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Abstract—Although significant efforts have been made in developing nonnegative blind source separation techniques, accurate

separation of positive yet dependent sources remains a challenging task. In this paper, a joint correlation function of multiple signals is

proposed to reveal and confirm that the observations after nonnegative mixing would have higher joint correlation than the original

unknown sources. Accordingly, a new nonnegative least-correlated component analysis (nLCA) method is proposed to design the

unmixing matrix by minimizing the joint correlation function among the estimated nonnegative sources. In addition to a closed-form

solution for unmixing two mixtures of two sources, the general algorithm of nLCA for the multisource case is developed based on an

iterative volume maximization (IVM) principle and linear programming. The source identifiability and required conditions are discussed

and proven. The proposed nLCA algorithm, denoted by nLCA-IVM, is evaluated with both simulation data and real biomedical data to

demonstrate its superior performance over several existing benchmark methods.

Index Terms—Nonnegative blind source separation, nonnegative least-correlated component analysis, dependent sources, joint

correlation function of multiple signals, iterative volume maximization.

Ç

1 INTRODUCTION

ALTHOUGH signal decomposition is a popular technique
widely used in many branches of science and

engineering, blind source separation (BSS) deals with a
real-world situation where neither the sources nor the
mixing matrix is known and the only available information
comes from the mixed observations [1], [2]. For instance,
multiprobe biomedical imaging exploits simultaneous
imaging of multiple biomarkers, where the measured pixel
values often represent a composite of multiple sources
independent of spatial resolution (e.g., multispectral micro-
scopy, dual-energy X-ray imaging, dynamic functional
imaging, and electroencephalogram or magnetoencephalo-
gram (EEG/MEG) [3], [4], [5], [6], [7], [8]). Other examples
include remote sensing [1], astronomical imaging [9],
analytical spectroscopy [10], and telecommunications [11].
A popular approach to BSS is the independent component
analysis (ICA) [12], where the sources are fundamentally

assumed to be mutually and statistically independent,
although this fundamental assumption may hardly be true
in many real-world problems.

Blind separation of nonnegative sources, referred to herein
as nonnegative blind source separation (nBSS), has been
extensively studied recently. Many efforts aim to empirically
incorporate intrinsic nonnegativity of source signals into the
ICA-based principles and have made some reasonable
progress in nBSS. For example, Oja and Plumbley [13]
proposed a nonnegative independent component analysis
(nICA) scheme that exploits the nonnegativity assumption of
statistically uncorrelated sources and guarantees the iden-
tifiability when the sources are well-grounded (i.e., for each
source s and any � > 0, probability Prðs < �Þ > 0). More
recently, a stochastic nonnegative independent component
analysis (SNICA) method [10] was reported that minimizes
mutual information between recovered components by using
a nonnegativity-constrained simulated annealing algorithm.
Despite significant progress in developing various nBSS
techniques, accurate separation of dependent sources still
remains a challenging task.

Nonnegative matrix factorization (NMF) [14] is a bench-
mark method of decomposing a nonnegative matrix into a
product of two nonnegative matrices, and has been widely
applied to nBSS problems [15], [16], [17]. Since a multi-
plicative algorithm [14] primarily used to perform NMF is
shown to be of slow convergence for large-scale problems,
some efforts were reported to apply projected alternating
least-squares method [16] or projected Newton method [18]
to NMF for speeding up its convergence. Moreover, it is
known that NMF may not yield unique decomposition.
Some modifications of NMF have been reported for the
decomposition to be unique by imposing the sparseness
constraint on mixing matrix or source matrix, or both [17],
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[19]. Possible circumstances under which the NMF yields
unique decomposition can also be found in [20].

The nBSS based on the pure-source sample assumption
(where a pure-source sample means a data point that is fully
dominated by only one source) has been investigated for
separation of dependent sources in biomedical imaging [21],
[22], [23] and remote sensing applications [24], [25], [26]. In
[27], a neural network algorithm, searching for the edges of
data scatter plot, exploits the existence of pure-source
samples to iteratively update the unmixing matrix such that
the sum of all the off-diagonal entries of the angular
proximity matrix (analogous to the cross-correlation matrix)
of the extracted edges is minimum. A recently reported
nBSS method, convex analysis of mixtures of nonnegative
sources (CAMNS) [22], based on the pure-source sample
assumption, has been theoretically proven to achieve perfect
separation by searching for all the extreme points of an
observation-constructed polyhedral set. In remote sensing,
many spectral unmixing algorithms [24], [25], [26], also
based on the pure-source sample assumption, try to search
for the purest observed pixels from the spectral data set and
then identify the mixing matrix. The use of such spectral
unmixing methods is usually followed by an inversion
process, such as nonnegative least-squares method, to
recover the sources. Similar ideas for finding the mixing
matrix can be found in our recently reported nBSS method,
namely nLCA [23], which estimates the mixing matrix by an
algebraic edge search algorithm. Herein, we renamed the
nLCA reported in [23] nLCA-edge search (nLCA-ES) so as to
distinguish it from the one to be presented in this paper.

In this paper, we propose a joint correlation function of
multiple signals for the design of the demixing matrix. The
joint correlation function of the observations mixed by
nonnegative combinations of the sources would be higher
than that of the sources. Based on this idea and the
nonnegativity constraint of the sources, a novel nLCA is
proposed for which the nBSS problem is formulated into a
problem of minimizing the joint correlation function of all
the demixed sources under the nonnegativity constraint. A
closed-form solution for the case of two sources with two
observations is provided. For the general case of multiple
sources, the proposed nLCA can be fulfilled by an iterative
volume maximization algorithm (nLCA-IVM) using linear
program (LP), which finds the optimal demixing matrix by
maximizing the volume of a solid region formed by the
demixed source vectors regardless of whether the pure-
source sample assumption is valid or not. However, the
source identifiability of the nLCA can be proven under the
existence of pure-source samples. In contrast to other
spectral unmixing methods, the proposed nLCA-IVM,
which is never a pure-source sample criterion-based nBSS
algorithm, is able to separate all the (dependent or
independent) sources from the given mixtures without
involving any inversion process. Comparative experimental
results using synthetic data and real biomedical data are
presented to demonstrate the superior performance of
nLCA-IVM over several existing benchmark methods.

Section 2 presents the nBSS problem formulation and
the model assumptions. In Section 3, the novel nLCA is
presented followed by the closed-form solution of the
optimum demixing matrix for the two-source case, the
nLCA-IVM algorithm, and the source identifiability of the
nLCA under the existence of pure-source samples. For

real-world applications, where the number of mixtures is
larger than the number of sources, Section 4 presents noise
reduction and rank reduction prior to the nBSS processing
using the nLCA-IVM algorithm. In Section 5, simulation
results are presented with synthetic mixed human face
images, infrared spectral signals, and dual-energy X-ray
images to evaluate the performance of the proposed
nLCA-IVM algorithm. Then a real data analysis of
fluorescence microscopy imaging and that of dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI)
using the proposed nLCA-IVM algorithm are presented to
show its effectiveness. Finally, some conclusions are drawn
in Section 6.

