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ABSTRACT

Accurate estimation of endmember signatures and the associated
abundances of a scene from its hyperspectral observations is at
present, a challenging research area. Many of the existing hyper-
spectral unmixing algorithms are based on Winter’s belief,which
states that the vertices of the maximum volume simplex inside
the data cloud (observations) will yield high fidelity estimates of
the endmember signatures if pure-pixels exist. Based on Winter’s
belief, we recently proposed a convex analysis based alternating vol-
ume maximization (AVMAX) algorithm. In this paper we develop
a robust version of the AVMAX algorithm. Here, the presence of
noise in the hyperspectral observations is taken into consideration
with the original deterministic constraints suitably reformulated as
probabilistic constraints. The subproblems involved are convex
problems and they can be effectively solved using availableconvex
optimization solvers. Monte Carlo simulations are presented to
demonstrate the efficacy of the proposed RAVMAX algorithm over
several existing pure-pixel based hyperspectral unmixingmethods,
including its predecessor, the AVMAX algorithm.

Index Terms— Hyperspectral unmixing, Convex analysis,
Chance constraints, Second-order cone program

1. INTRODUCTION

A hyperspectral sensor records the electromagnetic scattering pat-
terns of distinct materials over hundreds of spectral bandsthat range
from visible to near-infrared wavelength region. The limited spatial
resolution of the sensor used for hyperspectral imaging demands an
effective hyperspectral unmixing (HU) scheme to extract the under-
lying endmember signatures (or simply endmembers) and the asso-
ciated abundance maps distributed over a scene of interest [1]. Con-
ventional HU algorithms based on a linear mixing model (to beex-
plained later) are based on the assumption that in a given setof hy-
perspectral observations, there exists a pure-pixel for each endmem-
ber, namely, pixels that are fully contributed by a single endmember.
HU algorithms based on the pure-pixel assumption includes pixel
purity index (PPI) [2], N-finder (N-FINDR) [3] and vertex compo-
nent analysis (VCA) [4]. A recent addition to this group is the AV-
MAX [5] algorithm, which is a convex analysis based optimization
algorithm based on Winter’s belief. It employs an alternating linear
programming approach to solve the optimization problem. Never-
theless, the performance of the above mentioned algorithmsis de-
graded when the observations are corrupted by noise.
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In this paper, we extend our AVMAX [5] algorithm to a ro-
bust AVMAX (RAVMAX) algorithm that accounts for the noise ef-
fects by employing chance constraints. We first reformulatethe AV-
MAX subproblems into equivalent problems to which the chance
constraint can be suitably applied, and then reformulate them as
second-order cone problems. Hence, the chance constrainedprob-
lem can be efficiently solved by any convex optimization solvers in
an alternating fashion. We finally show some Monte-Carlo simula-
tions to demonstrate the efficacy of the proposed RAVMAX algo-
rithm, in comparison with the conventional pure-pixel based algo-
rithms, including its predecessor.

In the remainder of the paper, the following notations are em-
ployed.RM andRM×N represent the sets of all realM × 1 vectors
andM ×N matrices, respectively. The symbol� denotes compo-
nentwise inequality.1N , IM and0 respectively represent theN × 1
all one vector, theM ×M identity matrix and an all-zero vector of
proper dimension. A Gaussian distribution with mean vectorµ and
covariance matrixΣ is denoted asN (µ,Σ). The notationsign(b)
denotes a vector whose elements are the signs of the elementsin the
vectorb, |b| denotes a column vector whose elements are the ab-
solute values of the individual elements inb, anddiag(b) denotes
a diagonal matrix with the elements ofb as its diagonal elements.
The symbol[a]i andAij denote theith element of the vectora and
(i, j)th element of matrixA, respectively. Finally, the symbol[A]i,:
corresponds to theith row vector ofA.

2. SIGNAL MODEL AND ASSUMPTIONS

Consider a scenario in which a hyperspectral sensor measures solar
electromagnetic radiation fromN distinct substances. Each pixel of
the hyperspectral images measured overM spectral bands can be
represented by the followingM ×N linear mixing model [1, 3–6]

y[n] = x[n] +w[n], (1)

x[n] = As[n] =
N
∑

i=1

si[n]ai, ∀n = 1, . . . , L. (2)

In (1), y[n] = [ y1[n], . . . , yM [n] ]T represents thenth ob-
served pixel vector comprisingM spectral bands andx[n] =
[ x1[n], . . . , xM [n] ]T corresponds to its noise-free counterpart.
The noise vector,w[n] = [ w1[n], . . . , wM [n] ]T in (1), is zero-
mean, uniform white Gaussian noise vector (i.e.,N (0,D), where
D = σ2IM andσ denotes the standard deviation of the noise). In
(2), A = [ a1, . . . ,aN ] ∈ R

