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ABSTRACT 
Yang and Chi proposed a family of 1-D criteria 
for estimating the phase of a 1-D nonminimum 
phase linear time-invariant (LTI) system with 
only non-Gaussian measurements corrupted by 
additive Gaussian noise. The phase of the LTI 
system is obtained through an iterative algo- 
rithm which processes the given measurements 
by an ARMA allpass model such that a single 
absolute Mth-order (M 1 3) cumulant of the all- 
pass model output is maximum. In this paper, 
a family of 1-D and 2-D criteria, in which Yang 
and Chi's 1-D criteria are included, is proposed 
for phase estimation using a Fourier series based 
allpass model. The optbum allpass models for 
1-D and 2-D LTI systems are obtained by a 1- 
D and a 2-D iterative algorithms, respectively. 
The paper concludes with some simulation re- 
sults followed by some conclusions. 

1. INTRODUCTION 

Identification of an unknown real linear time- 
invariant (LTI) system h(n) with Gaussian noise 
corrupted measurements s(n), i.e., 

s(n) = U(.) * h(n) t w(n) (1) 

plays an important role in various engineering ap- 
plications such as seismic deconvolution, chan- 
nel equalization, speech deconvolution and im- 
age restoration. Estimation of amplitude response 
of h(n) is the kernel of correlation (second-order 
statistics) based parametric spectra3 estimation. 
On the other hand, phase estimation must resort 
to higher-order statistics, known as cumulants, 
simply because correlations are phase blind. 

A number of phase estimation methods have 
been reported such as polyspectrum phase based 
methods [1,2] which estimate the phase of h(n) 
from the phase of polyspectra of x n) with- 
out involving am litude estimation of I, (n), and 
minimum-phase &I?) - allpass (AP) decomposi- 
tion based methods [3-51 which estimate the am- 
plitude of h(n) using a correlation based method 
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and then estimate the phase of h(n using a cu- 
mulant based method. Recently, 3 ang and Chi 
[6] proposed a new parametric method which esti- 
mates the phase response 6(w) = a r g ( H ( z  = d")} 
of h(n) neither involving the amplitude estima- 
tion nor using the phase of polyspectra of ~ ( n )  
This method is implemented by an iterative opti- 
mization algorithm which processes z(n)  with an 
optimum ARMA all ass filter such that a single 
absolute Mth-order TA4 2 3) cumulant of the all- 
pass filter output is maximum. Yang and Chi's 
method performs well asd is free from the phase 
unwrapping problem of polyspectrum phase based 
methods, and meanwhile is more insensitive to ad- 
ditive Gaussian noise than MP-AP decomposition 
based methods because it never resorts to correla- 
tions throughout their algorithm. 

Dianat and Raghuveer 171 proposed a Fourier 
series based paramteric model for both the phase 
and magnitude of non-Gaussian signals with the 
model parameters estimated from bispectra of 
data. In this paper, the Fourier series 
[7] is used for estimating the phase of 
ing the previous Yang and Chi's est 
cedure. Moreover, sharin the same advantages 
of Yang and Chi's metho B mention 
proposed phase estimation method 
for both 1-D and 2-D LTI systems w 
zeros on the unit circle for the former and the unit 
bi-circle for the latter. 

2. NEW CUMULANT BASED PHASE 
ESTIMATION METHOD 

Let us define some notations for ease of later use: 
n = (%, n2), = &I, h) 
2 = (ZbZZ)' =\(~l,W2) 

E2-00 = E&-, cg=-, 
H(w)  = H ( z  = ejw) ,  H(w) = H(z = (ej"Q,ejY)) 

Let z(n) be the noisy output of a 2-D unknown 
LTI system h(n) driven by a non-Gaussian input 
4 n )  

x(n) = * h( n) t w( n) 
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Let Eip(z) be a l-D allpass model whose phase 
is modeled as [7] 

P 
4(0) = arg{Ei,(w)} = uk - sin(kw) (3) 

and HP1,P2(z) be a 2-D allpass model whose phase 
is modeled as [7] 

k = l  

4 p l , p 2 ( 4  = ~ V W p l , p 2 ( 4 1  = 

- sin(ko1 i- Z02) i- 
1=1 

The new phase estimation method to be pre- 
sented below is based on the allpass model associ- 
ated with (3) and (4) and the following theorem. 