2 PROBLEM FORMULATION

For ease of later use, let us define the following notations:

IR; IRN; IRM�N Set of real numbers, N-dimensional

vectors, M �N matrices

IRþ; IR
N
þ ; IR

M�N
þ Set of nonnegative real numbers,

N-dimensional vectors,

M �N matrices

1N N � 1 vector with all the entries equal

to unity

IN N �N identity matrix

ei Unit vector of proper dimension with the

ith entry equal to unity

0 Zero vector of proper dimension
k � k Euclidean norm of a vector or Frobenius

norm of a matrix

� Componentwise inequality

diagf�1; . . . ; �Ng N �N diagonal matrix with diagonal

entries �1; . . . ; �N

Consider the following M �N linear mixing system:

x½n� ¼ As½n�; n ¼ 1; 2; . . . ; L; ð1Þ

where x½n� ¼ ðx1½n�; x2½n�; . . . ; xM ½n�ÞT is the nth data point of
the given M observations (or mixtures), A ¼ ½aij�M�N 2
IRM�N is an unknown mixing matrix, s½n� ¼ ðs1½n�; s2½n�; . . . ;
sN ½n�ÞT is the nth source point consisting of N sources, and
L > maxfM;Ng is the data length (i.e., number of pixels in
each observation and each source).

Our goal herein is to design a real demixing matrix W ¼
½wij�N�M such that

y½n� ¼Wx½n� ¼ ðWAÞs½n� ¼ Ps½n�; ð2Þ

where y½n� ¼ ðy1½n�; y2½n�; . . . ; yN ½n�ÞT is the extracted (un-
mixed or demixed) source point and P ¼WA 2 IRN�N is a
permutation matrix, meaning that the extracted source
point y½n� is equivalent to the true source point s½n� up to a
permutation.

For ease of the ensuing derivations, we let

xxi ¼ ðxi½1�; xi½2�; . . . ; xi½L�ÞT ; ðith observationÞ

where i ¼ 1; 2; . . . ;M and

ssi ¼ ðsi½1�; si½2�; . . . ; si½L�ÞT ; ðith sourceÞ;
yyi ¼ ðyi½1�; yi½2�; . . . ; yi½L�ÞT ; ðith extracted sourceÞ;

876 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 5, MAY 2010

Authorized licensed use limited to: National Tsing Hua University. Downloaded on March 25,2010 at 01:50:03 EDT from IEEE Xplore.  Restrictions apply. 



where i ¼ 1; 2; . . . ; N . Then, an alternative form of (1) is
given by

xxi ¼
XN
j¼1

aijssj; i ¼ 1; 2; . . . ;M: ð3Þ

Likewise, (2) can be alternatively expressed as

yyi ¼
XM
j¼1

wijxxj ¼ ssti ; i ¼ 1; 2; . . . ; N; ð4Þ

where ti 2 f1; . . . ; Ng, ti 6¼ tj for i 6¼ j.
To be practical in imaging applications, the nLCA to be

presented is based on the following general assumptions:

. (A1) (nonnegative sources): For each i; ssi 2 IRL
þ.

. (A2) (nonnegative mixing matrix): A 2 IRM�N
þ .

. (A3) M � N and A is of full column rank, i.e.,
rankðAÞ ¼ N .

. (A4) (unit row sum): Each row sum of A equals
one, i.e.,

A1N ¼ 1M: ð5Þ

Assumptions (A1) and (A2) are usually satisfied in
biomedical imaging and remote sensing, where the mixing
process is a nonnegative combination of nonnegative signal
intensities. Assumption (A3) is an assumption generally
satisfied in BSS problems. Assumption (A4) intrinsically
holds in biomedical imaging due to partial volume effect [28],
in contrast to the full additivity condition on the sources (i.e.,
sT ½n�1N ¼ 1 for alln) in hyperspectral imaging [29]. However,
when (A4) is not valid, i.e., A1N 6¼ 1M , we can convert the
mixing model (1) into the following normalized model [23]:

�x½n� ¼ D�1
1 x½n� ¼

�
D�1

1 AD2

�
D�1

2 s½n�; ð6Þ

where D1 ¼ diagfxxT1 1L; xx
T
2 1L; . . . ; xxTM1Lg (which can be

easily obtained from the data) and D2 ¼ diagfssT1 1L;
ssT2 1L; . . . ; ssTN1Lg. By letting �A ¼ D�1

1 AD2 (which is un-
known) and the normalized unknown source point �s½n� ¼
D�1

2 s½n� (for which each normalized source �ssi is equivalent
to the original source ssi except for an unknown scale factor),
the resulting nBSS model will be

�x½n� ¼ �A�s½n�; ð7Þ

which satisfies all the assumptions (A1)-(A4) and thus is
ready to be processed by the nLCA-IVM for the estimation
of �s½n�.

3 NONNEGATIVE LEAST-CORRELATED COMPONENT

ANALYSIS

We first introduce the following three convex sets, which play
an important role in the subsequent presentation of nLCA:

First, the convex hull of N vectors fzz1; zz2; . . . ; zzNg � IRL is
defined as [30]

convfzz1; zz2; . . . ; zzNg ¼�
zz j zz ¼

XN
i¼1

�izzi;
XN
i¼1

�i ¼ 1; �i 2 IRþ

�
:

Second, the affine hull of fzz1; zz2; . . . ; zzNg is defined as [30]

afffzz1; zz2; . . . ; zzNg ¼�
zz j zz ¼

XN
i¼1

�izzi;
XN
i¼1

�i ¼ 1; �i 2 IR

�
:

Finally, the solid region formed by fzz1; zz2; . . . ; zzNg is
defined as

solfzz1; zz2; . . . ; zzNg ¼

zz j zz ¼
XN
i¼1

�izzi;
XN
i¼1

�i 	 1; �i 2 IRþ

( )
:

The nLCA to be presented below is motivated by the
relationship between convfxx1; xx2; . . . ; xxMg (after nonnegative
mixing) and convfss1; ss2; . . . ; ssNg (before nonnegative mix-
ing), as well as the relationship between solfxx1; xx2; . . . ; xxMg
and solfss1; ss2; . . . ; ssNg as described in the following theorem:

Theorem 1. Suppose that (A2) and (A4) hold. Then,

1. convfxx1; xx2; . . . ; xxMg 
 convfss1; ss2; . . . ; ssNg and
2. solfxx1; xx2; . . . ; xxMg 
 solfss1; ss2; . . . ; ssNg.

The proof of Theorem 1 is given in Appendix A.
Geometric illustrations of Theorem 1 for the cases of M ¼
N ¼ 3 and M ¼ N ¼ 2 are shown in Figs. 1a and 1b,
respectively. One can see in Fig. 1a that the triangle formed
by xx1, xx2, and xx3 is inside that formed by ss1, ss2, and ss3 (i.e.,
convfxx1; xx2; xx3g 
 convfss1; ss2; ss3g), and the bottom-up pyr-
amid formed by xx1, xx2, and xx3 is inside that formed by ss1, ss2,
and ss3 (i.e., solfxx1; xx2; xx3g 
 solfss1; ss2; ss3g). Similar observa-
tions can be seen in Fig. 1b including that the distance
between xx1 and xx2 is smaller than that between ss1 and ss2, (i.e.,
kxx1 � xx2k 	 kss1 � ss2k) s inc e convfxx1; xx2g 
 convfss1; ss2g,
and the area of solfxx1; xx2g is smaller than that of solfss1; ss2g
since solfxx1; xx2g 
 solfss1; ss2g.

