(X) (9)
it = max mi-n Hj +1 (4) xEc¢rXnrwCC¢t j=1,..,I1A WHB3w + 1 XEX

H ~~~~~~~~~~~~tr(AjX)*s.t. wHw < P. S.t tr(B X)+ >-

By defining w = [WT,..., WT]iT C C' where n = GN, one can X > 0.
reformulate problem (1) into the same form as problem (4) with ma-
trices Aj and Bj being block diagonal matrices defined by channel It can be readily checked that W* is feasible for problem (9), and the
correlation matrices Rk, and noise variance ak2i- Thus problem power constraint in problem (5) would be active, i.e., tr(W*) = P.
(4) serves as a generalization of problem (1) and the approximation Hence tr(X*) < tr(W*). Suppose that tr(X*) < tr(W*) = P.
bound for (4) can directly apply to problem (1). It follows from (2) One can scale X* to X* = /X* where /3 P/tr(X*) > 1, and
and (3) that the relaxation counterpart of problem (4) is given by obtain

tr(AjW) tr(AjX*)max mi (,5) Y;ktr(X) = P, min - > v
W -rn j-1 N,A'tr(BjW) + 1 .' j=1 N,tr(BjX*) + 1
s.t. tr(W) < ' which contradicts the optimality of W* for (5). Thus tr(X*)

tXim cn he toud* \. *in d [. U.

,trw l..,W L as a ohnurlslulLno194.SLc rbLr
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Lemma 2 Let A C C aand B e C">x be two Hermitian posi- where (12) is by Markov inequality, and the last step (1 3) is due to
tive semidefinite matrices (A - 0, B - 0, B 0O), and ( C' be Lemma 2. Because r < Al by Lemma 1, by choosing a 0.4932
a random vector with complex Gaussian distribution JV,(O, W*). and -y = 1/(16Al) one can show that for I > 3,
Then

Pr (jHA < E(tHBA+1) a32-y > (1 773-) (14)

<max (H7)2 Hence, for A > 3 and f 15/8,- ) og ~-2y' 1-_3-y
P i ~ j

>
H

where L- min{rank(A), rank(W*)} 0.< < min{f2{ f? } Pr 32jn A1HBj.+1I-y* 1t
andO< . 7 K 3y 7 3

> -Al >0.0607 (15)Due to space limit, the proof of Lemma 2 (which will be reported - 15 a - - 15 7.8912 - 2/l
in [10]) is omitted here. With Lemmas 1 to 2, we can prove Theorem
1. which establishes (10). This further implies that (11) holds.

To complete the proof, let Al be generated by the SDR procedure
Proof of Theorem 1: By Lemma 1, for IkI K 3 there exists a for solving (4). Then, for each f, it follows from (7), (11) and (15)

solution of problem (5) with rank(W*) = 1. Hence for M < 3 that w P/ satisfies
v* u*. This rank-I solution, which is feasible to (4) and has an
objective value u* equal to u*, can always be obtained via a matrix ( 1 * < mm (w( ))HAjw() -U (16)
decomposition procedure [9]. Therefore, /sdr =1 for M < 3. To K30OMl - _ (w( ))HB3jw() + 1
obtain (6) for l> 3, we consider to prove that

/HA
H

with probability at least 0.0607. If one generates L independent real-
Pr minill ' >A,H <p > 0 (10) izations of from the distribution A(0, W*), then it is at least with

j=1'...'MBj) +I probability2 1- (1- 0.0607)L to obtain one ( which can achieve the
for = 17(16M1) and = 15/8, where fC YC is a random vector approximation quality in (16). Since *= max{u(1),..., u(L) }, it
with comrlplLex Gaussian distributionc (O, W*). If (I0) is true, then follows that (8) holds with probability at least 1 - (0.9393)L, The-
there exists a realization of ( which satisfies (Hf < (15/8)P and orem 1 is proved. U

(HAjf I
min HA > (1 vjm1.M (HBj +1 K16MA} 4. SIMULATIONS AND DISCUSSIONS

Let - 8/15i which then is feasible for problem (4) (i.e., H < In Section 3, we have presented a worst case analysis for the SDR
P) and satisfies based approximation method [I ] for the multicast max-min-fair trans-

1HA - mit beamforming problem. We have shown that the SDR based
v* < min ,<U (11) method can guarantee at least an 0(1/NI) approximation quality

(3o1Al =1~.. HflJ(B + 130M HBj~+ I for any problem instance (e.g., any channel correlation matrix Rk,i
which is part of (6). and noise variance oak i) and any number of transmit antennas N.

We now prove (10). Note that the left hand side (L.H.S.) of (10) While the worst case approximation bounds in (6) and (8) have
can be lower bounded as follows their own theoretical significance, the empirical approximation qual-

( tHAHH P ity may be of great interest in practical applications. Here let us
Pr min > W (Hl < AP present the empirical approximation qualities for problems (4) and

j=1 .... A/Im HBj +1I - (5) from 1000 randomly generated problem instances. For each
>I

HA
<

7 problem instance, the positive semidefinite matrices Aj and Bj were

_ K V -P-'r( > "P1- -30

Pr (HBj2+1' generated as follows [II]. For full rank Aj we set
:i=1

M HAj tr(AjW*) Aj QH * diag{frandn(n, 1)} Q (17)
.Z1 Hjl2 I tr(BjW*) 1 / where "s" and "randn" are Matlab notations, and Q C C"'S' is a

rH ,> ( * ( unitary matrix obtained by QR factorization of a randomly generated-Pr 7j2/ILr~v)) (b (5))
n x nt complex matrix. For rank-I Aj, we set

M A E{ HAAjT
-1- Pr ( < _y AK = Q * diagfra(nnl), ° l . * Q, (18)

Hfl3 + |1 E{ Hfl }sHBj=l+,|wI
<

tE'fHBJj I
n

/ where On- is the (n - 1) x 1 zero vector. Matrices Bi were gener-
-Pr ($Hs> jE{ (ss})(since A,A(J0, W*)) ated in the same way as full rank matrices Aj. The problem (5) was

r H H solved by the bisection algorithm [8] wherein SeDuMi [12] was em-
.1- Pr HA { AA }S - ()I plo-edto handle the associated feasibility problems. The random-

f= HB;l2;;+ 1 E{, H;lJ,;} +1 i ization procedure was performedL as in Theorem 1 with L 500)O.
Because thle empirical quality bounld v*/Al iS greater thanl the tine

__ lV ma I7 )}<y0 ratio v*/u*, the former was used to approximate the latter,
(1 L3

j= 2- For L =50 this prohability is 0.9563.
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