4(w) = arg{HAp(w)} = -B(w) t t x  * W T  (5)  

where 8(w) = urg(H(w)} and CM = ( c Y I , ~ ~ )  is 
u n ~ ~ o w n  constant row vector. 0 

Note that Theorem 1 is a 2-D extension of t 
~ r r ~ p ~ n ~ n g  theorem reported in [6] for the 1 
case. The former reduces to the latter with n, w,  7c 
and CY replaced by n and w,  T and a, respectively. 

Let 

* h p ( n )  l-Dcase 
* hpl,pz(n) 2-D case 

By Theorem 1, except for an unknown linear hase 
unknown time delay), the phase e&) of 

n system H z can be estimated using 
( 5 )  by maximizing the 'ft o owing highly nonlinear 
objective function 

J(a)  = I&f,y12 ( 6 )  

ere a is a column vector containing dl the coef- 
ients of the allpass model used and C M , ~  is the 

Mth-order sam le cumulant of y(n). To find the 
maximum of J&), a gradient type iterative opti- 
mization algorithm (IOA) is used which updates 
i at ith-iteration by 

where 0 < p 5 1 is a constant, and OJ(a)/aa 
depends only on y(n) and ay(n)/aa. 

The new l-D phase estimation algorithm using 
pass model H p ( z )  (see (3)) is described as 

follows: 
: (l-ID phase estimation algorithm) 

Set pmar (maximum of p ) ,  cumulant order 
M and integer increment parameter s 2 1. 
Set t = 1, p = s and a? = (al, ...,up)T which 
contains all the Coefficients of cjp(w) defined 
by (3). Search for the maximum of J(ap) by 

A with d ( 0 )  = 0.  
§et t = t + 1 and p = s - t .  Search for the 
maximum of J(a,) by the above IQA with 
iip(0) = where 0, is an s x 1 
column vector containing only zeros. 
If p < p,,, go to (S3), otherwise stop. 

The optimum d(w), is then obtained as (see ( 5 ) )  

B(0) = -UTg{f ip(Ld)}  = -&J) (8) 

e computation of y(n) and Oy(n)/8ap 
omputing J(ap) and aJ(ap)/aaP in 
the former can be obtained by com- 

p ~ t i n g  y(n) = ~ ( n )  * hp(n) where hp(n)  is the in- 
verse FFT of I f p ( @ ) ,  and the latter can be shown 
to be 