The conventional pairwise correlation coefficient be-
tween the observation vectors xx1 and xx2, where xx1 � 00
and xx2 � 00, is widely known as

0 < %ðxx1; xx2Þ ¼
xxT1 xx2

kxx1k � kxx2k
¼ cosð�ðxx1; xx2ÞÞ 	 1:

It is straightforward to see that %ðss1; ss2Þ 	 %ðxx1; xx2Þ since
�ðxx1; xx2Þ is never larger than �ðss1; ss2Þ for all xx1; xx2 2
convfss1; ss2g for M ¼ N ¼ 2. When M ¼ N > 2, it will not
be very appropriate to use all the MðM � 1Þ=2 conventional
pairwise correlation coefficients among all of the extracted
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(b) M ¼ N ¼ 2, respectively.
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sources to form an effective criterion for the design of the

demixing matrix. Instead, we propose a joint correlation

function of fxx1; xx2; . . . ; xxMg, where M � 2, defined as

corrðxx1; xx2; . . . ; xxMÞ ¼4
1

V ðsolfxx1; xx2; . . . ; xxMgÞ
; ð8Þ

where

V ðsolfxx1; xx2; . . . ; xxMgÞ ¼
Z

solfxx1;xx2;...;xxMg
d��; ð9Þ

is the volume of solfxx1; xx2; . . . ; xxMg and
R

solfxx1;xx2;...;xxMg d�� is

the multiple integral over solfxx1; xx2; . . . ; xxMg. The proposed

joint correlation function of multiple signals also reflects the

same behavior as the conventional pairwise correlation

coefficient. Specifically, as shown in Fig. 1b, the larger the

value of corrðxx1; xx2Þ, the smaller the area of solfxx1; xx2g. Since

the distance from the origin to the hyperplane passing

through xx1 and xx2 (i.e., affðxx1; xx2Þ) is fixed, the smaller the

area of solfxx1; xx2g, the smaller the value of �ðxx1; xx2Þ. Hence,

it can be inferred that the larger the value of corrðxx1; xx2Þ, the

larger the value of %ðxx1; xx2Þ.
Based on Theorem 1 and (9), we have V ðsolfxx1;

xx2; . . . ; xxMgÞ	 V ðsolfss1; ss2; . . . ; ssNgÞ, which implies the

following corollary:

Corollary 1. Suppose that (A2) and (A4) hold. Then,

corrðss1; ss2; . . . ; ssNÞ 	 corrðxx1; xx2; . . . ; xxMÞ:

Note that corrðxx1; xx2; . . . ; xxMÞ 	 corrðyy1; yy2; . . . ; yyNÞ if the

demixing matrix satisfies (A2) (i.e., W 2 IRN�M
þ ) and (A4)

(i.e., W1M ¼ 1N ) by Corollary 1. However, W 62 IRN�M
þ in the

demixing matrix design to be presented below is a realN �M
matrix such that corrðyy1; yy2; . . . ; yyNÞ 	 corrðxx1; xx2; . . . ; xxMÞ. If

W 2 IRN�M can be properly designed, corrðyy1; yy2; . . . ; yyNÞ ¼
corrðss1; ss2; . . . ; ssNÞ can be achieved.

Corollary 1 is profound, which motivates the idea of

designing the demixing matrix W 2 IRN�M by minimizing

the joint correlation function of the N extracted sources

yy1; yy2; . . . ; yyN , that is,

min
W2IRN�M

corrfyy1; yy2; . . . ; yyNg; ð10Þ

subject to (s.t.)

yyi ¼
XM
j¼1

wijxxj � 0; i ¼ 1; 2; . . . ; N; ðdue to ðA1ÞÞ; ð11Þ

W1M ¼WA1N ¼ P1N ¼ 1N: ðdue to ðA4ÞÞ: ð12Þ

From (8), the nBSS problem (10) subject to the two

constraints given by (11) and (12) can be reformulated as

max
W2IRN�M

V ðsolfyy1; yy2; . . . ; yyNgÞ

s:t: W1M ¼ 1N; yyi ¼ �M
j¼1wijxxj � 0; 8i;

ð13Þ

which is a nonlinear and nonconvex optimization problem,

implying that finding a closed-form solution of (13) for any

M and N is almost formidable.

Next, let us present how to solve (13) for the case of
M ¼ N ¼ 2 and the case of M ¼ N � 2, respectively,
followed by the associated source identifiability.

3.1 Case of M ¼ N ¼ 2: Closed-Form Solution

Although problem (13) is a nonconvex problem, fortunately
we can find a closed-form solution for the case of
M ¼ N ¼ 2, as stated in the following proposition:

Proposition 1. Under (A1) to (A4), problem (13) for M ¼
N ¼ 2 has the closed-form solution W?, where

w?11 ¼ max
n

�x2½n�
x1½n� � x2½n�

��� x1½n� > x2½n�; 8n
� �

; ð14aÞ

w?21 ¼ min
n

�x2½n�
x1½n� � x2½n�

��� x1½n� < x2½n�; 8n
� �

; ð14bÞ

w?12 ¼ 1� w?11; w?22 ¼ 1� w?21: ð14cÞ

Proof. By (11), (12), and M ¼ N ¼ 2,

yyi ¼ wi1xx1 þ wi2xx2 ¼ wi1ðxx1 � xx2Þ þ xx2; i ¼ 1; 2: ð15Þ

Thus, maximizing V ðsolfyy1; yy2gÞ (i.e., the shaded area in
Fig. 2) is equivalent to increasing jw11j and jw21j, where
w11 	 0 and w21 � 0. Therefore, problem (13) can be
decomposed into the following two subproblems:

w?11 ¼ min
w
w

s:t: w 	 0; wðxx1 � xx2Þ þ xx2 � 0;
ð16aÞ

w?21 ¼ max
w

w

s:t: w � 0; wðxx1 � xx2Þ þ xx2 � 0:
ð16bÞ

Note that the inequality wðxx1 � xx2Þ þ xx2 � 0 is equiva-
lent to wðx1½n� � x2½n�Þ þ x2½n� � 0 for n ¼ 1; 2; . . . ; L.
Therefore, the constraintwðxx1 � xx2Þ þ xx2 � 0 itself implies

w � �x2½n�=ðx1½n� � x2½n�Þ; for x1½n� > x2½n�; ð17Þ

w 	 �x2½n�=ðx1½n� � x2½n�Þ; for x1½n� < x2½n�; ð18Þ

which further lead to

max
n

�x2½n�
x1½n� � x2½n�

��� x1½n� > x2½n�
� �

	 w ð19Þ
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and

w 	 min
n

�x2½n�
x1½n� � x2½n�

��� x1½n� < x2½n�
� �

: ð20Þ

One can easily see from (A1) and (A2) that xi½n� � 0 for
all i and n. As a result, the optimal solutions of (16a) and
(16b) are, respectively, given by

w?11 ¼ max
n

�x2½n�
x1½n� � x2½n�

��� x1½n� > x2½n�; 8n
� �

	 0; ð21Þ

w?21 ¼ min
n

�x2½n�
x1½n� � x2½n�

��� x1½n� < x2½n�; 8n
� �

� 0: ð22Þ

Then, one can obtain w?12 ¼ 1� w?11 and w?22 ¼ 1� w?21.
Thus, the proposition has been proved. tu
It is worth mentioning that the optimum solution W?

given by (14) for M ¼ N ¼ 2 is exactly the same as the one
obtained by the nLCA-ES [23]. For a more general case,
where M ¼ N � 2, we resort to the nLCA-IVM algorithm,
to be presented next.

