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ABSTRACT In this paper, we extend our AVMAX [5] algorithm to a ro-

bust AVMAX (RAVMAX) algorithm that accounts for the noise-ef
fects by employing chance constraints. We first reformutageAV-
MAX subproblems into equivalent problems to which the clenc
constraint can be suitably applied, and then reformulagentlas
second-order cone problems. Hence, the chance constrainbe
lem can be efficiently solved by any convex optimization scdvin
an alternating fashion. We finally show some Monte-Carloutim
tions to demonstrate the efficacy of the proposed RAVMAX algo
rithm, in comparison with the conventional pure-pixel lthségo-
rithms, including its predecessor.

In the remainder of the paper, the following notations are em
ployed.RM andR**¥ represent the sets of all redd x 1 vectors
and M x N matrices, respectively. The symbeldenotes compo-
nentwise inequalityl -, In, andO respectively represent thé x 1
all one vector, the\/ x M identity matrix and an all-zero vector of
proper dimension. A Gaussian distribution with mean vegt@nd
covariance matrix® is denoted asV'(u, X). The notationsign(b)
denotes a vector whose elements are the signs of the eleiméimes
vectorb, |b| denotes a column vector whose elements are the ab-
Index Terms— Hyperspectral unmixing, Convex analysis, solute values of the individual elementshbin anddiag(b) denotes

Accurate estimation of endmember signatures and the asedci
abundances of a scene from its hyperspectral observat®omrs i
present, a challenging research area. Many of the existipgrh
spectral unmixing algorithms are based on Winter’'s belidfich
states that the vertices of the maximum volume simplex esid
the data cloud (observations) will yield high fidelity estites of
the endmember signatures if pure-pixels exist. Based onensn
belief, we recently proposed a convex analysis based atiagwol-
ume maximization (AVMAX) algorithm. In this paper we devplo
a robust version of the AVMAX algorithm. Here, the presente o
noise in the hyperspectral observations is taken into denaiion
with the original deterministic constraints suitably nefmlated as
probabilistic constraints. The subproblems involved amavex
problems and they can be effectively solved using availabterex
optimization solvers. Monte Carlo simulations are presento
demonstrate the efficacy of the proposed RAVMAX algorithnerov
several existing pure-pixel based hyperspectral unmirieghods,
including its predecessor, the AVMAX algorithm.

Chance constraints, Second-order cone program a diagonal matrix with the elements bfas its diagonal elements.
The symbolla]; and A;; denote theth element of the vectat and
1. INTRODUCTION (7, 7)th element of matribA , respectively. Finally, the symb@A]; .

A hyperspectral sensor records the electromagnetic scaftpat- ~ COTresPoNds to thith row vector ofA.

terns of distinct materials over hundreds of spectral bématsrange
from visible to near-infrared wavelength region. The ligditspatial 2. SIGNAL MODEL AND ASSUMPTIONS

resolution of the sensor used for hyperspectral imagingaseiman  Consider a scenario in which a hyperspectral sensor mesasolar
effective hyperspectral unmixing (HU) scheme to extraetdhder-  electromagnetic radiation frolV distinct substances. Each pixel of
lying endmember signatures (or simply endmembers) andshea the hyperspectral images measured averspectral bands can be
ciated abundance maps distributed over a scene of intdje§tgn-  represented by the followiny/ x N linear mixing model [1, 3-6]
ventional HU algorithms based on a linear mixing model (teke

plained later) are based on the assumption that in a giveof st y[n] = x[n] + w[n], (1)
perspectral observations, there exists a pure-pixel ftn eadmem-
ber, namely, pixels that are fully contributed by a singldraember. x[n] = As[n] = Z si[nJai, Yn=1,..., L. )

