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Abstract— The blind maximum-likelihood (ML) detection of
orthogonal space-time block codes (OSTBCs) is a computation-
ally challenging optimization problem. Fortunately, for BPSK and
QPSK OSTBCs, it has been shown that the blind ML detection
problem can be efficiently and accurately approximated by a
semidefinite relaxation (SDR) approach [1]. This paper considers
the situation where the 16-QAM signals are employed. Due to the
nonconstant modulus nature of 16-QAM signals, the associated
blind ML OSTBC detection problem has its objective function
exhibiting a Rayleigh quotient structure, which makes the SDR
approach not directly applicable. In the paper, a linear fractional
SDR (LF-SDR) approach is proposed for efficient approximation
of the optimum blind ML solution. In this approach, the blind
ML 16-QAM OSTBC detection problem is first approximated
by a quasi-convex relaxation problem. Generally quasi-convex
problems may be computationally more complex to handle than
convex problems, but we show that the optimum solution of
our quasi-convex problem can be efficiently obtained by solving
a convex problem, namely a semidefinite program. Simulation
results demonstrate that the proposed LF-SDR based blind ML
detector outperforms the norm relaxed blind ML detector and
the blind subspace channel estimator [2], especially in the one-
receive-antenna scenario.

I. INTRODUCTION

The blind or noncoherent detection techniques for orthogo-
nal space-time block codes (OSTBCs) have drawn a lot of
interests because, compared to other space-time codes, the
OSTBCs have a much simpler receiver structure. For instance,
the differential OSTBC scheme [3] only requires symbol-by-
symbol maximum-likelihood (ML) detection at the receiver,
although this scheme suffers from a 3 dB performance loss
in signal-to-noise ratio (SNR) compared to the coherent ML
detector. By assuming that the channel is static for a large
number of code blocks, the Shahbazpanahi’s blind subspace
channel estimator [2] has a simple closed-form structure and
can achieve a near-coherent performance. However, the long-
time channel quiescence assumption may be violated if the
channel coherence time is short. The blind ML detector
[1], [4]-[7] has been shown to be able to provide near-
coherent performance even for small to moderate numbers
of code blocks (say, 8-20 code blocks). For BPSK/QPSK
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constellations, it has been shown [1] that the blind ML
OSTBC detection problem can be simplified to a Boolean
quadratic program (BQP). The BQP is NP-hard in general, but
fortunately it can be efficiently and accurately approximated
by a semidefinite relaxation (SDR) approach [1], [8]. This
successful endeavor has motivated some works [5], [6], [9]
that extend the advantages of the BQP problem simplification
to the case of M-ary PSK (MPSK) OSTBCs.

In this paper we consider the blind OSTBC detection
techniques for 16-QAM signaling. The noncoherent detection
problems in this case can be quite different compared with
their BPSK/QPSK and MPSK counterparts. For example, the
differential scheme [3] may not be applied in the 16-QAM
case due to the nonconstant modulus nature of the signals.
For the blind ML approach, we will show in Section II that
the associated detection problem can be formulated as a dis-
crete optimization problem with a Rayleigh quotient objective
function. This problem is much more difficult to handle than
the BQP encountered in the BPSK/QPSK case: Not only the
former has more complex objective and constraint structures,
but the standard SDR approach used in the previous works [1],
[5] appears to be not directly applicable. In Section III we
will present a linear fractional SDR (LF-SDR) approach to
efficient approximation of the 16-QAM blind ML problem.
In this approach, we first apply an SDR idea similar to that
for 16-QAM coherent MIMO detection [10]. However, unlike
[10], we will be faced with a relaxation problem that is quasi-
convex. Specifically, the quasi-convexity of the problem arises
from its linear fractional objective. Though a quasi-convex
problem can be optimally solved (say, using the bisection
method [11]), it is generally argued that solving a quasi-
convex problem would be more complex than solving a convex
problem. We will show that the optimum solution of our
quasi-convex problem can be obtained by simply solving a
convex semidefinite program (SDP). A proof is also presented
to show that the proposed relaxation approach is better than the
simple norm relaxation method [1]. Some simulation results
are presented in Section IV to demonstrate that the proposed
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LF-SDR based blind ML detector outperforms the existing
suboptimal methods.