3.2 Case of M ¼ N � 2: nLCA-IVM

By the use of (3) and change of integrating variables [31],
the objective function of (13) can be written as

V ðsolfyy1; . . . ; yyNgÞ ¼ jdetðWÞj � V ðsolfxx1; . . . ; xxNgÞ: ð23Þ

Since the observations xx1; xx2; . . . ; xxN are given beforehand,
V ðsolfxx1; . . . ; xxNgÞ is thus a constant. Then, the problem (13)
is equivalent to the problem:

max
W2IRN�N

jdetðWÞj

s:t: W1N ¼ 1N; yyi ¼ �N
j¼1wijxxj � 0; 8i:

ð24Þ

The nLCA-IVM algorithm tries to solve (24) through an
iterative maximization procedure using linear program. The
idea is motivated by the cofactor expansion of detðWÞ with
respect to the ith row of W [32]:

detðWÞ ¼
XN
j¼1

ð�1ÞiþjwijdetðWWijÞ; ð25Þ

where WWij is the submatrix of W with the ith row and the
jth column removed. One can see that, with WWij fixed for
j ¼ 1; 2; . . . ; N , detðWÞ becomes a linear function of wij, j ¼
1; 2; . . . ; N . Let wT

i ¼ ðwi1; wi2; . . . ; wiNÞ denote the ith row
vector of W. Problem (24) is then reduced to

max
wi

XN
j¼1

ð�1ÞiþjwijdetðWWijÞ
�����

�����
s:t: wT

i 1N ¼ 1; yyi ¼ �N
j¼1wijxxj � 0:

ð26Þ

Note that the objective function in (26) is still nonconvex.
Fortunately, the maximization problem (26) can be solved in
a globally optimal manner by breaking it into two LPs:

p? ¼ max
wi

XN
j¼1

ð�1ÞiþjwijdetðWWijÞ

s:t: wT
i 1N ¼ 1; yyi ¼ �N

j¼1wijxxj � 0;

ð27aÞ

q? ¼ min
wi

XN
j¼1

ð�1ÞiþjwijdetðWWijÞ

s:t: wT
i 1N ¼ 1; yyi ¼ �N

j¼1wijxxj � 0:

ð27bÞ

The optimal solution of (26), denoted by w?
i , is chosen as

the optimal solution of (27a) if jp?j > jq?j or the optimal

solution of (27b) if jq?j > jp?j. The nLCA-IVM is conducted

in an iterative row-by-row manner until convergence is

reached. Note that, at each iteration, all of the N row

vectors of W are updated once. The nLCA-IVM is

summarized in Table 1.
By using the primal-dual interior-point method [33],

each LP problem in (27) can be solved with a computational

complexity of OðLðN � 1Þ þ ðN � 1Þ3Þ ’ OðLðN � 1ÞÞ, on

average [22], since L� N . Because the nLCA-IVM algo-

rithm solves 2N LP problems per iteration, one can infer

that its complexity (abbreviation of computational complex-

ity) per iteration is OðN2LÞ. However, if the number (L) of

inequality constraints in problem (27) can be significantly

reduced, the complexity can then be significantly reduced.

This is possible by eliminating the redundant inequality

constraints of problem (27), as presented next.
The feasible set of (27) can be equivalently written as

F ¼ fw 2 IRN j wT1N ¼ 1;wTx½n� � 0; 8ng; ð29Þ

¼ fw 2 IRN j wT1N ¼ 1;wTv � 0;

v 2 convfx½1�;x½2�; . . . ;x½L�gg:
ð30Þ

The convex hull of all the data points is given by

convfx½1�; x½2�; . . . ;x½L�g ¼
Xr
i¼1

�ix½li�
��� Xr

i¼1

�i ¼ 1; �i � 0; 8i
( )

;
ð31Þ
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where x½l1�; . . . ;x½lr� are the extreme points of the convex
hull and r 	 L is the total number of the extreme points.
Then, by (31) and (30), it follows that

F ¼
�

w 2 IRN j wT1N ¼ 1;

Xr
i¼1

�iw
Tx½li� � 0;

Xr
i¼1

�i ¼ 1; �i � 0; 8i
�
;

ð32Þ

¼ fw 2 IRN j wT1N ¼ 1;

wTx½li� � 0; i ¼ 1; . . . ; rg;
ð33Þ

where x½l1�; . . . ;x½lr� can be identified by using the quickhull
algorithm [34], a well-known extreme point search method.
Suppose that r extreme points, or equivalently resultant r
inequality constraints in (33), are found, the computational
complexity of the nLCA-IVM then becomes OðN2r�Þ
instead of OðN2L�Þ, where � is the number of iterations
involved. Due to the use of the quickhull algorithm, the
computational efficiency improvement of the proposed
nLCA-IVM can be measured by the constraint reduction
ratio, defined as

� ¼ L� r
L

: ð34Þ

Surely, the larger the value of �, the less the computational
complexity in solving (24).

Some BSS methods, nLCA-ES [23], CAMNS [22], nICA
[13], FastICA [12], NMF [14], quasi-Newton NMF (QNMF)
[18], and sparse NMF (sNMF) [17], can be easily verified to
have complexities (for the case of M ¼ N) given by OðN3LÞ,
OððN � 1Þ2LÞ, OðN2L�Þ, OðN3L�Þ, OðN2L�Þ, and OðN2L�Þ,
respectively. The complexity order comparison for the
above-mentioned BSS methods is listed in Table 2.
Obviously, the proposed nLCA-IVM has lower complexity
order than nICA, FastICA, NMF, QNMF, and sNMF.

A geometrical illustration of how the proposed
nLCA-IVM method works for the case of M ¼ N ¼ 3 is
shown in Fig. 3. For each row vector update of W, the
unmixed source, say yy1, is moved to the boundary of the

feasible set, while fixing yy2 and yy3, such that V ðsolfyy1; yy2; yy3gÞ
increases maximally (since the LP always yields the optimal
yy1 on the boundary of the feasible set). By repeating the
procedure, the three sources will be literally identified.
Similarly, for the M ¼ N ¼ 2 case as shown in Fig. 2, the
nLCA-IVM algorithm involves only two row vector updates,
implying that the global optimal solution for W can be
obtained in only one iteration (in addition to one iteration for
the convergence check). Thus, we can conclude that the
proposed nLCA-IVM algorithm is able to provide the
globally optimal solution for M ¼ N ¼ 2 as given in
Proposition 1 above, but no guarantee of the global
optimality for M ¼ N > 2.

