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ABSTRACT

Hyperspectral unmixing is a process of extracting hidden spectral
signatures (or endmembers) and the corresponding proportions (or
abundances) of a scene, from its hyperspectral observations. Moti-
vated by Craig’s belief, we recently proposed an alternating linear
programming based hyperspectral unmixing algorithm called mini-
mum volume enclosing simplex (MVES) algorithm, which can yield
good unmixing performance even for instances of highly mixed data.
In this paper, we propose a robust MVES algorithm called RMVES
algorithm, which involves probabilistic reformulation of the MVES
algorithm, so as to account for the presence of noise in the observa-
tions. The problem formulation for RMVES algorithm is manifested
as a chance constrained program, which can be suitably implemented
using sequential quadratic programming (SQP) solvers in an alter-
nating fashion. Monte Carlo simulations are presented to demon-
strate the efficacy of the proposed RMVES algorithm over several
existing benchmark hyperspectral unmixing methods, including the
original MVES algorithm.

Index Terms— Convex analysis, Hyperspectral unmixing,
Minimum-volume enclosing simplex, Chance constrained program,
Sequential quadratic programming

1. INTRODUCTION

In recent years, lots of attention have been drawn towards hyperspec-
tral unmixing (HU), which decomposes the hyperspectral observa-
tions over multiple bands into a collection of endmember signatures
and their corresponding proportions (or abundances) [1–8, 13]. The
algorithms for HU can generally be classified into two groups. Al-
gorithms in the first group are based on the conventional pure pixel
assumption (pixels in the observations that are fully contributed by
a single endmember). This includes N-finder (N-FINDR) [2] and
vertex component analysis (VCA) [3]. However, for highly mixed
data where pure pixels do not exist, these methods may not perform
well. Algorithms in the second group are devised without relying
on the pure pixel assumption. This includes minimum volume trans-
form (MVT) [4], joint Bayesian algorithm (JBA) [5], and minimum
volume simplex analysis (MVSA) [6]. In the development of effec-
tive HU algorithms, a key aspect that has raised concerns recently is
how to account for the presence of noise. All the algorithms men-
tioned above, except for JBA [5], inherently assumes no noise being
present in the model. JBA employs a Bayesian estimation frame-
work to accommodate this problem. While the criterion of JBA is
optimal statistically per se, the complexity required to implement it
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is a challenge. Recently, Bioucas [7] has improved his MVSA algo-
rithm by incorporating soft (or hinge) constraints, so that the effects
of outlier pixels caused by noise can be mitigated.

Very recently, Chan et al. developed an alternating linear pro-
gramming based HU algorithm called minimum volume enclosing
simplex (MVES) algorithm [8] based on Craig’s belief that the ver-
tices of a minimum-volume simplex enclosing all the observed pix-
els should serve as a high-fidelity estimates of the endmember sig-
natures [4]. The MVES algorithm is developed by considering a
noise-free linear mixing model, and it shows promising results for
highly mixed data.

In this paper, we consider a noisy scenario where the obser-
vations are corrupted by zero-mean additive white Gaussian noise.
Based on Craig’s belief [4], we reformulate the HU problem (with
noisy observations) as a robust MVES (RMVES) optimization prob-
lem. Since the probability distribution of the noise is assumed to
be known, we incorporate the chance constraints in the RMVES
problem formulation. Our optimization approach to the new prob-
lem formulation is to use a divide-and-conquer strategy: we break
the original problem into a multitude of subproblems, where each
subproblem is less difficult to handle and computationally easier to
manage. More specifically, we solve the subproblems in an alternat-
ing fashion, where each subproblem is implemented by sequential
quadratic programming (SQP) solvers. Through extensive simula-
tions we show that the RMVES algorithm is more robust to noise
with better performance especially for data with lower purity levels.

The notations used in this paper are standard. To mention those,
R

M and R
M×N represent a set of real M × 1 vectors and M × N

matrices, respectively, IN is an N × N identity matrix, 1N repre-
sents an N × 1 all one vector, and 0 is an all-zero vector of proper
dimension. The symbol � denotes the componentwise inequality,
‖ · ‖2 represents the Euclidean norm, and N (μ,Σ) corresponds to
Gaussian distribution with mean vector μ and covariance matrix Σ.