II. PROBLEM STATEMENT

Consider an OSTBC system with N, transmit antennas and
N, receive antennas. We assume that the channel is frequency
flat and is static for a number of P code blocks. The respective
signal model is given by

Y, =HC(u,) + W,, p=1,...,P. (1)

Here,
Y, € CN-xT received code matrix at block p, with T
being the block length of the OSTBCs;
u, € ux transmitted symbol vector at block p,

with &/ C C being the symbol constel-
lation set and K being the number of
symbols per block;

function that maps the given symbols to
an orthogonal space-time code block;
channel matrix;

additive white Gaussian noise matrix
with the average power per entry given
by o2.

An OSTBC mapping function C(-) can always be expressed
as [12]

C:CK — CNexT

H e CNrxN:
W, € CNxT

K

K
C(uy) = Y Re(upp)Ag+j Y Tm(uy1)By  (2)
k=1 k=1

for some basis matrices A, € R™*T and B, € RM*T,
More importantly, for any u, € CX OSTBCs satisfy the
orthogonality condition
C(u,)C™ (up) = [u,[*Ly, 3)
where Iy, is the N; x IN; identity matrix.
Let us focus on the case of 16-QAM signaling, that is
U=Uggam ={ u=ur+j ur | ur,ur € {£1,£3} }.

Since a QAM symbol is composed of two independent pulse
amplitude modulated (PAM) symbols, let us define

Sp = [Sp1s.--, Sp,QK]T
= [Re(u}), Im(u})]" € {£1,£3}*F

as the real 4-PAM counterpart of u,. Then the OSTBC
expression in (2) can be more conveniently represented by

2K
C(up) = C(sp) = Zxkspykv “)
k=1

for some X, € CN+*T (depending on A}, and By).

The problem of blind ML detection of s := [s,...,sE]T €
{£1,£3}*PK from Y,, p=1,..., P, can be written as the
following optimization problem [7]

P
s* H*} = ar min Y, - HC(s,)|>. 5
{ } ¢ se{il,i:a}?PKz_:l” P (CO]I )
HeCNr Nt p=

By following the reformulation idea in [1]', but assuming
nonconstant modulus symbols, one can show that (5) can
be simplified to a discrete Rayleigh quotient maximization
problem

T
. s'Fs
s* = arg max — (6)
se{+1,£3}2PK s's
where
Fi1 Fip
F— : € R2PKX2PK
Fpi Fpp

[F;mq]k,f = Re{Tr{YpXkHXng}},

in which Tr(-) denotes the trace of a matrix. Problem (6)
can be solved by enumerating all possible points in the set
{£1,£3}2PK 1In that case 2*FK trials would be required,
which is impractical for large values of 2P K. One simple sub-
optimal approach for (6) is to relax the discrete set {£1,+3}
to the real space R, leading to the norm relaxed blind ML
problem [1]

sTFs
fNR = Imax T
scR2PK s+ S

; )

of which the principal eigenvector of F is the optimum
solution. An approximate solution of (6) can be obtained by
quantizing the relaxation solution in the set {£1,£3}2FK.
Specifically, let v* € R2PK denote the principal eigenvector
of F, and assume that s; ; is known to the receiver. Then an
approximate solution of (6) by norm relaxation is given by

SNR = 04pAM (S;;l 'v*> ; ®)
1
where o4pans @ R2PE — {41, £3}2PK s a function in which
the ith element of o4pam () is the rounding of z; to the set
{#£1,£3}.

We will show in our simulation results that this simple norm
relaxation method is far from optimal when P is small to
moderate (which is the case for short channel coherence time),
and when only one receive antenna is available. To obtain a
better approximate solution of problem (6), we present in the
next section an LF-SDR approach.

III. LINEAR FRACTIONAL SDR APPROACH

This section presents the main results, namely the LF-SDR
approach to approximation of the 16-QAM blind ML OSTBC
detection problem.