3.3 Source Identifiability of the nLCA

We address here the source identifiability problem of nLCA
concerning certain conditions (assumptions) under which
the N extracted sources are identical to all of the N true
sources. In many biomedical imaging [8], [21] and remote
sensing applications [24], [29], the sources meet the
assumption that pure-source samples exist:

. (A5) There exists at least one index set fl1; l2; . . . ; lNg
such that s½li� ¼ si½li�ei, i ¼ 1; 2; . . . ; N .

Note that the corresponding data points x½n� for n 2
fl1; l2; . . . ; lNg become

x½li� ¼ aisi½li�; ð35Þ

where ai is the ith column vector of A. Namely, the data
point x½li� is only contributed from source ssi. For investigat-
ing the source identifiability of the nLCA, the following
lemma is needed:

Lemma 1. Suppose that (A2), (A3), and (A4) hold and M ¼ N .
Then, jdetðAÞj 	 1, and the equality holds if and only if A is a
permutation matrix.

The proof of Lemma 1 is given in Appendix B. Under
the existence of pure-source samples, the source identifia-
bility of the proposed nLCA is established in the
following theorem:

Theorem 2. (Source identifiability of nLCA). Suppose that
(A1)-(A5) hold. Then,

W?A ¼ P; ð36Þ

where W? is the optimal solution of problem (24) and P is an
N �N permutation matrix.

Proof. Substituting W? into the constraints of problem (24)
yields

W?1N ¼ 1N; ð37aÞ

W?x½n� � 0; n ¼ 1; 2; . . . ; L: ð37bÞ
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TABLE 2
Complexity Order Comparison of Various BSS Methods

In the table, N denotes the number of sources, L denotes the data length, � denotes the number of iterations, and r 	 L denotes the number of
extreme points of the convex hull (31).

Fig. 3. Geometric interpretation of nLCA-IVM for M ¼ N ¼ 3, where yy1

is updated with yy2 and yy3 fixed, such that V ðsolfyy1; yy2; yy3gÞ increases
maximally.
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By (1), (37b) can also be expressed as

W?
XN
i¼1

si½n�ai ¼
XN
i¼1

si½n�ðW?aiÞ � 0; 8n; ð38Þ

which can be further reduced to the following
N inequalities:

W?ai � 0; i ¼ 1; 2; . . . ; N: ðby ðA5ÞÞ: ð39Þ

By letting B ¼W?A, it can be inferred from (37a), (A4),
and (39) that the feasible set of B is given by

B ¼
�
B j B1N ¼ 1N;B 2 IRN�N

þ
�
:

Now, we prove this theorem by contradiction.
Suppose that B 2 B but B 62 PN , where PN denotes the
set of N �N permutation matrices. Then one can infer,
by Lemma 1, that

1 > j detðBÞj ¼ j detðW?AÞj ¼ j detðW?Þj � j detðAÞj: ð40Þ

Furthermore, it can be inferred from (40) that

j detðW?Þj < 1

j detðAÞj ¼ j detðA�1Þj ¼ j detðW0Þj; ð41Þ

where W0 ¼ A�1. It can be easily shown that W0

satisfies (37a) and (39). Therefore, (41) contradicts with
the optimality of (24). Thus, the theorem has been
proved. tu
Though the source identifiability is proven under (A5),

we will show with experimental results (Section 5) that the
proposed nLCA-IVM is still able to achieve accurate source
estimation even if (A5) is not perfectly satisfied. Because the
proposed nLCA-IVM above only considers the case of M ¼
N without additive noise contamination, we next present
the noise suppression and dimension reduction methods for
the case of M > N to obtain the best N nonnegative rank
and noise-reduced observations prior to employing the
proposed nLCA-IVM.

4 RANK REDUCTION AND NOISE SUPPRESSION BY

PRINCIPAL COMPONENT ANALYSIS

As M > N , the rank-reducing approximation, so-called the
principal component analysis (PCA) [35], can provide
M approximations (of rank equal to N) to the given
M observations. Then N rank-reduced approximated
observations with the smallest approximation errors are
considered to be processed by the proposed nLCA-IVM.
Now let us consider the noisy observations

xxi ¼
XN
j¼1

aijssj þ ��i; i ¼ 1; 2; . . . ;M; ð42Þ

where ��i 2 IRL is the additive noise vector. Another matrix
expression of (42) is given by

X ¼ SAT þ�; ð43Þ

where X ¼ ðxx1; xx2; . . . ; xxMÞ 2 IRL�M is the observation
matrix, S ¼ ðss1; ss2; . . . ; ssNÞ 2 IRL�N is the source matrix,
and � ¼ ð��1; ��2; . . . ; ��MÞ 2 IRL�M is the noise matrix.

It is generally true that rankðSÞ ¼ N because the
sources ss1; ss2; . . . ; ssN are linearly independent. It can be
easily shown by the rank inequality of the product of
matrices [36] that rankðSAT Þ ¼ N < M, which implies
N < rankðXÞ 	M, as � 6¼ 0. Note that X is usually of
full column rank as � 6¼ 0. The optimum rank-reducing
approximation to the data matrix, denoted by X?, can be
realized by minimizing the following approximation error:

J ¼ kX�X?k2 ¼
XM
i¼1

kxxi � xx?i k
2; ð44Þ

subject to the constraint of rank(X?Þ ¼ N . Each column of
X? takes the following linear form:

xx?i ¼ ��þV��i; i ¼ 1; 2; . . . ;M; ð45Þ

where �� is an L� 1 vector, V is an L� ðN � 1Þ semiunitary

matrix (i.e., VTV ¼ IN�1), and ��i are ðN � 1Þ � 1 vectors. It

is straightforward to prove that the optimum ����, ��i, and V

are given by ��? ¼ 1
M

PM
i¼1 xxi; ��

?
i ¼ ðV?ÞT ðxxi � ��?Þ, and V? is

a matrix consisting of ðN � 1Þ principal left singular vectors

of the matrix ðxx1 � ��?; xx2 � ��?; . . . ; xxM � ��?Þ. Note that, in

the presence of additive noise, an additional advantage is

noise mitigation as M > N besides rank reduction.
After obtaining the optimum xx?i ¼ ��? þV?��?i ,

i ¼ 1; 2; . . . ;M, we select N noise-reduced (and rank-
reduced) observations xx?i 2 IRL with the smallest approx-
imation errors kxx?i � xxik

2, say xx?1; . . . ; xx?N without loss of
generality. To maintain the nonnegativity of the selected xx?i ,
let �xxi ¼ ð�xi1; . . . ; �xiLÞT be the ith noise-reduced observation
to be processed by the proposed nLCA-IVM, where

�xij ¼ maxfx?ij; 0g; j ¼ 1; 2; . . . ; L ð46Þ

in which x?ij denotes the jth component of xx?i .