HU algorithms based on the pure-pixel assumption includesl p P

purity index (PPI) [2], N-finder (N-FINDR) [3] and vertex cqro- In (1) _ T ~

. = . ) yy[n] = [ yin],...,ymn represents thexth ob
nent analysis .(VCA) [4.]' A recent addition to_thls group '9“_*‘/' served pi[xt]el vect[or lcgo]mprisinM[ ]sr])ectral bands andg([n] =
MAX [5] algorithm, which is a convex analysis based optintiaa [ z1[n],...,za[n] ] corresponds to its noise-free counterpart.
algorithm based on Winter's belief. It employs an altemgdinear 116 1oise (/ectorw[n] — [win),...,wn(n] |7 in (), is zero-

programming approach to solve the optimizgtion proble_mveNe mean, uniform white Gaussian noise vector (&0, D), where

theless, the performance pf the above mentloned.algorlthrde- D = oI, ando denotes the standard deviation of the noise). In

graded when the observations are corrupted by noise. @), A = [ai,...,ay ] € RM*Y denotes the endmember signa-
This work was supported by the National Science Council (R.0un- ture matrix with theith column vectom; being theith endmember

i _ T N
der Grant NSC 96-2628-E-007-003-MY3, and by General Rebeunds ~ Signatures[n] = [si[n], ..., sn[n]]" € R™ is thenth abundance
of Hong Kong Research Grant Council (Project Nos. CUHK4B650 Vector comprisingV fractional abundances ardis the total num-
CUHK415908). ber of observed pixels. Assuming prior knowledge of the neinds




endmemberdV, we aim to estimate the endmember signature matrix

A and the abundances1], ..., s[L] from the given noisy pixels
y[1],...,¥y[L], under the following general assumptions [5, 6]:

(A1) (Non-negativity conditionk;[n] > 0 Vi, n.
(A2) (Full additivity condition)zf\’:1 si[n] =1 Vn.
(A3) min{L, M} > N andA is of full column rank.

(A4) There exists an index sét:, {2, ..., ¢n}, such that[(;] =
a;fori =1,..., N (i.e., the pure-pixel assumption).

For ease of later use, the convex hull [7] of the vectars . . ,an €
RM is defined as

N
conv{ai,...,an} = {x = Zeiai

i=1

156-1,0> o}, 3

where® = [61,...,0x]T. A convex hull,conv{ai,...,any} is
called an(N — 1)-dimensional simplex iR" if {a;,...,an} C
RM is affinely independent.

3. REVIEW OF AVMAX ALGORITHM

As in many other HU algorithms, we begin with the dimension re
duction of the observations. In our work, we employ the afiee
fitting procedure in [5] to perform dimension reduction. Tegm
with, we start with the noise-free signal model, given by. (Zhe
affine set fitting procedure is summarized as follows:

Lemma 1. (Dimension reduction by affine set fitting [5, 6]) Under
(A2) and (A3), a dimension-reduced pixel vect&fn] can be ob-
tained by an affine transformation &fn]:

x[n] = C" (x[n] —d) e RV, @)
where(C, d) is the affine set fitting solution given by
L
1
d= T nzz:l x[n], 5)
C=[q(UU"), q(UUY), ..., qv_1(UUT)], ()

whereU = [x[1] — d,...,x[[] —d] € R™*L andq:(R) de-
notes the orthonormal eigenvector associated withitherincipal
eigenvalue oR.

The affine set fitting solutiomdél) for noisy observations is ob-
tained by replacing[n] in (5) and (6) withy[n]. In the noisy case,
(C,d) serves as a best least-squares approximation ta @)
and the former asymptotically approaches the latter fgeldr. By
(2), (4) and undefA1)-(A3), it has been proved in [8] that

)2[77,] € COHV{"/l, s 7’71\7}7 (7)
wherey; = CT(a; —d) Vj = 1,..., N correspond to dimension
reduced endmembers.

Now, the main problem is how we estimage, . ..,yn~ from

x[1],...,%x[L]. Winter [3] proposed a belief that undg4) the ver-
tices of the maximum volume simplex inside the data cloudéob
vations) yield high fidelity estimates of the endmember afgres.
Based on that, the unmixing problem [5] can be written as:

max
ul,A.A,VNERNfl

s.t.

V(vi,...,uN)

®)

v; € conv{x[1],...,x[L]}, V1,

whereV (v, ..
simplexconv{v1, ..

.,vn) is the volume of thg N — 1)-dimensional
., vy Y inRY =1 and is given by [9],

det (A(v1,...,v
V(Vl,...ﬂ/N):' ((5V1_1)| N))|7 (9)
where
Ay, v = | Y

By lettingX = [%[1],...,%[L] ] € RV =YL and by (3), problem
(8) can be expressed as

max |det(A(va,...,vN))|
VT',GRN71
01,....0 €RE (10)
st. v =X0;, 0, =0, 170, =1V .