A. Homogeneous Reformulation of the Blind ML Problem

In the 16-QAM blind ML OSTBC detection problem in
(6), one can see that the optimal symbol decision suffers from
ambiguity up to a scalar of {£1,+3}. To fix this problem,

'We should add that this reformulation idea is the key reason why blind
ML OSTBC detection with constant modulus constellations can be effectively
handled in the preceding studies [1], [5], [6].
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we assume without loss of generality that s ; is known to the
receiver. Let us partition

u VT S1.1
I
where u € ]R’ v € RZPKfl’ R c R(2PK71)><(2PK71) and

Z € {+1,+3}2PE~1 With s; ; being known, the blind ML
problem [in (6)] should be modified as

ETRZ 4 2(s11v7)T + 57 u

7+T 5 2
TOT+ 87,

fuL =

max
&e{+1,£3}2PK 1

(10)
We consider a homogeneous reformulation of (10) which is
an essential procedure in applying SDR [1], [8], [10]. Let us

introduce a new variable ¢ € {1}, and define & = tx where
x € {+1,4+3}2PE-1 Problem (10) is equivalent to

zTRa + 2t(s11v7 )z + 51 u

max 11
e {+1,£3}2PK-1 xlx + 57 (b
te{£1}
By further denoting n = 2PK, y = [z, #]T, and
| R 81,1V _Ip—1 O
G= [slylvT 5%,1“] , D= {OT 5%,1 ’ (12)
problem (11) can be homogenized as
TG
max yT Yy (13a)
yeRm y! Dy
subject to (s.t.) yi € {£1,£3}, (13b)
k=1,...,n—1,
yn € {£1}. (13¢)
It is easy to see that if y* is a solution of (13) and it is
partitioned as y* = [(x*)T,#*]T, then t*z* is a solution of

(10).
B. Linear Fractional Semidefinite Relaxation

We can now introduce the LF-SDR approach for the ap-
proximation of (13). To illustrate this, we define Y = yy”
and rewrite (13) as

Tr(GY)

yeknsn Tr(DY) (142)
st [Yle €{1,90 k=1,....n—1, (14b)
(Ylnn =1, (14c)

Y > 0 (positive semidefinite), (144d)
rank(Y) =1, (14e)

where (14b) and (14c) are due to (13b) and (13c), respectively.
By dropping the constraint rank(Y) = 1 and by relaxing the
discrete set {1,9} to the interval [1,9], we end up with the
following linear fractional semidefinite relaxation (LF-SDR)

Y* = arg Yrer]lR%z}in m (15a)
st 1<[Y]|er <9,k=1,....,n—1, (15b)

[Y]on =1, (15¢)

Y > 0. (15d)

Note that the above relaxation idea is similar to those in
[10], where the SDR method were developed for the 16-QAM
coherent MIMO detection problem. In the latter, the relaxation
problems are convex SDPs and can be efficiently solved by
available interior point algorithms [13]. The problem we are
dealing with is quite different. In essence, problem (15) is a
quasi-convex problem. In general, this problem can be solved
by the bisection method [11] in which a sequence of SDP
feasibility problems need to be solved. Fortunately, we will
show in the next subsection that problem (15) is equivalent to
an SDP. In other words, we can obtain the optimum solution
of (15) by solving one SDP, instead of solving many SDPs in
the bisection treatment.

C. SDP Reformulation of LF-SDR, and Implications

In this subsection, we show that problem (15) is equivalent
to an SDP. This investigation will ease the computational
efforts for obtaining an optimum solution of (15). Consider
the following SDP

Z* = arg max Tr(GZ) (16a)
ZERnXn
s.t. Tr(DZ) =1, (16b)
(Z] 10 < [Z]kk < 92 n, (16¢)
k=1,....,n—1,
7+ 0. (16d)

The following proposition states the equivalence between (15)
and (16).

Proposition 1 The linear fractional quasi-convex problem
(15) has the same optimum objective value as the SDP in
(16). Moreover, an optimum solution of (15) can be obtained
through the relation Y* = Z* /|Z*],, 1.