5 EXPERIMENTAL RESULTS

In this section, five sets of experimental results are
presented to demonstrate the efficacy of the proposed
nLCA-IVM (after removing redundant constraints of (27)
using the quickhull algorithm [34]). In the first three
experiments (for scenarios of different numbers of sources
and existence/nonexistence of pure-source samples as in
Experiment 1, sparse sources as in Experiment 2, and long
data length as in Experiment 3), simulation data over
50 Monte Carlo runs are used to evaluate the performance
and complexity of the nLCA-IVM, and seven existing BSS
algorithms nLCA-ES [23], CAMNS [22], nICA [13],
FastICA [12], NMF [14], QNMF [18], and sNMF [17]. At
each run, all the entries of the mixing matrix were
randomly generated with a uniform distribution over
½0; 1� followed by normalization of each row sum equal to
unity. The last two experiments are real data applications
of the proposed nLCA-IVM to fluorescence microscopy
and DCE-MRI images.

The parameter settings for each algorithm in the first
three experiments are as follows: For nLCA-IVM and
FastICA, the convergence tolerances were set to � ¼ 10�5

and � ¼ 10�4, respectively. For nICA, NMF, QNMF, and
sNMF, the convergence rule was the maximum number of
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iterations set to 2,000. The other two algorithms, nLCA-ES
and CAMNS, themselves are not iterative algorithms
(without involving convergence). For sNMF [17], the
regulation parameter controlling the sparseness constraint
was set to 0.6. Other parameter settings for QNMF are as
follows: At each iteration, the source matrix S is updated
using the fixed-point algorithm with regulation parameter
� ¼ �0e

�	
, where �0 ¼ 20, 	 ¼ 0:02, and 
 denotes the
iteration number, and the mixing matrix A is updated using
the quasi-Newton algorithm [18]. On the other hand, in the
last two experiments, the convergence tolerance was still set
to � ¼ 10�5 for the proposed nLCA-IVM.

Let qðssiÞ ¼ ð1TLssi=LÞ1L and let Ŝ ¼ ðŝs1; ŝs2; . . . ; ŝsNÞ de-
note the extracted source matrix. The cross-correlation
coefficient � between Ŝ and S, defined as

� ¼ 1

N
max
��2�N

ci2f1;�1g

XN
i¼1

ðssi � qðssiÞÞT ðciŝs�i � ciqðŝs�iÞÞ
kssi � qðssiÞk � kŝs�i � qðŝs�iÞk

;

(0 	 � 	 1) is used as the measure for performance evalua-
tion and comparison of the algorithms under test, where
�N ¼ f�� ¼ ð�1; . . . ; �NÞ j �i 2 f1; . . . ; Ng; �i 6¼ �j; 8i 6¼ jg i s
the set of all the permutations of f1; 2; . . . ; Ng and ci is the
sign (or the polarity) ambiguity between the extracted
source ŝs�i and the true source ssi. The above performance
measure itself is an optimization problem to find the optimal
�� and ci such that � is maximum, and it can be efficiently
solved by Kuhn-Munkres algorithm [37]. Note that the
larger the value of �, the better the performance of the
associated algorithm under evaluation.

For the computational complexity comparison of the
proposed nLCA-IVM (including the use of the quickhull
algorithm) and the other seven algorithms, the computation
time (seconds) of each BSS algorithm (implemented with
Matlab 7.0) when executed using a Toshiba Satellite A100
laptop personal computer (equipped with Intel Centrino
Duo Processor T2050 CPU 1.6 GHz, 1 GB memory and
Microsoft windows XP home edition version 2002 with
service pack 2) was measured as the corresponding
computational complexity index.

5.1 Experiment 1: Human Face Image Separation

In this experiment, two test scenarios were considered. In the
first scenario, six 128� 128 human face images (i.e.,
L ¼ 16;384) (shown in Fig. 4a) taken from [38] were used as
the source signals to generate six noise-free observations (i.e.,
M ¼ 6) and 20 noisy observations (i.e., M ¼ 20) with the
same signal-to-noise ratio (SNRi ¼ 25 dB, i ¼ 1; 2; . . . ; 20)
where SNRi ¼ kxxi � ��ik

2=ðL
2
i Þ and 
2

i is the variance of
independent and identically distributed zero-mean Gaussian
noise components in ��i. In the second scenario, the same
simulation was performed except that only the first four
human face images in Fig. 4a were used. For the noise-free
case, apart from the mixtures of the original sources, we also
considered the case by artificially adding a set of pure-source
samples fs½li� ¼ si½li�ei; i ¼ 1; 2; . . . ; Ng to the original
sources in order to verify the source identifiability of the
nLCA. For the noisy case, we applied the various BSS
methods to process the noise-reduced observations, i.e., �xxi,
i ¼ 1; 2; . . . ; N , given by (46).

The values of averaged �, denoted by �ave, forN ¼ 6 in this
experiment are listed in Table 3. It is to be mentioned that the
original six sources do not have pure-source samples. From
the table, one can observe that, for both the noise-free and
noisy cases, the proposed nLCA-IVM (with maximum �ave)
outperforms all the other algorithms. For the case that pure-
source samples were artificially added in the original six
sources, nLCA-IVM, nLCA-ES, and CAMNS achieve perfect
separation (with �ave ¼ 1), and hence, outperform all of the
other algorithms. These results indicate that the proposed
nLCA-IVM is less sensitive to the existence of pure-source
samples than nLCA-ES and CAMNS. In addition, it obtains
the global optimum solution for each realization when six
pure-source samples are artificially made existent in the
original sources, thus justifying the source identifiability of
thenLCA as stated in Theorem 2 (despite no guarantee for the
global optimum solution when N > 2). One typical realiza-
tion among the 50 independent runs for the noiseless case is
shown in Fig. 4, where all of the separated images have been
properly ordered for ease of illustrative comparison among
all the BSS algorithms under test. One can see in Fig. 4 that the
separated images obtained by the nLCA-IVM match the
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Fig. 4. Human face images in the absence of noise: (a) the sources,
(b) the observations, and the extracted sources obtained by
(c) nLCA-IVM, (d) nLCA-ES, (e) CAMNS, (f) nICA, (g) FastICA,
(h) NMF, (i) QNMF, and (j) sNMF.
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original sources better than those obtained by the other
algorithms.

Again, from Table 3, one can observe that the computa-
tional complexity in terms of the averaged computation
time, denoted by Tave, of the proposed nLCA-IVM is lower
than all the other iterative algorithms, i.e., nICA, FastICA,
NMF, QNMF, and sNMF. An interesting observation is that
Tave (3.94 sec) associated with the proposed nLCA-IVM
when pure-source samples exist is significantly smaller than
that (Tave ¼ 22:95 sec) without pure-source samples. This is
because more redundant inequality constraints of problem
(24) can be effectively removed by the quickhull algorithm.
On the other hand, Taves associated with the two non-
iterative algorithms, nLCA-ES and CAMNS, are similar for
all the three cases. Moreover, the averaged constraint
reduction ratios (0 < � 	 1) (see (34)) are 0.9385 for the
noise-free case, 0.9504 for the noisy case, and 0.9853 for the
case with artificially added pure-source samples, indicating
that the computational efficiency with the use of the
quickhull algorithm prior to the use of the nLCA-IVM is
remarkably high in this scenario.