Though the constraints of (10) are convex, the non-conyexithe
objective function makes the problem difficult to solve. Tiveb-
lem may be handled in a convenient manner by the idea of asfact
expansion and alternating optimization. The cofactor egjwm of
the objective function in (10) along thih column is given by

det(A(v1,...,vn)) = bl v + (=) det(Vn;),  (11)

whereb; = [(—1)"det(Vy;)]," € RV~ and the term;; €
RW=Dx(N=1) is 5 submatrix ofA (v, ..., vn) with theith row
andjth column removed. We then consider the partial maximipatio
of (10) with respect te; and@;, while fixingv; and@; for all i # j.
The problem (10) then becomes

max bjruj + (=1)" T det(Vn;)

v;eRV -1 9,eRL
st. v;=X60;, 6, -0, 170; = 1.

The partial maximization problem (12) can be decomposemithre
following two linear programs:

pt = max bl v 4+ (=) det(V;)

(12)

v;eRN 1 g, crE 13)
st. v;=X0;, 0; =0, 17.0; =1,
¢ = min bl v; 4+ (=) det(V ;)
v;eRN 1 g, crL (14)

st. v;=X6;, 6; -0, 176, = 1.

The optimal solution of (12) is that of (13) jb*| > |¢*|, and that

of (14) if |¢g*| > |p*|. This procedure of alternating optimization

is performed for all theV columns (one iteration) and the relative
change in the volume of the updatexi(v, ..., vn~) is compared

with a given threshold. If it exceeds the threshold, we cargiwith

the next updating iteration, else we conclude that the ntitpedated

v;s are optimum. Once the optimal solution of (10), denoted by
vi,...,Vvy is obtained, the endmember estimates can be recovered
by using,a; = Cv; + d (by virtue of (4)) for alli. Next, we aim to
make AVMAX more robust against noise effects.

4. ROBUST AVMAX FORMULATION AND ALGORITHM

In this section, we first do some reformulation to (13) and §bithat
chance constraints can be incorporated into the unmixinglem.
Then, we move on to develop a robust version of AVMAX.

4.1. Restructuring the AYMAX algorithm

Now, letB = diag(sign(b;)) andG = —B. Then, we can have

GG = BB = Iy_1, b]B = |b;|" andb] G = —|b;|". The
subproblems (13) and (14) can then be equivalently written a
Pt = max b] BBy; + (—1)Vdet(Vy;)

N-—-1 L
v; ER ,GjG]R

st. Bu; =BX6;, 6, -0, 170, =1,

(15)



g = min b] GGr; + (=1)"det(Vn;)

v G]RNfl,Gj erL (16)
st. Gu; = GX6;, 0; =0, 1760; = 1.
Then, by change of variables, we let
a; = By; (a7)
and
Bi = Gv;. (18)

To facilitate the application of chance constraints to th&VIAX
problem, we relax the first equality constraints of (15) abél) @nd
thus the corresponding subproblems are given as below:

p* = max b;|" e + (—=1)V T det(Vy)
a;eRN 1 0, cRE (19)
st. aj < BXGj, 6, -0, 1€9j =1,
= min = [byTB 4 () P det(Vyy)
B;crRN 1 0, crE (20)

st. B <GX0;, 0; =0, 170, =1.
Although we relax the first constraints of the subproblems sl

can show that the optimal solutions of (19) and (20) are edgint to
that of (13) and (14), respectively, as proved in the follogiemma:

Lemma 2. (Equivalence of subproblems)The subproblems (19)
and (20) are equivalent to (13) and (14), respectively.

The proof of Lemma 2 is given in Appendix.

4.2. Robust AVMAX Algorithm

Now we consider the unmixing problem with noisy observation
given by (1). Substituting (1) into (4), we get the followidgmen-
sion reduced observations
§ln] 2 €7 (y[n] - d) = x[n] + C"win], (21)
whereCTw|n] is a random vector following/' (0, C"DC). In ma-
trix form (consnderlng allthe pixels; = 1,..., L), we can write the
above equation a¥ = X + CTW, whereY [¥l,...,¥[L],
X = [x[1],...,%[L]], andW = [w][1],...,w][L]]. The first in-
equality constraint in (19) now becomes:
a; <B(Y - C"W)0; = BY6, + z;, (22)
wherez; 2 -BCTW6, ~ N'(0,BCTDCB”|9,|3).
Since the noise-induced vectay is random and unknown, our
approach is to replace (22) with chance constraints, asrshelow

