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ABSTRACT 

Chi and Wu proposed a unified class of inverse filter 
criteria J,,, using an rth-order and an mth-order cu- 
mulants (where r is even and m > r 2 2) which in- 
cludes Wiggins’ criterion, Shalvi and Weinstein’s cri- 
terion and Tugnait’s criteria as special cases, for blind 
deconvolution and equalization with only non-Gaussian 
output measurements of a nonminimum phase linear 
time-invariant (LTI) system (channel) h(n). In this 
paper, we theoretically prove that for finite SNR, as 
Mendel’s (nonblind) minimum-variance deconvolution 
(MVD) filter, the optimum inverse filter v(n) associ- 
ated with the criteria J2 ,m is a perfect phase equalizer 
but not a perfect amplitude equalizer, and the latter 
approaches the former as either m or SNR is increased 
or as the system h(n) has wider bandwidth. For the 
other J,,, ( r  2 4), perfect equalization can be attained 
at the expense of SNR degradation. Finally, some sim- 
ulation results are provided to support the proposed 
analytic results. 

1. INTRODUCTION 

Blind deconvolution and equalization is a signal pro- 
cessing procedure to estimate the input signal U(.) 
which is distorted by a linear time-invariant (LTI) sys- 
tem (channel) h(n) with only noisy output measure- 
ments of the system h(n),  i.e., 

CO 

.(n) = u(n)*h(n)+w(n)  = h(k )u (n -k )+w(n)  

(1) 
k=-= 

where w ( n )  is measurement noise. Chi and Wu [l] p r e  
posed a unified class of inverse filter criteria to estimate 
u(n) with only a given set of non-Gaussian measure- 
ments .(.). They estimate the optimum inverse filter 

This work is supported by the National Science Council un- 
der Grants NSC 85-2213-E007-012 and NSC 86-2213-E007-037. 

estimate of h(n),  denoted v(n), by maximizing the fol- 
lowing objective function: 

where r is even, m > r 2 2, and Cr and Cm denote the 
rth-order and mth-order cumulants of the deconvolved 
signal 

e ( n )  = z(n) * ~ ( n )  = U(.) * g(n) + ~ ’ ( n )  (3) 

respectively, in which w’(n) = ~ ( n )  * ~ ( n )  corresponds 
to additive noise in e(.) and 

s (n)  = h(n) * 4.1 (4) 

is the overall system (channel) after equalization (de- 
convolution). The unified class of inverse filter criteria 

given by (2) includes Wiggins’ criterion [2] (asso- 
ciated with J 2 , 4 ) ,  Shalvi and Weinstein’s criterion [3] 
(also associated with J 2 , 4 ) ,  and Tugnait’s inverse filter 
criteria J2,3,  J2,4 and J4,6 [4] as special cases. Assum- 
ing that the stable inverse filter of h(n) exists, it has 
been proven in [l] that the optimum g(n) = aS(n - r )  
either when r = 2 and signal-to-noise ratio (SNR) equal 
to infinity or when r > 2, where CY # 0 is an unknown 
scale factor and r is an unknown time delay. When 
SNR is finite, the inverse filter U(.) associated with 
J 2 , ,  no longer leads g(n) to  a delta function. In gen- 
eral, the better g(n) approximates to a delta function, 
the smaller is the amount of intersymbol interference 
(after equalization) defined as 

Note that ISI(ag(n-r)) = ISI(g(n)) and ISI(S(n)) = 0. 
This paper proposes a performance analysis for the 

inverse filters associated with the unified class of inverse 
filter criteria Jr,m when SNR is finite. This analysis in- 
cludes the connection of these inverse filters for r = 2 
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with the well-known Mendel's minimum-variance de- 
convolution (MVD) filter [5] (a nonblind equalizer) in 
terms of cumulant order m, SNR, the bandwidth of the 
system h(n ) ,  and ISI(g(n)). Besides, the SNR degra- 
dation in e(n) (after equalization) for the other J,,, 
( r  2 4) is also presented followed by some simulation 
results. 

2. MAJOR ANALYTIC RESULTS 

Assume we are given a set of measurements z (n )  given 
by (1) where measurement noise ~ ( n )  is white Gaussian 
with zero mean and variance U:, and the driving input 
U(.) is zero-mean, independent identically distributed 
(i.i.d.) non-Gaussian with variance ui. 