1 -- - 2 {y(n t m) - y(n - m))  (9) aam 

The new 2-D phase estimation al orithm using 
s model HPla2(2) (see (4)j is described 

~~~~~~~m 2 : (2-D phase estimation algorithm) 

(Sl) §et pl, p2, cumulant order M ,  and let a be a 
column vector containing all the coefficients 

the maximum of J(a) by the 

The opt~mum &U), is again obtained as (see ( 5 ) )  

of 4 p l , p 2 ( 4  defined by (4). 

B(w) = - U V { f i p , , p 2 ( @ > )  = -4pPl ,p2 (w)  (10) 

For computing J(a) and aJ(a)/aa required in 
(§2), y(n) can be obtained by taking the inverse 
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FFT of U ( w )  = X ( w )  4,11p2(w) and ay(n)/Ou,,, 
can be shown to be 

(11) 
Some remarks for the proposed two phase esti- 

mation algorithms are worthwhile to be summa- 
rized as follows: 
(Rl) For Algorithm 1, s aJlpass model parame- 

ters are increased at each iteration (t) which 
often leads to much faster convergence for 
s > 1 than for s = 1 with almost the same 
performance by our experience. 

(R2) The optimum allpass filter (Bp( z )  or 
kpllp?(z)) is actually an optimum phase 
equalizer to remove the phase distortion of 
the unknown LTI system ( H ( x )  or H ( z ) )  
which itself can also be an allpass system. 

(R3) Algorithm 1 is computationally faster than 
Yang and Chi’s l-D phase estiniation algo- 
rithm because the former and Algorithm 2 
have the same parallel structure in comput- 
ing Oy(n)/aa, and ay(n)/Oa,,s, which are 
nothing but the output of a two-point -1/2 
and 1/2) FIR filter (see (9) and (11)) &riven 
by y(n) and y(n), respectively. 

(R4) The optimum phase estimate &U) is a con- 
tinuous a proximation to the true system 
phase B ( W ~  which itself can have discontinu- 
ities. Moreover, e ( ~ )  is blind to a constant 
‘lr since @M,J is invariant for either of y(n) 
and -y(n). 

(R5) It can be shown that the phase estimation 
error 

is smaller for those w where IH(w)l is larger. 
Therefore, when 8(w) has discontinuities 
due to zeros on the unit circle (l-D case) 
or unit bi-circle (2-D case), e(w) is always 
large in the vicinity of discontinuities of e(o) 
even if S N R  = 00. This is also consistent 
with the well-known pro erty of Fourier se- 
ries expansion that e(w7 # 0 for those w 
where 8(w) is not continuous even if = 00 
(l-D case) or p l  = p2 = 00 (2-D case!. 

e(w) = p(w)  - @ ) I  (12) 

3. SIMULATION RESULTS 
Two simulation examples are presented below to 
justify the good performance of the proposed two 
phase estimation algorithms. The driving input 
sequence U(.) or u(n) used was a zero-mean i.i.d. 
exponential random sequence and the phase 8(w 

has discontinuities. 
Example 1. l-D phase estimation 

A nonminimum phase ARMA(3,4) 3-D system 
H ( z )  with a pair of zeros at ef30*9237 was used in 

or $(U) of the unknown system h(n) or h(n) use d 

this example. The amplitude IH(w)l (solid line) 
and phase O(w) (solid line) responses of H ( a )  are 
shown in Figures l(a) and l(b), respectively. One 
can see a spectral null at o = 0.9237 in Figure 
l(a). The synthetic data 5 n were generated for 
N = 1024 (data length) an 63. NR = 20dB (white 
Gaussian noise). The estimated continuous system 
phase ê (“) (dashed line) (see (R4)) obtained by 
Algorithm 1 with M = 3 (cumulant order), pmaz = 
16 and s = 8 is also shown in Figure l(b). As 
predicted (see (R5 , the phase estimation error 

U = 0.9237. 
Example 2. 2-D phase estimation 

A nonseparable 3 x 3 MA 2-D system H(w) was 
used whose amplitude H(w)l and phase 0 w )  re- 
sponses are shown in k igures 2(a) and 2( 6 ), re- 
spectively. Spectral nulla in (H(w)( and discon- 
tinuities (jumps of 27r or T )  in 8 w )  can be seen 
from these two figures, respectiv 1 y. A 256 x 256 
synthetic field z(n) was generated for SNR = 00 
and then processed by Algorithm 2 with M = 3 
and pl = p! = 5. The estimated continuous sys- 

e(w) is small for a l  w except for the vicinity of 

tem phase 8(w) (see R4)) is shown in Figure 2(c). 
Again, as predicted (R5)), the phase estima- 
tion error e(o) is for all w where O(u) is 
continuous . 

4. CONCLUSIONS 

Based on the Fourier series based allpass model 
(see 63) and (4)) and Theorem 1, we have pre- 
sente a l-D and a 2-D iterative phase estimation 
algorithms (Akorithms 
a single absolute Mth-o 
pass model output (see ( 
filters obtained by these 
garded as an optimum phase equalizer with a com- 
putationally efficient parallel structure suitable for 
both software and hardware implementation (see 
(R2) and (R3)). Two simulation exam les with 
IH(w)l having spectral nulls were provi B ed which 
support the proposed phase estimation algorithms 
and meanwhile are consistent with the predicted 
performance described in (R4) and (R5). 
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Figure I. Simulation results for 1-D hase esti- 
mation. (a) Amplitude response IEl&)} of the 
true system and (b estimated phase response d(o) 

line). 
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Figure 2. Simulation results for 2-D phase esti- 
mation. (a) Amplitude response JN(w)l and (b) 
phase response @(U) of the true system, respec- 
tively; ( c )  estimated phase response B(w). 
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