We also show the corresponding simulation results for
N ¼ 4 in Table 4, where the first four human face images in
Fig. 4a were used. From this table, similar conclusions about
the performance and computational complexity comparison
of all the BSS algorithms under test can be drawn as from
Table 3. Here, the averaged constraint reduction ratios �
are 0.9887 for the noise-free case, 0.9864 for the noisy case,

and 0.9943 for the case with artificially added pure-source
samples, indicating that the computational efficiency with
the use of the quickhull algorithm prior to the use of the
nLCA-IVM is also high in this scenario.

5.2 Experiment 2: Infrared Spectra Decomposition

In the field of analytical chemistry, infrared spectra are often
used to identify and quantify a solvent in liquid or gas state
by its spectral signature. When multiple solvents are mixed,
the measured infrared spectrum is a mixture of the spectra
of these solvents. In this experiment, we used the gas phase
Fourier-transform infrared spectra of three pure materials
(i.e., toluene, acetone, and dichloromethane) with 2 cm�1

resolution from a public quantitative infrared database (i.e.,
http://webbook.nist.gov/chemistry/quant-ir/) to generate
three mixtures, where L ¼ 3;526. The values of �ave; Tave,
and �ave of the BSS algorithms under test are shown in
Table 5. One can observe from Table 5 that the proposed
nLCA-IVM performs almost as well as nLCA-ES and
CAMNS (where �ave ’ 1 does not justify the source
identifiability of the former due to no pure-source samples),
and its performance is superior to that of nICA, FastICA,
NMF, QNMF, and sNMF, although no pure-source sample
exists in the three original sources of this experiment. As for
the computational complexity, the best four algorithms are
nLCA-ES, FastICA, CAMNS, and nLCA-IVM. One typical
realization among the 50 independent runs for this
experiment is shown in Fig. 5, where all the separated
spectra (intensity versus wave number (cm�1)) have been
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Averaged Cross-Correlation Coefficients (�ave) between Sources and Their Estimates, Averaged Computation Time (Tave),

Averaged Number of Iterations (�ave) of Various BSS Methods over 50 Monte Carlo Runs for N ¼ 6 in Experiment 1

TABLE 4
Averaged Cross-Correlation Coefficients (�ave) between Sources and Their Estimates, Averaged Computation Time (Tave),
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properly scaled and ordered for ease of illustrative
comparison among all the BSS algorithms under test. One
can see in this figure that the separated source spectra
obtained from nLCA-IVM; nLCA-ES, and CAMNS match
the original source spectra much better than those obtained
by the other algorithms.

5.3 Experiment 3: Dual-Energy X-Ray Image
Decomposition

Accurate detection of lung nodules (the early sign of lung
cancers) using dual-energy chest X-ray imaging is an
important diagnostic task. However, the presence of ribs
or clavicles overlapped with soft tissue presents significant
challenge to detect subtle nodules. Effective separation of
bone and soft tissues in dual-energy chest X-ray imaging is
highly desirable. In this experiment, we applied the
nLCA-IVM to process two mixed images of soft and bone
tissues (L ¼ 26;896) taken from [39] as shown in Fig. 6a. The
values of �ave of all the BSS algorithms under test are also
given in Table 5. It is to be mentioned that two pure-source
samples exist in the original two sources. It can be seen
from the table that nLCA-IVM, nLCA-ES, and CAMNS all
perform perfectly (i.e., �ave ¼ 1), justifying the source
identifiability of nLCA (as stated in Theorem 2) and the
global optimum solution achieved by the proposed
nLCA-IVM (see Proposition 1). On the other hand, the
value of Tave (0.46 second) associated with the proposed
nLCA-IVM is larger than that (0.06 second) associated with
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Fig. 5. Infrared spectra of acetone (left plot), dichloromethane (middle
plot), and toluene (right plot): (a) the sources, (b) the observations and
the extracted sources obtained by (c) nLCA-IVM, (d) nLCA-ES,
(e) CAMNS, (f) nICA, (g) FastICA, (h) NMF, (i) QNMF, and (j) sNMF.

Fig. 6. Dual energy X-ray images: (a) the sources, (b) the observations
and the extracted sources obtained by (c) nLCA-IVM, (d) nLCA-ES,
(e) CAMNS, (f) nICA, (g) FastICA, (h) NMF, (i) QNMF, and (j) sNMF.

TABLE 5
Averaged Cross-Correlation Coefficients (�ave) between Sources and Their Estimates, Averaged Computation Time (Tave),

Averaged Number of Iterations (�ave) of Various BSS Methods over 50 Monte Carlo Runs in Experiments 2 and 3
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nLCA-ES, while much smaller than that associated with
each of CAMNS, nICA, FastICA, NMF, QNMF, and sNMF.
One typical realization is also shown in Fig. 6.

The above experimental results using synthetic data
indicate that nLCA-IVM, nLCA-ES, and CAMNS may attain
the same performance (by �ave) for the noise-free case as (A5)
is true, and show that nLCA-IVM and CAMNS perform
better than nLCA-ES because the nonnegativity of the
demixed sources is guaranteed by the former but not by the
latter. Meanwhile, in contrast to nLCA-ES and CAMNS, the
proposednLCA-IVM is less sensitive to the existence of pure-
source samples (i.e., (A5)) because it is developed by volume
maximization of the solid region constructed by the separated
sources, neither relying on (A5) nor involving search of data
points contributed from pure-source samples. Moreover,
bothnLCA-IVM and CAMNS outperformnICA and FastICA
for which the source independence or uncorrelatedness
assumption is required, but the sources are neither statisti-
cally independent nor uncorrelated in these experiments. The
proposed nLCA-IVM not only outperforms NMF, QNMF,
and sNMF (perhaps due to inherent local optimality issue of
NMF-based algorithms) but also has lower computational
complexity (Tave).

5.4 Experiment 4: Analyzing Fluorescence
Microscopy Signals

Fluorescence microscopy uses an optical sensor array (e.g.,
CCD camera) to produce multispectral images in which the
targets of a specimen are labeled with different fluorescence
probes [6]. In an attempt to dissect the multispectral images,
the ability of identifying spectral biomarkers is limited due to
the spectral-overlapped problem among the probes, leading
to information leak-through from one spectral channel to
another. To resolve such problems by separating the
fluorescence microscopy into individual maps associated
with specific biomarkers can be generally formulated as an
nBSS problem. In the investigation of the specimen labeled by
multiple fluorescent probes, two or more emissions are often
overlapped in the measured images. This is called crosstalk,
whose separation can be treated as an nBSS problem. In this
experiment, we employed the nLCA-IVM algorithm to
analyze a set of dividing newt lung cell images taken from
http://publications.nigms.nih.gov/insidethecell/chapter1.
html. In Fig. 7a, the observed images of intermediate
filaments, spindle fibers, and chromosomes are displayed
from top to bottom, respectively. Because of wide emission
spectra of the fluorescence probe, the spectral biomarkers are
indeed overlapped as shown in Fig. 7a. The regions of interest
(ROI) of the observed images are shown in Fig. 7b, and the
obtained results are shown in Fig. 7c, where the unmixed
spectral images of intermediate filaments, chromosomes, and
spindle fibers are visually much clearer than the ROIs of the
observed images before unmixing. Specifically, the rope
shape of the extracted chromosomes and the spindle shape of
the extracted spindle fibers can be clearly observed, and these
results exhibit a good agreement with biological expectation.