Pr{la;]; — B, Y0; < [z;];} >n,Vi=1,...,N -1, (23)

where0 < n < 1is a design parameter. A similar equation can be

written for the first inequality constraint of (20), i.e.,

Pr{[3;]; — [G]:. YO, < [z;l;} >n,Vi=1,...,N—1. (24)

The second-order cone equivalence of a chance constraipt, —

has been discussed in [7].
e~ N(u, 62) andt € R, one can show tha®r(e < ¢) > nis true
ast > 67 (n) + u, where<1> ! is the inverse of the cumulative
distribution function of the standard normal random vagab

By letting Q = BCTDCB” ¢ RW-1D>*(V=1 and applying
the above mentioned chance constraint procedure to (23j22)d
we have

VQiil|5]227 (1 —n) > — [Bi: Y6,

(o] (25)

and ~
VQiill0;]12@7 (1 =) > [B5]: — [G]:,:Y6;. (26)
forall: = 1,..., N—1. By replacing the first constraints of (19) and

(20) with (25) and (26), respectively, the robust AVMAX ptein
can then be written as:

p* — max |bJT|a] —+ (—1)N+jdet(ij)
o;eRN 71 0 eRE
SN0 d—T 1 3 (27)
s.t. v/ Qiil|6;]]2® -n) > [O‘J]Z - [B]Z,:YO
0; =0, 170,=1, Vi=1,2...,N—1.
¢'= min - —[bj|B + (=1 det(Vu;)
Bj er™N ,0;ER
-1 S (28)
st V/Qiil|0; |27 (1 —n) > [B5]: — [G,: Y6,
0; >0, 170, =1, Vi=1,2,...,N—1.

The values of; affect the feasible sets of (27) and (28); specif-
ically, their convexity. The following are the three podsilcases:
Whenn > 0.5 (i.e.,, ® (1 — 1) < 0), the first constraints of both
subproblems are second-order cone constraints and hebpeobe
lems (27) and (28) are convex.iff= 0.5 (i.e.,®~*(1—n) = 0), the
first constraints of both subproblems reduce to those of tigenal
AVMAX problem (as in (13) and (14)), i.e., the constraintcbme
linear (convex). Finally, if; < 0.5 (i.e., ® '(1 —n) > 0), the
constraints become non-convex. The effecy & illustrated in Fig-
ure 1. From our extensive numerical experiences we fourtdfdha
satisfactory performance, thevalue should lie betwee®.9 and1,
in which case the subproblems (27) and (28) are convex.

n < 0.5 5
7n=0.5 5
1n>0.5
true simplex
noisy observed pixels -

Fig. 1. lllustration of the effect of) in RAVMAX for N = 3.

Some more technical aspects are discussed as follows. Bhe su
problems (27) and (28) are solved in an alternating fastsoni-
lar to the original AVMAX explained in Section 3, except fdret
following difference: after each execution of the subpeois, the
correspondings; = Ba; (by (17)) is obtained ifp*| > |¢*|, else
Gg3; (by (18)) is obtained. The proposed RAVMAX algo-

Specifically, for a random vagiabl rithm yses anyV pixel vectors inX for its initialization. As the

subproblems are convex (for our desired choice; 0.5), they can
be solved effectively by using available convex optimiaatsolvers.

5. SIMULATIONS

This section demonstrates the efficacy of the proposed RAXMA
through comparison with other pure-pixel based HU algarghThe
algorithms considered are N-FINDR [3], VCA [4] and AVMAX [5]



Table 1. Average¢., and¢., (degrees) over the various unmixing methods for differemitp levels () and SNRs.