Proof: We first show that for any feasible Z of problem
(16), [Z],,., # 0. Suppose that [Z],, , = 0. Then by (16c¢) and
(16d), Z = 0, which however violates (16b). Therefore, we
can always define a point Y = Z/[Z],, . It is easy to show
that Y is feasible for problem (15) and has the same objective
value Tr(GY)/Tr(DY) = Tr(GZ). On the other hand, it can
be seen from (12), (15¢) and (15d) that for any feasible Y of
problem (15), Tr(DY) = 372  [Y]es + 571 > 0. Let Z =
Y /Tr(DY). Then it is also easy to show that Z is feasible
for problem (16) and has the same objective value Tr(GZ) =
Tr(GY)/Tr(DY). Therefore, we conclude that problems (15)
and (16) are equivalent and Y* = Z* /[Z*],, .. [ ]

Proposition 1 implies that the optimum solution Y* of (15)
can be simply obtained by solving the SDP (16) in lieu of the
bisection method. The SDP (16) can be solved in polynomial
time using an interior-point method [13], with a worst-case
complexity of O(n??).

From the above SDP reformulation, we can also prove that
the proposed LF-SDR approach has a better approximation
accuracy than the simple norm relaxation method in (7), as
the following proposition states.
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Proposition 2 Let fir_spr = Tr(GZ*) be the optimum
value of the SDR problem (16), and recall that fy, and fxr
are the optimum values of the original blind problem [in (10)]
and the norm relaxation problem [in (7)], respectively. Then

|fmr — fur—spr| < | fvn — farl-

Proof: The idea of this proof follows that for Theorem 1 in

[1]. Since frr_spr > fumr and fnr > fumr (a basic result in
relaxation), it suffices to show that fir_spr < fnr. Suppose

that p
= LJT ﬂ ’
where P € R=Dx(»=1) ¢ ¢ R"~! and r € R. Let
_ {51,17” s11q7
51,19 P
Then one can readily show from (9), (12) and (16) that

E

a7)
(18)

Tr(GZ*) = Tr(FZ),
Tr(DZ*) = Tr(Z) = 1.

Consider the eigenvalue decomposition of Z =
> k1 AkgrEL, where \p > 0 is the kth eigenvalue of
Z, and gi, € R" is the associated unit-norm eigenvector. Then

Z Aegl Fgi < Z Ak ||§ﬁa’-(1g Fg

k=1
= TI‘( )fNR' (19)
By (17), (18) and (19), we obtain frr_spr = Tr(GZ*) <
JNR- [ |

D. Gaussian Randomization

Since the optimum solution Y* of problem (15) does not
necessarily have rank one, a feasible rank-1 approximation
solution of problem (13) obtained from Y”* is needed. One
straightforward method is to compute the principal eigenvector
of Y* (thereby performing rank-1 approximation), and then
quantize the principal eigenvector in the set {+1,43}"~!
x{=£1}. Another method practically proven to be effective
is the Gaussian randomization [10]. In this method, we first
generate L random vectors & O eRrRm, ¢ = 1,..., L, following
the Gaussian distribution AV(0,Y*) [i.e., £ ~ N (0,Y*)],
then quantize £(9) in the set {£1,+3}"~! x {£1}. Denote by
9 € {#1, 43} x {£1} the quantized vector of £); viz.

) aapam (€ ), sen(&) 17,
where sgn : R — {+£1} is the sign function. We pick the
quantized vector that yields the largest objective value

(5) "Gy

L () TDy""

~ Y4
9 = [ oapan(el?), ...,

0 = arg 2 Hlla
and choose §*") as our approximate solution of problem
(13). Typically, L = 50 ~ 100 suffices to obtain a good
approximation performance.