Let H ( w )  and G(w)  denote the frequency responses 
of the system h(n) and the overall system g ( n ) ,  re- 
spectively. Chi and Mendel [5] proved that the opti- 
mum G ( w )  associated with the MVD filter, denoted 
VMVD(W), is given by 

which is zero phase with H ( w )  and the ratio .:/ut 
given a priori for the (nonblind) MVD filter. In other 
words, the MVD filter is a perfect phase equalizer, but 
not a perfect amplitude equalizer to the system h(n).  

2.1. Performance of J z , ~  ( r  = 2) 

Four properties are proposed below regarding the in- 
verse filter criteria J2,m (where m > 2 )  which use a 
second-order cumulant (correlation) and a higher-order 
cumulant. 

Property 1. The optimum overall system G ( w )  is a 
system with linear phase, i.e., 

arg { G ( w ) }  = -wr  (7) 

which indicates that as the MVD filter, the optimum 
inverse filter U(.) is also a perfect phase equalizer (ex- 
cept for an unknown time delay). 

0 

Property 2. The optimum G ( w )  satisfies 

G(w) = ,b'. {G(LJ) * G ( w )  * .  . * G ( w ) }  * G M ~ D ( ~ )  
m-1 terms 

(8) 
\ I < 

where p is an unknown constant and gMvD(n) is the 
inverse Fourier transform of GMVD(U). 

0 

Figure 1. An iterative algorithm for obtaining the 
optimum g(n) associated with Jz,,. 

Note that (9) is a highly nonlinear equation of g(n). 
The optimum g(n) can be obtained using the iterative 
algorithm as shown in Figure 1. At the i th iteration, 
g(n) is updated by (see (9)) 

gz'(n) = pi-1 . {gi"_T1(n) * gMVD(n)} (10) 

where the value for the scale factor Pi-1 is chosen such 

Property 3. The optimum G ( w )  approaches 
GM-,TD(w) as either m or SNR increases or as the sys- 
tem h(n) has wider bandwidth. As the MVD filter, 
the optimum U(.) is a perfect amplitude equalizer only 

cl 
when SNR = CO or when h(n) is an allpass system. 

Property 4. Either the larger SNR or the wider the 
bandwidth of the system h(n) ,  the smaller are the val- 
ues of both ISI(g(n)) and ISI(gMVD(n)). Moreover, 
ISI(g(n)) is either close to or larger than ISI(gMVD(?Z)). 

0 

that c, gi(n)gi-l(n) = E, gi2_1(n). 

2.2. Performance of JT,, for r > 2 

For the inverse filter criteria J,,, where r is even and 
m > T 2 4, as shown in [l] the optimum inverse filter 
U(.) is a perfect equalizer for finite SNR. Let p denote 
the ratio of SNR associated with e ( n )  given by (3) to 
that associated with ~ ( n )  given by (l), i.e., 

E{[e(n)  - ~ ' (n)121/E{w' (~)2)  (11) 
E{[z(n)  - W ( 7 9 l 2 I / E { W 2 ( 4 I  

P =  

Property 5. It can be shown that 
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In other words, SNR always decreases in the decon- 
volved signal e(n) except when h(n) is an allpass sys- 
tem, although the optimum v(n) is a perfect equalizer. 

0 

SNR 
0 dB 
5 dB 

3. SIMULATION RESULTS 

J 2 , 3  J2,4 MVD 
-1.7339 -3.1179 -3.8440 
-7.8739 -8.3597 -8.4871 

In the simulation, a nonminimum phase broadband sys- 
tem (taken from [6]) and a minimum phase narrowband 
system (taken from [5]) whose impulse responses h(n)’s 
are shown in Figure 2(a) (dotted line for the former and 
solid line for the latter), were used to  demonstrate the 
proposed performance analysis for the inverse filter cri- 
teria J2 ,* .  