d)en d)ab
Methods P SNR (dB) SNR (dB)
20 25 30 35 40 20 25 30 35 40

0.7 | 545| 531 | 524 | 511 | 5.16 | 2254 | 21.86 | 21.63 | 19.76 | 19.82
N-FINDR 0.85| 2.65| 2.67 | 2.66 | 265 | 2.61 | 9.60 8.37 8.03 7.93 7.77
1 1.15| 058 | 0.33 | 0.18 | 0.10 | 6.14 3.59 2.13 1.24 0.72
0.7 | 577 | 556 | 564 | 5.56 | 550 | 31.57 | 29.97 | 29.71 | 28.54 | 28.38
VCA 0.85| 279 | 270 | 267 | 2.71 | 2.61 | 10.83| 9.45 9.00 8.89 8.82
1 1.12| 061 | 0.32| 0.18 | 0.11 | 6.00 3.45 2.05 1.23 0.76
0.7 | 550 | 5.36 | 539 | 5.13 | 510 | 24.60 | 21.94 | 20.95 | 18.77 | 16.48
AVMAX 0.85| 277 | 264 | 265 | 269 | 2.65| 9.15 7.96 7.10 6.70 6.48
1 1.14| 061 | 0.33| 0.18 | 0.10 | 6.39 3.66 2.13 1.22 0.70
0.7 | 487 | 487 | 488 | 483 | 490 | 18.95| 18.15| 18.13| 17.83| 17.94
RAVMAX 0.85| 254 | 248 | 256 | 252 | 251 | 8.56 7.68 7.44 7.39 7.34
(09<n<1) 1 0.79 | 043 | 0.24 | 0.14 | 0.08 | 4.34 2.60 1.56 0.98 0.59

In all these algorithms, FCLS [10] is used to get the abunelancthe constraint set of (19). Then we have

maps. The performance of the algorithms under test is eteua
by performing 50 Monte Carlo runs for various purity levels (
and SNRs [8]. The simulation settings ate= 1000 (number of
pixels), N = 6 (number of endmembers) add = 417 (number

T T
£%§|bj| a; = |b;|" kj,

wherek; = [maxs, [a;]:]Y ;" inwhich S; = {[a;]; < [BX8;];},

of observations). In each rumnp00 noise-free observed pixel vec- implying that an optimal solution, denoted o, 07) will make

tors were synthetically generated following the signal edad (2),

apite, Kaolinite, and Muscovite) with17 bands are selected from
USGS library [11], and the abundance vectsfis| were generated
following Dirichlet distribution D(s[n], ) with p = 15 /N [4],
for purity levelsp = 0.7,0.85,1. The synthetic data for differ-
ent SNRs were obtained by adding independent and identidisH
tributed zero-mean Gaussian noise to the noise-free datxajed,
as per (1), and the SNR is defined & _, ||x[n]||3/0*ML. In

our simulations, the noise covariance matrix is estimaterhfthe g
observations, using the procedure elaborated in HySimg [I2e 2]
performance index employed is the root-mean-square (rpesal
angle between the true one and estimated one [1,4, 8]. Thepeaes
tral angles between endmembers and their estimates areedea® [3]

¢en, and those between abundance maps and their estimates are de
noted asp.». The average.,, and¢,; of the unmixing algorithms

over SNR = 20, 25, ...,40 dB andp = 0.7,0.85,1 are shown in 4]
Table 1, where each bold-faced number denotes the minimwsn rm
spectral angle associated with a specific paif@fSNR) over all 5]
the algorithms. One can readily infer from Table 1 that theppsed
RAVMAX algorithm generally yields the best performance &
the values ofp and SNRs. [6]
6. CONCLUSION

To account for the noise effects in an HU framework, we haee pr 7
sented a robust HU algorithm, i.e., RAVMAX. Here, we reformu 8]
lated the original AVMAX problem with deterministic conatnts
into the one with chance constraints. The RAVMAX problem can
be efficiently solved by using available second-order cangiam
solvers. The simulation results demonstrate the supegdiop (9]
mance of RAVMAX over some existing benchmark HU algorithms [10]
including the original AVMAX. The performance of RAVMAX wiit
real hyperspectral data is currently under investigation.

7. APPENDIX [11]
Proof of Lemma 2: Firstly, it is trivial to show that the objective
function of (19) is equivalent to that of (13) as = By, b) B = [12]

|b;|” andBB = I. Next, consider the subproblem (19) (after ig-
noring the constant term in the objective function) andSetenote

! ' J ! ! . the equality ina; =< BXOJ- hold (i.e., the constraint will be ac-
and the6 endmembers (i.e., Alunite, Buddingtonite, Calcite, Copi- tjye),

In other words, the optimal solutidiax}, 87) belongs to the

set{(aj70j) | a; = BXOJ‘,OJ‘ >~ 0, lfej = 1}7 which is equiv-
alent to the constraint set of (13). Hence we can concludethiea
subproblems (19) and (13) are equivalent. By a similar asqirthe
equivalence of (20) and (14) can be proved.
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