5.5 Experiment 5: Contrast Agent Perfusion Image
Extraction

In DCE-MRI, various molecular weight contrast agents are
used to assess tumor vascular permeability and quantify
cellular and molecular abnormalities in blood vessel walls

[40]. The DCE-MRI can distinguish vascular heterogeneity
and elucidate features that characterize angiogenic blood
vessels from their normal counterparts, and has potential
utility in measuring the efficacy of angiogenesis inhibitors
in cancer treatment in vivo [4], [8]. Although DCE-MRI can
provide a meaningful estimation of vascular permeability
when a tumor is homogeneous, many malignant tumors
show markedly heterogeneous areas of permeability, i.e.,
the observed DCE-MRI images are usually the mixtures of
two permeability distributions associated with fast perfu-
sion (tumor-induced blood vessels) and slow perfusion
(normal blood vessels). In this experiment, we employed
the proposed nLCA-IVM to separate the vascular perme-
ability images associated with fast and slow perfusion in
breast cancer study. A temporal image sequence containing
19 breast magnetic resonance images serves as the observa-
tions, as shown in Fig. 8a. The ROIs (i.e., the location of the
breast cancer) were first determined by human-data
interaction, which are shown in Fig. 8b. Then the PCA
was employed to obtain the two noise-suppressed images
displayed in Fig. 8c, which were then processed by the
proposed nLCA-IVM. The two separated source images are
shown in Fig. 8d, corresponding to the permeability images
of fast perfusion (top) and slow perfusion (bottom),
respectively. Note that the bright peripheral area in the
extracted permeability image of fast perfusion indicates the
distribution of angiogenesis of the breast cancer tumor,
whereas the hypoxia in the inner core of the extracted
permeability image of slow perfusion indicates the dis-
tribution of blood vessels of the normal tissue. Finally, the
two 19� 1 column vectors of the mixing matrix, called the
time activity curves (TACs), as shown in Fig. 8e, were
estimated using a nonnegative least-squares estimator [41]
with the given observation matrix X and the source matrix
estimate Ŝ (see (43)). The descending curve (dashed line)
represents the fast perfusion, showing the fast contrast
agent washout in the breast tumor over the data acquisition
time [8], and the ascending curve (solid line) denotes the
slow perfusion, showing the contrast agent accumulation in
the normal tissue. These results reveal the perfusion
characteristics of different microvascular physiologies [4],
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Fig. 7. Fluorescence microscopy images: (a) the measured newt lung
cell images, (b) the ROI images of (a), and (c) the unmixed images of
intermediate filaments (top), chromosomes (middle), and spindle fibers
(bottom) obtained by the proposed nLCA-IVM.
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as well as ai1 > 0, ai2 > 0, and ai1 þ ai2 ’ 1 for all i, which
are consistent with (A2) and (A4).

6 CONCLUSIONS

We have presented a new nLCA method for the blind
separation of nonnegative and potentially correlated sources
with a given set of mixed observations. The optimum
unmixing matrix is obtained by minimizing the joint
correlation of all the separated source signals subject to the
nonnegativity constraint. A closed-form solution for the
unmixing matrix of the two-source case was provided. The
nLCA method is implemented by an iterative volume
maximization algorithm (i.e., nLCA-IVM) that uses compu-
tationally efficient LP solvers. We also proved the source
identifiability of the nLCA method under the existence of
pure-source samples (i.e., (A5)), and furthermore, it never
relies on (A5) and thus exhibits good performance even
when (A5) is not satisfied perfectly. Comparative experi-
mental results using simulated data were presented to
demonstrate the superior performance and computational
efficiency of the nLCA-IVM over several existing benchmark
methods. Evaluation of the proposed nLCA-IVM using real
biomedical data was also presented, which provides some
insights into the underlying biomedical relevant character-
istics and physiologies. Due to a variety of potential
biomedical imaging applications, nontrivial modifications
of this algorithm may be needed for specific applications,
and they are left as future research along with other
applications, where nBSS is needed.

APPENDIX A

PROOF OF THEOREM 1

1. By (3), (A2), and (A4), for any yy 2 convfxx1; . . . ; xxMg,

yy ¼
XM
i¼1

�ixxi;
�
�M
i¼1�i ¼ 1; �i � 0

�

¼
XM
i¼1

�i
XN
j¼1

aijssj; ðby ð3ÞÞ;
ð47Þ

where aij � 0 and �N
j¼1aij ¼ 1. By letting �j ¼ �M

i¼1�iaij, (47)
becomes

yy ¼
XN
j¼1

�jssj 2 convfss1; ss2; . . . ; ssNg ð48Þ

because �j � 0 and �N
j¼1�j ¼ 1. Thus, we can conclude that

convfxx1; xx2; . . . ; xxMg
 convfss1; ss2; . . . ; ssNg.
2. Again, by (3), (A2), and (A4), for any yy 2 solfxx1; xx2; . . . ;

xxMg, yy given by (47) still holds except for �M
i¼1�i 	 1; �i � 0,

and so

yy ¼
XN
j¼1

�jssj 2 solfss1; ss2; . . . ; ssNg ð49Þ

because �j � 0 and �N
j¼1�j 	 1. Thus, solfxx1; xx2; . . . ;

xxMg 
 solfss1; ss2; . . . ; ssNg.

APPENDIX B

PROOF OF LEMMA 1

By Hadamard’s inequality [36],

jdetðAÞj 	
YN
i¼1

XN
j¼1

jaijj2
 !1=2

; ð50Þ

and the equality holds if and only if all the rows of A are
orthogonal. By the inequality (see [42, Theorem 2.33]),

XN
j¼1

b2
j

 !1=2

	
XN
j¼1

jbjj; ð51Þ

and the equality holds if and only if b ¼ ðb1; b2; . . . ; bNÞT ¼
blel for some l and bl 6¼ 0. By (A2)-(A4), (50), and (51), we have

jdetðAÞj 	
YN
i¼1

XN
j¼1

a2
ij

 !1=2

	
YN
i¼1

XN
j¼1

aij

 !
¼ 1; ð52Þ

where the first equality holds if and only if all the rows of

A ¼ ðaa1; . . . ; aaNÞT are orthogonal, and the second equality

holds if and only if aai ¼ el (since
PN

j¼1 aij ¼ 1Þ for some l.

Thus, it can be easily inferred that jdetðAÞj ¼ 1 if and only if

A is a permutation matrix.
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images, (b) the ROI images of (a), (c) the outputs of PCA, (d) the
extracted permeability images of fast perfusion (top) and slow perfusion
(bottom), and (e) the associated TACs of fast perfusion (dashed line)
and slow perfusion (solid line) obtained by the proposed nLCA-IVM.
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