M×N denotes the endmember signa-
ture matrix with theith column vectorai being theith endmember
signature,s[n] = [ s1[n], . . . , sN [n] ]T ∈ R

N is thenth abundance
vector comprisingN fractional abundances andL is the total num-
ber of observed pixels. Assuming prior knowledge of the number of



endmembersN , we aim to estimate the endmember signature matrix
A and the abundancess[1], . . . , s[L] from the given noisy pixels
y[1], . . . ,y[L], under the following general assumptions [5,6]:

(A1) (Non-negativity condition)si[n] ≥ 0 ∀ i, n.

(A2) (Full additivity condition)
∑N

i=1 si[n] = 1 ∀ n.

(A3) min{L,M} ≥ N andA is of full column rank.

(A4) There exists an index set{`1, `2, . . . , `N}, such thatx[`i] =
ai for i = 1, . . . , N (i.e., the pure-pixel assumption).

For ease of later use, the convex hull [7] of the vectorsa1, . . . ,aN ∈
R

M is defined as

conv{a1, . . . ,aN} =

{

x =
N
∑

i=1

θiai

∣

∣

∣

∣

1
T
Nθ = 1, θ � 0

}

, (3)

whereθ = [θ1, . . . , θN ]T . A convex hull, conv{a1, . . . ,aN} is
called an(N − 1)-dimensional simplex inRM if {a1, . . . ,aN} ⊂
R

M is affinely independent.

3. REVIEW OF AVMAX ALGORITHM

As in many other HU algorithms, we begin with the dimension re-
duction of the observations. In our work, we employ the affineset
fitting procedure in [5] to perform dimension reduction. To begin
with, we start with the noise-free signal model, given by (2). The
affine set fitting procedure is summarized as follows:

Lemma 1. (Dimension reduction by affine set fitting [5,6]) Under
(A2) and (A3), a dimension-reduced pixel vectorx̃[n] can be ob-
tained by an affine transformation ofx[n]:

x̃[n] = C
T (x[n]− d) ∈ R

N−1, (4)

where(C,d) is the affine set fitting solution given by

d =
1

L

L
∑

n=1

x[n], (5)

C = [ q1(UU
T ), q2(UU

T ), . . . , qN−1(UU
T ) ], (6)

whereU = [ x[1] − d, . . . ,x[L] − d ] ∈ R
M×L, andqi(R) de-

notes the orthonormal eigenvector associated with theith principal
eigenvalue ofR.

The affine set fitting solution(Ĉ, d̂) for noisy observations is ob-
tained by replacingx[n] in (5) and (6) withy[n]. In the noisy case,
(Ĉ, d̂) serves as a best least-squares approximation to true(C,d)
and the former asymptotically approaches the latter for largeL. By
(2), (4) and under(A1)-(A3), it has been proved in [8] that

x̃[n] ∈ conv{γ1, . . . ,γN}, (7)

whereγj = CT (aj − d) ∀j = 1, . . . , N correspond to dimension
reduced endmembers.

Now, the main problem is how we estimateγ1, . . . ,γN from
x̃[1], . . . , x̃[L]. Winter [3] proposed a belief that under(A4) the ver-
tices of the maximum volume simplex inside the data cloud (obser-
vations) yield high fidelity estimates of the endmember signatures.
Based on that, the unmixing problem [5] can be written as:

max
ν1,...,νN∈R

N−1

V (ν1, . . . ,νN )

s.t. νi ∈ conv{x̃[1], . . . , x̃[L]}, ∀ i,
(8)

whereV (ν1, . . . ,νN ) is the volume of the(N − 1)-dimensional
simplexconv{ν1, . . . , νN} in R

N−1 and is given by [9],

V (ν1, . . . ,νN ) =
|det (∆(ν1, . . . ,νN ))|

(N − 1)!
, (9)

where
∆(ν1, . . . ,νN ) =

[

ν1 · · · νN

1 · · · 1

]

.

By lettingX̃ = [ x̃[1], . . . , x̃[L] ] ∈ R
(N−1)×L and by (3), problem

(8) can be expressed as

max
νi∈R

N−1

θ1,...,θN∈R
L

|det(∆(ν1, . . . ,νN ))|

s.t. νi = X̃θi, θi � 0, 1
T
Lθi = 1 ∀ i.