IV. SIMULATION RESULTS

In this section, we present some simulation results to
demonstrate the efficacy of the proposed LF-SDR based blind
ML detector. The detector performance was evaluated using
symbol error rate (SER), and there were at least 10,000
trials performed for each simulation result. The SDP in (16)
was solved by a specialized interior point algorithm [14]
that is particularly suitable for (16) and runs faster than the
general-purpose SDP solver SeDuMi [15]. An approximate
solution of problem (6) was obtained either by quantizing the
principal eigenvector of Y* or by the Gaussian randomization
procedure with L = 50 random vectors generated for each
trial. The coefficients of H are zero-mean i.i.d. complex
Gaussian distributed with variance equal to 1. The SNR used in
the performance plots is the SNR per receive antenna, defined
as
E{|HC(s)|%} _ 10N,

SNR = = ,
E{|WI%} Ta,

We compared the proposed detector with the norm relaxed
blind ML detector (i.e., Eqn. (8)), the Shahbazpanahi’s blind
subspace channel estimator [2], the cyclic ML method [7]
(initialized by the norm relaxed blind ML detector), and
the coherent ML detector (which has perfect channel state
information (CSI)). Note that for white Gaussian noises, the
Shahbazpanahi’s blind subspace channel estimator is equiv-
alent to the norm relaxed blind ML detector [1], [2] from
a theoretical viewpoint. However, the former employed a
different method of using the pilot to fix the channel ambiguity
(Please refer to [2] for the details). As a result, the two methods
will be seen to exhibit different simulation performances.

Figure 1 shows the results for complex 3 x 4 OSTBC
Ny =3, T =4),P =8and () N, =1, (b) N, =
4. One can see from Figure 1(a) that the Shahbazpanahi’s
subspace method, the norm relaxed blind ML detector, and
the cyclic ML method cannot properly decode the transmitted
OSTBCs. However, the proposed blind ML detector exhibits
consistent SER performance. For the multiple-receive-antenna
case as shown in Figure 1(b), the Shahbazpanahi’s subspace
method can properly identify the transmitted symbols (some
theoretical reasoning for the significant performance difference
of the subspace method in the one-receive-antenna and multi-
receive-antenna cases has been provided in [16]). Nevertheless,
one can see from Figure 1 that the proposed blind ML detector
outperforms the subspace method as well as the norm relaxed
blind ML detector. This result provides a numerical support for
Proposition 2. One can also observe from Figure 1(b) that the
performance difference between the LF-SDR based blind ML
detector and the coherent ML detector is less than 1.5 dB.
It implies that the proposed LF-SDR approach can provide
reasonable approximation quality to the blind ML OSTBC
detection problem (6). It is interesting to see that these results
have the same trends as those for BPSK/QPSK OSTBCs
studied in [1]. Figures 1 (a) and (b) also indicate that the
Gaussian randomization procedure is a better approximation
method than the principal eigenvector method.
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—©— Norm relaxed blind ML

—&— Cyclic ML

—=8— Shahbazparahi's blind subspace
—=&A— LF-SDR blind ML (principal eigenvector)
—<— LF-SDR blind ML (randomization)

ML with perfect CSI

SER

SNR (dB)
(a)

10°

SER

1 —©—Norm relaxed blind ML
] —H—Shahbazparahi's blind subspace [\ -
104 —&—Cyclic ML

1 —A—LF-SDR blind ML (principal eigenvector)
1 —<—LF-SDR blind ML (randomization)

ML with perfect CSI

SNR (dB)
(b)

Figure 1. Performance (SER) of the proposed LF-SDR based blind
ML detector for complex 3 x 4 OSTBC, P = 8 and (a) N, = 1, (b)
N, =4.

V. CONCLUSIONS

In the paper, we have presented a suboptimal LF-SDR
approach for blind ML detection of 16-QAM OSTBCs. While
the associated blind ML detection problem is a computation-
ally difficult optimization problem, we have shown that the
proposed approach can be efficiently implemented by solving
an SDP followed by a simple randomization procedure. We
have proved that the presented LF-SDR approach has a better
approximation accuracy than the norm relaxation method, and
our simulation results have further justified the efficacy of the
proposed detector.

While the technique in [10] is adopted in this paper to relax
the discrete set {1,9} in (14b) to the interval [1,9], we have
noticed that there exist some other methods dealing with this
discrete constraint in the context of coherent MIMO detection,
e.g., [17] and [18]. Future work will consider the possibility
of extending these techniques to the fractional quadratic case

and comparing their approximation performances and com-
plexities.
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