2. PROBLEM STATEMENT AND ASSUMPTIONS

Suppose that a hyperspectral sensor with M spectral bands mea-
sures solar electromagnetic radiation reflecting from N distinct sub-
stances. Each pixel vector of the measured hyperspectral image cube
can be described by an M × N linear mixing model [1–4]:

y[n] = x[n] + w[n], (1)

x[n] = As[n] =

N�

i=1

si[n]ai, ∀n = 1, . . . , L. (2)

Here, y[n] = [ y1[n], . . . , yM [n] ]T is the nth noisy observed pixel
vector comprising M spectral bands, x[n] = [ x1[n], . . . , xM [n] ]T

is the noise-free counterpart, A = [ a1, . . . , aN ] ∈ R
M×N denotes
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the endmember signature matrix whose ith column vector ai is the
ith endmember signature, s[n] = [ s1[n], . . . , sN [n] ]T ∈ R

N is the
nth abundance vector comprising N fractional abundances, w[n] =
[ w1[n], . . . , wM [n] ]T is the zero-mean white Gaussian noise vector
(i.e., N (0, σ2IM ), where σ2 is the noise variance) and L is the total
number of observed pixel vectors.

The goal of hyperspectral unmixing is to estimate the endmem-
ber signature matrix A and the abundances s[1], . . . , s[L] from the
noisy observed pixels y[1], . . . , y[L], assuming that the number of
endmembers N is known a priori.

We consider the following general assumptions that are applica-
ble to HU algorithms :

(A1) (Non-negativity condition) si[n] ≥ 0 ∀ i, n.

(A2) (Full additivity condition) � N
i=1 si[n] = 1 ∀ n.

(A3) min{L, M} ≥ N and A is of full column rank.

(A1) and (A2) are valid assumptions in hyperspectral imaging
because the abundances are fractional proportions [1–4]. In addition,
the number of pixels and that of spectral bands involved are larger
than the number of endmembers and each endmember has its unique
signature, which justifies (A3).

Before getting into the core of development, we need to describe
a basic, essential concept in MVES, namely convex hull and simplex
[9]. Given a set of vectors {a1, . . . , aN} ⊂ R

M , the convex hull of
{a1, . . . , aN} is defined as

conv{a1, . . . , aN} = � x =
N�

i=1

θiai ����
1

T
Nθ = 1, θ � 0 � , (3)

where θ = [ θ1, . . . , θN ]T ∈ R
N . In addition, a convex

hull conv{a1, . . . , aN} is called a simplex if M = N − 1 and
a1, . . . , aN are affinely independent.

3. REVIEW OF MVES PROBLEM FORMULATION

The noise-free signal model given by (2) is considered here for re-
viewing the formulation and theory behind MVES problem [8]. Like
many other HU algorithms [1], we begin with dimension reduction
of the observed pixels by projecting them onto an observed-pixel-
constructed affine set [8, 10], as given in the following lemma:

Lemma 1. (Dimension reduction by affine set fitting [8]) Under
(A2) and (A3), the dimension-reduced pixel vector x̃[n] can be
obtained by an affine transformation of x[n]:

x̃[n] = C
T (x[n] − d) ∈ R

N−1, (4)

where (C,d) is the affine set fitting solution given by

d =
1

L

L�
n=1

x[n], (5)

C = [ q1(UU
T ), q2(UU

T ), . . . , qN−1(UU
T ) ], (6)

where U = [ x[1]−d, . . . ,x[L]−d ] ∈ R
M×L, and qi(R) denotes

the eigenvector associated with the ith principal eigenvalue of R.

An important remark related to Lemma 1 is as follows:

(R1) The affine set fitting solution of the noisy observed pixels
(Ĉ, d̂) (obtained from (5) and (6) by replacing x[n] with y[n])
gives a best approximation in the least-squares sense [10], and
it asymptotically approaches the true (C,d) for large L.

Since � N
j=1 sj [n] = 1 [(A2)], it follows by substituting the

noise-free signal model (2) into (4) that

x̃[n] =
N�

j=1

sj [n]αj , (7)

where αj = CT (aj − d) ∈ R
N−1 is the jth dimension-reduced

endmember signature. Moreover, due to si[n] ≥ 0 [(A1)], it has
been proven in [8] that

x̃[n] ∈ conv{α1, . . . , αN} ⊂ R
N−1, ∀n (8)

and conv{α1, . . . , αN} is a simplex.
Based on Craig’s belief [4], the unmixing problem of finding a

minimum volume simplex enclosing all the dimension-reduced pix-
els can now be written as the following optimization problem [8]:

min
β1,...,βN∈R

N−1
V (β1, . . . , βN)

s.t. x̃[n] ∈ conv{β1, . . . , βN}, ∀ n,
(9)

where V (β1, . . . , βN) is the volume of the simplex conv{β1, . . . ,
βN} given by [11]

V (β1, . . . , βN) =
|det(B)|
(N − 1)!