(10)

Though the constraints of (10) are convex, the non-convexity of the
objective function makes the problem difficult to solve. Theprob-
lem may be handled in a convenient manner by the idea of cofactor
expansion and alternating optimization. The cofactor expansion of
the objective function in (10) along thejth column is given by

det(∆(ν1, . . . ,νN )) = b
T
j νj + (−1)N+jdet(VNj), (11)

wherebj = [(−1)i+jdet(Vij)]
N−1
i=1 ∈ R

N−1 and the termVij ∈

R
(N−1)×(N−1) is a submatrix of∆(ν1, . . . , νN) with the ith row

andjth column removed. We then consider the partial maximization
of (10) with respect toνj andθj , while fixingνi andθi for all i 6= j.
The problem (10) then becomes

max
νj∈R

N−1,θj∈R
L

∣

∣

∣
b
T
j νj + (−1)N+jdet(VNj)

∣

∣

∣

s.t. νj = X̃θj , θj � 0, 1
T
Lθj = 1.

(12)

The partial maximization problem (12) can be decomposed into the
following two linear programs:

p? = max
νj∈R

N−1,θj∈R
L

b
T
j νj + (−1)N+jdet(VNj)

s.t. νj = X̃θj , θj � 0, 1
T
Lθj = 1,

(13)

q? = min
νj∈R

N−1,θj∈R
L

b
T
j νj + (−1)N+jdet(VNj)

s.t. νj = X̃θj , θj � 0, 1
T
Lθj = 1.

(14)

The optimal solution of (12) is that of (13) if|p?| > |q?|, and that
of (14) if |q?| > |p?|. This procedure of alternating optimization
is performed for all theN columns (one iteration) and the relative
change in the volume of the updated∆(ν1, . . . ,νN ) is compared
with a given threshold. If it exceeds the threshold, we continue with
the next updating iteration, else we conclude that the current updated
νjs are optimum. Once the optimal solution of (10), denoted by
ν?
1 , . . . ,ν

?
N is obtained, the endmember estimates can be recovered

by using,âi = Cν̂i + d (by virtue of (4)) for alli. Next, we aim to
make AVMAX more robust against noise effects.

4. ROBUST AVMAX FORMULATION AND ALGORITHM

In this section, we first do some reformulation to (13) and (14) so that
chance constraints can be incorporated into the unmixing problem.
Then, we move on to develop a robust version of AVMAX.

4.1. Restructuring the AVMAX algorithm

Now, letB = diag(sign(bj)) andG = −B. Then, we can have
GG = BB = IN−1, bT

j B = |bj |
T andbT

j G = −|bj |
T . The

subproblems (13) and (14) can then be equivalently written as:

p? = max
νj∈R

N−1,θj∈R
L

b
T
j BBνj + (−1)N+jdet(VNj)

s.t. Bνj = BX̃θj , θj � 0, 1
T
Lθj = 1,

(15)



q? = min
νj∈R

N−1,θj∈R
L

b
T
j GGνj + (−1)N+jdet(VNj)

s.t. Gνj = GX̃θj , θj � 0, 1
T
Lθj = 1.

(16)

Then, by change of variables, we let

αj = Bνj (17)

and
βj = Gνj . (18)

To facilitate the application of chance constraints to the AVMAX
problem, we relax the first equality constraints of (15) and (16) and
thus the corresponding subproblems are given as below:

p? = max
αj∈R

N−1,θj∈R
L

|bj |
T
αj + (−1)N+jdet(VNj)

s.t. αj � BX̃θj , θj � 0, 1
T
Lθj = 1,

(19)

q? = min
βj∈R

N−1,θj∈R
L

− |bj |
T
βj + (−1)N+jdet(VNj)

s.t. βj � GX̃θj , θj � 0, 1
T
Lθj = 1.

(20)

Although we relax the first constraints of the subproblems, we still
can show that the optimal solutions of (19) and (20) are equivalent to
that of (13) and (14), respectively, as proved in the following lemma:

Lemma 2. (Equivalence of subproblems)The subproblems (19)
and (20) are equivalent to (13) and (14), respectively.

The proof of Lemma 2 is given in Appendix.

4.2. Robust AVMAX Algorithm

Now we consider the unmixing problem with noisy observations
given by (1). Substituting (1) into (4), we get the followingdimen-
sion reduced observations

ỹ[n] , Ĉ
T (y[n]− d̂) ∼= x̃[n] + Ĉ

T
w[n], (21)

whereĈTw[n] is a random vector followingN (0, ĈTDĈ). In ma-
trix form (considering all the pixels,n = 1, . . . , L), we can write the
above equation as:̃Y = X̃+ ĈTW, whereỸ = [ỹ[1], . . . , ỹ[L]],

X̃ = [x̃[1], . . . , x̃[L]], andW = [w[1], . . . ,w[L]]. The first in-
equality constraint in (19) now becomes:

αj � B(Ỹ − Ĉ
T
W)θj = BỸθj + zj , (22)

wherezj , −BĈTWθj ∼ N (0,BĈTDĈBT ‖θj‖
2
2).