The iterative algorithm shown in Figure 1 was used 
to obtain the overall system g(n). For the broadband 
system, Figure 2(b) shows the frequency response G(w) 
of the overall system g(n) associated with J 2 , 3  (short- 
dash line and short-dash dot line for SNR = 5 dB and 
0 dB, respectively) and the associated G M V D ( ~ )  (long- 
dash line and long-dash dot line for SNR = 5 dB and 0 
dB, respectively) together with the amplitude response 
IH(u)l  of the broadband system (solid line), where lin- 
ear phase terms and scale factors were artificially re- 
moved. The corresponding results associated with J 2 , 4  

are shown in Figure 2 ( c ) .  Note that in Figure 2(c) the 
short-dash line and the long-dash line almost overlap 
each other. For the narrowband system, the results cor- 
responding to  those shown in Figures 2(b) and (2c )  are 
depicted in Figures 2(d) and 2(e), respectively, for SNR 
= 40 dB and 20 dB instead. One can see, from Figures 
2(b) through 2(e), that both G(w)’s of the broadband 
and narrowband systems are better approximations to 
the associated GMVD(W) for either larger m or higher 
SNR. These results justify Property 3. Furthermore, 
Figure 2(a) also shows the obtained g(n) associated 
with 5 2 , 4  for SNR = 0 dB (dash-dotted line for the 
broadband system and dashed line for the narrowband 
system). One can see, from this figure, that both g(n)’s 
are zero phase which justifies Property 1, and that g(n) 
is a better approximation to a delta function for the 
broad system which justifies Property 4. 

Table 1 shows the obtained ISI(g(n))’s associated 
with J 2 , 3  and J 2 , 4  and ISI(gMVD(n)) (in dB) (after 
equalization) together with ISI( h(n))  (before equaliza- 
tion) for the broadband system. Table 2 shows the 
results corresponding to those shown in Table 1 for the 
narrowband system. One can see, from Tables 1 and 2, 
that both ISI(h(n))’s (before equalization) are signifi- 
cantly reduced by all the inverse filters. Furthermore, 
the ISI(g(n))’s and ISI(gMVD(n)) shown in these tables 
decrease as SNR increases, and the former are either 
close to or larger than the latter. Also note that those 
shown in Table 1 for SNR = 0 dB are close to those 

shown in Table 2 for SNR = 40 dB which indicates that 
for the same ISI, higher SNR is required for a system 
with narrower bandwidth. These results also justify 
Property 4. 

4. CONCLUSIONS 

We have presented a performance analysis for Chi and 
Wu’s unified class of inverse filter criteria JT,m where r 
is even and m > r 2. 2. The proposed analysis includes 
four properties relating these inverse filters associated 
with J2,m to the (nonblind) MVD filter, and one prop- 
erty about SNR degradation in e(n) associated with 
the other J,.,m (7  2 4). The analytic results were then 
justified through simulation. 
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Table 1. ISI(g(n)) and ISI(gMvD(n)) (in dB) 
(after equalization) for the broadband system. 

I ISI(h(n)) = 2.9229 dB (before equalization) I 

1 10 dB I -12.9506 I -12.8908 I -12.9009 I 
20 dB 1 -18.2710 I -18.2177 I -18.2189 
40 dB 1 -41.5448 I -41.5379 1 -41.5379 
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Table 2. ISI(g(n)) and ISI(gMm(n)) (in dB) 
(after equalization) for the narrowband system. 

SNR J 2 , 3  J2,4 

0 dB 6.4182 6.6020 
MVD 
6.2023 

5 dB 
10 dB 

5.7917 5.6351 5.2008 
5.1403 4.8484 4.2803 

I O ,  I 

-0.5 

-30 -25! 

- 

I 
20 dB 
40 dB 

I 
- 100; 0.5 1 1.5 2 2.5 3 

RADIANS 

(d) 

3.3977 1 2.9749 2.1965 
-2.0096 I -3.1099 -3.8829 

I 

I 

10 

I 
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RADIANS 

(C) 
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(4 

Figure 2 .  (a) The impulse responses h(n)’s of the broadband system (dotted line) and the narrowband system 
(solid line), respectively, and the obtained overall system g(n) associated with J2,4 for SNR = 0 dB (dash-dotted 
line for the former and dashed line for the latter); (b) the frequency response G ( w )  associated with J2,3 (short-dash 
line and short-dash dot line for SNR = 5 dB and 0 dB, respectively) and the associated G M V D ( ~ )  (long-dash line 
and long-dash dot line for SNR = 5 dB and 0 dB, respectively) together with the amplitude response IH(w)l (solid 
line) of the broadband system and (c) the corresponding results associated with 52,4; (d) and (e) show the results 
corresponding to parts (b) and (c), respectively, for the narrowband system and SNR = 40 dB and 20 dB, instead. 
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