(10)

and B = [ β1 − βN , . . . , βN−1 − βN ] ∈ R
(N−1)×(N−1) . In

addition, by (3), we rewrite the constraint of (9) in terms of B as

x̃[n] = βN + Bθn, (11)

where θn � 0 and 1T
N−1θn ≤ 1. Hence, problem (9) can be equiv-

alently written as
min

B∈R
(N−1)×(N−1),

βN ,θ1,...,θL∈R
N−1

|det(B)|

s.t. θn � 0, 1
T
N−1θn ≤ 1,

x̃[n] = βN + Bθn, ∀ n.

(12)

By letting θn = Hx̃[n] − g for all n where H = B−1 and g =
B−1βN , one can eliminate the variables θn for all n in (12) and
come up with

max
H∈R

(N−1)×(N−1), g∈R
N−1

|det(H)|

s.t. 1
T
N−1(Hx̃[n] − g) ≤ 1,

Hx̃[n] − g � 0, ∀ n.

(13)

Next, we will show how the MVES problem in (13) can be reformu-
lated for the noisy scenario.

4. ROBUST MVES PROBLEM AND ALGORITHM

Let us consider the noisy signal model given by (1). From (1), (4)
and (R1), we get

ỹ[n] � Ĉ
T (y[n] − d̂) ∼= x̃[n] + Ĉ

T
w[n], (14)

where ĈT w[n] is a random vector following N (0, σ2IN−1) (since
ĈT is a semi-unitary matrix). Following the footsteps of the MVES
problem formulation, the robust MVES problem can be expressed
by replacing x̃[n] by ỹ[n] − ĈT w[n] in (13):

max
H, g

|det(H)|

s.t. 1
T
N−1(Hỹ[n] − HĈ

T
w[n] − g) ≤ 1,

Hỹ[n] − HĈ
T
w[n] − g � 0, ∀ n,

(15)

where 1T
N−1HĈT w[n] � z[n] and HĈT w[n] � u[n]

are a random variable and a random vector with distribu-
tions N (0, σ21T

N−1HHT 1N−1) and N (0, σ2HHT ), respectively.
Since the constraints in (15) involve randomness, they can be man-
ifested as chance constraints so as to mitigate the noise effects in
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the observations. The robust MVES (RMVES) problem (or chance
constrained problem) becomes

max
H, g

|det(H)|

s.t. Pr(1T
N−1Hỹ[n] − 1

T
N−1g − 1 ≤ z[n]) ≥ η,

Pr(hT
i ỹ[n] − gi ≥ ui[n]) ≥ η, ∀ n, i,

(16)

where hT
i is the ith row vector of H, gi is the ith element of g,

ui[n] ∼ N (0, σ2‖hT
i ‖2

2) is the ith element of u[n], and η ∈ [0, 1]
is a given probability.

The chance constraints in (16) can be further simplified by nor-
malizing the random variables involved and rearranging the con-
straints. To show this, consider a general chance constraint:

Pr(t ≥ ε) ≥ η, (17)

where ε ∼ N (μ, σ2) and t ∈ R. By normalizing (17), we get

Pr(
t − μ

σ
≥ ε − μ

σ
) ≥ η, (18)

where (ε − μ)/σ is a zero-mean unit-variance Gaussian variable.
The left-hand side of (18) is the cumulative distribution function of
(ε − μ)/σ, that is, Φ((t − μ)/σ) where

Φ(v) =
1√
2π �

v

−∞

e−x2/2dx. (19)

Hence (18) can be expressed as

Φ(
t − μ

σ
) ≥ η, (20)

or, equivalently,
t ≥ Φ−1(η)σ + μ (21)

where Φ−1 is the inverse of Φ. Applying the above procedure [(17)
through (21)] to the constraints of RMVES problem (16), we can
have

max
H, g

|det(H)|

s.t. 1
T
N−1Hỹ[n] − 1

T
N−1g − 1 ≤

σΦ−1(1 − η) � 1T
N−1HHT 1N−1,

σΦ−1(η)||hT
i ||2 ≤ h

T
i ỹ[n] − gi, ∀ n, i.