Since the noise-induced vectorzj is random and unknown, our
approach is to replace (22) with chance constraints, as shown below

Pr{[αj ]i − [B]i,:Ỹθj ≤ [zj ]i} ≥ η,∀ i = 1, . . . , N − 1, (23)

where0 < η < 1 is a design parameter. A similar equation can be
written for the first inequality constraint of (20), i.e.,

Pr{[βj ]i − [G]i,:Ỹθj ≤ [zj ]i} ≥ η,∀ i = 1, . . . , N − 1. (24)

The second-order cone equivalence of a chance constraint
has been discussed in [7]. Specifically, for a random variable
ε ∼ N (µ, δ2) andt ∈ R, one can show thatPr(ε ≤ t) ≥ η is true
ast ≥ δΦ−1(η) + µ, whereΦ−1 is the inverse of the cumulative
distribution function of the standard normal random variable.

By lettingQ = BĈTDĈBT ∈ R
(N−1)×(N−1) and applying

the above mentioned chance constraint procedure to (23) and(24),
we have

√

Qii‖θj‖2Φ
−1(1− η) ≥ [αj ]i − [B]i,:Ỹθj , (25)

and
√

Qii‖θj‖2Φ
−1(1− η) ≥ [βj ]i − [G]i,:Ỹθj . (26)

for all i = 1, . . . , N−1. By replacing the first constraints of (19) and
(20) with (25) and (26), respectively, the robust AVMAX problem
can then be written as:

p? = max
αj∈R

N−1,θj∈R
L

|bT
j |αj + (−1)N+jdet(VNj)

s.t.
√

Qii‖θj‖2Φ
−1(1− η) ≥ [αj ]i − [B]i,:Ỹθj ,

θj � 0, 1
T
Lθj = 1, ∀ i = 1, 2, . . . , N − 1.

(27)

q? = min
βj∈R

N−1,θj∈R
L

− |bT
j |βj + (−1)N+jdet(VNj)

s.t.
√

Qii‖θj‖2Φ
−1(1− η) ≥ [βj ]i − [G]i,:Ỹθj ,

θj � 0, 1
T
Lθj = 1, ∀ i = 1, 2, . . . , N − 1.

(28)

The values ofη affect the feasible sets of (27) and (28); specif-
ically, their convexity. The following are the three possible cases:
Whenη > 0.5 (i.e.,Φ−1(1 − η) < 0), the first constraints of both
subproblems are second-order cone constraints and hence subprob-
lems (27) and (28) are convex. Ifη = 0.5 (i.e.,Φ−1(1−η) = 0), the
first constraints of both subproblems reduce to those of the original
AVMAX problem (as in (13) and (14)), i.e., the constraints become
linear (convex). Finally, ifη < 0.5 (i.e., Φ−1(1 − η) > 0), the
constraints become non-convex. The effect ofη is illustrated in Fig-
ure 1. From our extensive numerical experiences we found that for
satisfactory performance, theη value should lie between0.9 and1,
in which case the subproblems (27) and (28) are convex.

true simplex
noisy observed pixels 

η > 0.5
η = 0.5
η < 0.5

Fig. 1. Illustration of the effect ofη in RAVMAX for N = 3.

Some more technical aspects are discussed as follows. The sub-
problems (27) and (28) are solved in an alternating fashion,simi-
lar to the original AVMAX explained in Section 3, except for the
following difference: after each execution of the subproblems, the
correspondingνj = Bαj (by (17)) is obtained if|p?| > |q?|, else
νj = Gβj (by (18)) is obtained. The proposed RAVMAX algo-
rithm uses anyN pixel vectors inX̃ for its initialization. As the
subproblems are convex (for our desired choice,η > 0.5), they can
be solved effectively by using available convex optimization solvers.

5. SIMULATIONS

This section demonstrates the efficacy of the proposed RAVMAX
through comparison with other pure-pixel based HU algorithms. The
algorithms considered are N-FINDR [3], VCA [4] and AVMAX [5].



Table 1. Averageφen andφab (degrees) over the various unmixing methods for different purity levels (ρ) and SNRs.