(22)

The values of η affect the feasible set of (22) (convex or not). When
η > 0.5 (i.e., Φ−1(1−η) < 0 and Φ−1(η) > 0), the constraints are
second-order cone constraints (convex). If η = 0.5 (i.e., Φ−1(1 −
η) = 0 and Φ−1(η) = 0), the problem in (22) reduces to the original
MVES problem with linear constraints (convex) as in (13). But if
η < 0.5 (i.e., Φ−1(1 − η) > 0 and Φ−1(η) < 0), the constraints
become non-convex in (H, g). Figure 1 illustrates a scatter plot
(for N = 3) of the dimension reduced noisy observations and the
simplex, conv{α1, α2, α3} obtained by RMVES algorithm (to be
presented below) for different η. It can be observed that for η < 0.5
the solution of RMVES problem approaches the true simplex.

While the feasible set of (22) could be convex or non-convex
(depending on η), the objective function of (22) is always non-
convex. In what follows, we describe our alternating optimization
methodology where we try to form subproblems that have less non-
convex components. We consider the cofactor expansion for det(H)
along the ith row:

true  simplex

noisy observed pixels

η > 0.5

η = 0.5

η < 0.5

Fig. 1. Scatter plot of the dimension-reduced pixels for N = 3,
illustrating the solutions of RMVES for different values of η.

det(H) =
N−1�
j=1

(−1)i+jhijdet(Hij), (23)

where Hij is the submatrix with the ith row and jth column re-
moved. One can observe from (23) that det(H) is linear in each hT

i ,
which enables us to update hT

i and gi while fixing the other rows of
H and the other entries of g. By letting kT = 1T

N−1H, the partial
maximization of (22) with respect to hT

i and gi can be formulated as

max
hT

i
, gi, kT ���

N−1�
j=1

(−1)i+jhijdet(Hij) ���
s.t. k

T = h
T
i +

N−1�
j �=i

h
T
j ,

k
T
ỹ[n] − 1

T
N−1g − 1 ≤ σΦ−1(1 − η)||kT ||2,

σΦ−1(η)||hT
i ||2 ≤ h

T
i ỹ[n] − gi, ∀ n.

(24)

The above problem can be handled by breaking it into two opti-
mization problems, using the same approach as in our predecessor
work [8]. Essentially, one is to maximize the term inside the ab-
solute operator of the objective function in (24) with the same con-
straints, while the other is to minimize it. The two decomposed prob-
lems are second-order cone programs if η > 0.5, linear programs if
η = 0.5 and non-convex problems if η < 0.5. The optimal solution
of (24), denoted by ((hT

i )�, g�
i ), is chosen as the optimal solution of

the maximization problem if |p�| > |q�|, and that of the minimiza-
tion problem if |q�| > |p�|, where p� and q� are the optimal values
of the maximization and minimization problems, respectively. This
row-wise maximization is conducted cyclically (i.e., i := (i modulo
(N − 1)) + 1 for each row update of H) until some stopping rule is
satisfied.

Suppose that a solution (H�, g�) is obtained by the above men-
tioned cyclic maximization. As presented in [8], the endmember sig-
natures can then be recovered by �ai = C �αi + d for i = 1, . . . , N ,
where �αN = (H�)−1

g
�, (25)

[ �α1, ..., �αN−1] = �αN1
T
N−1 + (H�)−1, (26)

and the abundance vectors can be estimated as [8]

�s[n] = [ s′[n]T 1 − 1
T
N−1s

′[n] ]T ,

= [ (H�
ỹ[n] − g

�)T 1 − 1
T
N−1(H

�
ỹ[n] − g

�) ]T (27)
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Table 1. Average φen and φab (degrees) over the various unmixing methods for different purity levels (ρ) and SNRs.