Methods ρ
φen φab

SNR (dB) SNR (dB)
20 25 30 35 40 20 25 30 35 40

N-FINDR
0.7 5.45 5.31 5.24 5.11 5.16 22.54 21.86 21.63 19.76 19.82
0.85 2.65 2.67 2.66 2.65 2.61 9.60 8.37 8.03 7.93 7.77

1 1.15 0.58 0.33 0.18 0.10 6.14 3.59 2.13 1.24 0.72

VCA
0.7 5.77 5.56 5.64 5.56 5.50 31.57 29.97 29.71 28.54 28.38
0.85 2.79 2.70 2.67 2.71 2.61 10.83 9.45 9.00 8.89 8.82

1 1.12 0.61 0.32 0.18 0.11 6.00 3.45 2.05 1.23 0.76

AVMAX
0.7 5.50 5.36 5.39 5.13 5.10 24.60 21.94 20.95 18.77 16.48
0.85 2.77 2.64 2.65 2.69 2.65 9.15 7.96 7.10 6.70 6.48

1 1.14 0.61 0.33 0.18 0.10 6.39 3.66 2.13 1.22 0.70
0.7 4.87 4.87 4.88 4.83 4.90 18.95 18.15 18.13 17.83 17.94

RAVMAX 0.85 2.54 2.48 2.56 2.52 2.51 8.56 7.68 7.44 7.39 7.34
(0.9 < η < 1) 1 0.79 0.43 0.24 0.14 0.08 4.34 2.60 1.56 0.98 0.59

In all these algorithms, FCLS [10] is used to get the abundance
maps. The performance of the algorithms under test is evaluated
by performing 50 Monte Carlo runs for various purity levels (ρ)
and SNRs [8]. The simulation settings areL = 1000 (number of
pixels),N = 6 (number of endmembers) andM = 417 (number
of observations). In each run,1000 noise-free observed pixel vec-
tors were synthetically generated following the signal model in (2),
and the6 endmembers (i.e., Alunite, Buddingtonite, Calcite, Copi-
apite, Kaolinite, and Muscovite) with417 bands are selected from
USGS library [11], and the abundance vectorss[n] were generated
following Dirichlet distributionD(s[n],µ) with µ = 1N/N [4],
for purity levelsρ = 0.7, 0.85, 1. The synthetic data for differ-
ent SNRs were obtained by adding independent and identically dis-
tributed zero-mean Gaussian noise to the noise-free data generated,
as per (1), and the SNR is defined as

∑L

n=1 ‖x[n]‖
2
2/σ

2ML. In
our simulations, the noise covariance matrix is estimated from the
observations, using the procedure elaborated in HySime [12]. The
performance index employed is the root-mean-square (rms) spectral
angle between the true one and estimated one [1,4,8]. The rmsspec-
tral angles between endmembers and their estimates are denoted as
φen, and those between abundance maps and their estimates are de-
noted asφab. The averageφen andφab of the unmixing algorithms
over SNR = 20, 25, ..., 40 dB andρ = 0.7, 0.85, 1 are shown in
Table 1, where each bold-faced number denotes the minimum rms
spectral angle associated with a specific pair of(ρ,SNR) over all
the algorithms. One can readily infer from Table 1 that the proposed
RAVMAX algorithm generally yields the best performance forall
the values ofρ and SNRs.

6. CONCLUSION

To account for the noise effects in an HU framework, we have pre-
sented a robust HU algorithm, i.e., RAVMAX. Here, we reformu-
lated the original AVMAX problem with deterministic constraints
into the one with chance constraints. The RAVMAX problem can
be efficiently solved by using available second-order cone program
solvers. The simulation results demonstrate the superior perfor-
mance of RAVMAX over some existing benchmark HU algorithms
including the original AVMAX. The performance of RAVMAX with
real hyperspectral data is currently under investigation.

7. APPENDIX

Proof of Lemma 2: Firstly, it is trivial to show that the objective
function of (19) is equivalent to that of (13) asαj = Bνj , b

T
j B =

|bj |
T andBB = I. Next, consider the subproblem (19) (after ig-

noring the constant term in the objective function) and letS denote

the constraint set of (19). Then we have

max
αj∈S

|bj |
T
αj = |bj |

T
kj ,

wherekj = [maxSi
[αj ]i]

N−1
i=1 in whichSi = {[αj ]i ≤ [BX̃θj ]i},

implying that an optimal solution, denoted by(α?
j ,θ

?
j ) will make

the equality inαj � BX̃θj hold (i.e., the constraint will be ac-
tive). In other words, the optimal solution(α?

j , θ
?
j ) belongs to the

set{(αj ,θj) | αj = BX̃θj ,θj � 0, 1T
Lθj = 1}, which is equiv-

alent to the constraint set of (13). Hence we can conclude that the
subproblems (19) and (13) are equivalent. By a similar argument the
equivalence of (20) and (14) can be proved.
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