Methods ρ
φen φab

SNR (dB) SNR (dB)
20 25 30 35 40 20 25 30 35 40

N-FINDR-FCLS
0.7 5.45 5.31 5.24 5.11 5.16 22.54 21.86 21.63 19.76 19.82
0.85 2.65 2.67 2.66 2.65 2.61 9.60 8.37 8.03 7.93 7.77
1 1.15 0.58 0.33 0.18 0.10 6.14 3.59 2.13 1.24 0.72

MVSA
0.7 5.95 4.03 2.67 2.12 1.40 20.80 14.56 7.88 4.81 3.14
0.85 5.99 3.75 2.61 2.07 1.27 19.65 12.12 7.17 4.16 2.34
1 6.12 3.96 2.71 2.14 1.33 18.93 11.55 6.68 3.85 2.15

MVES
0.7 5.17 3.26 2.43 1.73 1.01 16.66 10.58 6.51 3.81 2.17
0.85 5.28 3.59 2.65 1.85 1.11 16.88 10.98 7.20 4.26 2.38
1 6.67 4.37 3.35 2.50 1.55 19.81 13.09 9.58 6.81 4.50

RMVES
0.7 1.69 1.09 0.76 0.46 0.43 9.21 5.37 3.21 1.98 1.32
0.85 1.90 1.30 1.01 0.53 0.44 8.34 5.90 3.48 2.03 1.38
1 2.89 2.27 2.05 1.69 1.40 9.75 6.27 5.31 3.32 2.85

for all n = 1, . . . , L. To ensure (A1), the negative values of �s[n] are
made zero. The above procedure is referred to as RMVES algorithm.

The proposed RMVES algorithm uses the well known VCA [3]
for the initialization of (24) [6]. The optimization problem in (24) is
then solved by sequential quadratic programming (SQP). Moreover,
in each iteration of the RMVES algorithm (which involves N − 1
row updates of H), we use the solution of the previous iteration as
the initialization for the current iteration.

5. SIMULATIONS AND CONCLUSIONS

In this section, the efficacy of the proposed RMVES algorithm is
demonstrated using 50 Monte Carlo runs for various purity lev-
els and SNRs. In each run, 1000 noise-free observed pixel vec-
tors were synthetically generated following the signal model in (2),
where 6 endmembers (i.e., Alunite, Buddingtonite, Calcite, Copi-
apite, Kaolinite, and Muscovite) with 417 bands are selected from
USGS library [12], and the abundance vectors s[n] were generated
following Dirichlet distribution D(s[n], μ) with μ = 1

N
1N [3], for

different purity levels ρ = 0.7, 0.85, 1 [8]. The noisy data were
obtained by adding independent and identically distributed (i.i.d.)
zero-mean Gaussian noise to the noise-free data for different SNRs,
where SNR = � L

n=1 ‖x[n]‖2
2/σ2ML. To maintain non-negativity

of the noisy observed pixels, we artificially set the negative values of
the noisy pixels to zero. For performance comparison, we also tested
three existing algorithms, N-FINDR-FCLS [2,13] (where FCLS [13]
was used to find the associated abundances for the endmember esti-
mates of N-FINDR), MVSA [6], and the original MVES [8].

The root-mean-square (rms) spectral angle between the true one
and estimated one (which has been widely used in HU [1, 3, 8]) is
used as the performance index. We here denote rms spectral angle
between endmembers and their estimates as φen, and that between
abundance maps and their estimates as φab. By our extensive nu-
merical experience we found that η (which depends on ρ and SNR)
should be less than 0.5 (this can also be justified from Figure 1).

The average φen and φab of the unmixing algorithms over SNR
= 20, 25, ..., 40 dB and ρ = 0.7, 0.85, 1 are shown in Table 1,
where each bold-faced number denotes the minimum rms spectral
angle associated with a specific pair of (ρ, SNR) over all the algo-
rithms. Table 1 shows that the proposed RMVES algorithm yields
the best performance for ρ = 0.7 and 0.85. For all the values of
ρ, the RMVES algorithm is better than its predecessor, the MVES
algorithm. In addition, to investigate the problem natures of (22)
and (24), we simply performed Monte Carlo simulations by directly
solving (22) using SQP for ρ = 0.7 and SNR = 20 dB. The average
φen and φab were 9.04 and 24.73 degrees, respectively, which are

apparently much worse than those (1.69 and 9.21) of solving (24) in
an alternating fashion (RMVES algorithm). This may be attributed
to local optimality issues associated with the highly non-convex na-
ture of (22).

In conclusion, we have presented a robust hyperspectral unmix-
ing method, namely the RMVES algorithm which can effectively
unmix the highly mixed and noisy data. The RMVES algorithm ap-
plies chance constraints to accommodate the noise effects, and can
be suitably implemented using SQP solvers in an alternating fashion.
Simulation results showed that the RMVES algorithm outperforms
some existing benchmark algorithms and its predecessor MVES al-
gorithm. The application of RMVES algorithm to real hyperspectral
data would be our future direction.
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