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A Fast Hyperplane-Based Minimum-Volume
Enclosing Simplex Algorithm for Blind

Hyperspectral Unmixing
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Abstract—Hyperspectral unmixing (HU) is a crucial signal
processing procedure to identify the underlying materials (or end-
members) and their corresponding proportions (or abundances)
from an observed hyperspectral scene. A well-known blind HU
criterion, advocated by Craig during the early 1990s, considers
the vertices of the minimum-volume enclosing simplex of the data
cloud as good endmember estimates, and it has been empirically
and theoretically found effective even in the scenario of no pure
pixels. However, such kinds of algorithms may suffer from heavy
simplex volume computations in numerical optimization, etc. In
this paper, without involving any simplex volume computations,
by exploiting a convex geometry fact that a simplest simplex of
vertices can be defined by associated hyperplanes, we propose
a fast blind HU algorithm, for which each of the hyperplanes
associated with the Craig’s simplex of vertices is constructed
from affinely independent data pixels, together with an
endmember identifiability analysis for its performance support.
Without resorting to numerical optimization, the devised algo-
rithm searches for the active data pixels via simple
linear algebraic computations, accounting for its computational
efficiency. Monte Carlo simulations and real data experiments are
provided to demonstrate its superior efficacy over some bench-
mark Craig-criterion-based algorithms in both computational
efficiency and estimation accuracy.

Index Terms—Hyperspectral unmixing, Craig’s criterion,
convex geometry, minimum-volume enclosing simplex, hyper-
plane.

I. INTRODUCTION

H YPERSPECTRAL remote sensing (HRS) [2]–[4], also
known as imaging spectroscopy, is a crucial technology

to the identification of material substances (or endmembers) as
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well as their corresponding fractions (or abundances) present
in a scene of interest from observed hyperspectral data, having
various applications such as planetary exploration, land map-
ping and classification, environmental monitoring, and mineral
identification and quantification [5]–[7]. The observed pixels in
the hyperspectral imaging data cube are often spectral mixtures
of multiple substances, the so-called mixed pixel phenomenon
[8], owing to the limited spatial resolution of the hyperspectral
sensor (usually equipped on board the satellite or aircraft) uti-
lized for recording the electromagnetic scattering patterns of the
underlying materials in the observed hyperspectal scene over
about several hundreds of narrowly spaced (typically, 5–10 nm)
wavelengths that contiguously range from visible to near-in-
frared bands. Occasionally, the mixed pixel phenomenon can
also be present in hyperspectral scenes where the underlying
materials are intimately mixed with each other [9] even though
the spatial resolution is high enough. Hyperspectral unmixing
(HU) [8], [10], an essential procedure of extracting individual
spectral signatures of the underlying materials in the captured
scene from these measured spectral mixtures, is therefore of
paramount importance in the HRS context.
Blind HU, or unsupervised HU, involves two core stages,

namely endmember extraction and abundance estimation,
without (or with very limited) prior knowledge about the end-
members’ nature or the mixing mechanism. Some endmember
extraction algorithms (EEAs), such as alternating projected
subgradients (APS) [11], joint Bayesian approach (JBA) [12],
and iterated constrained endmembers (ICE) [13] (also the
sparsity promoting ICE (SPICE) [14]), can simultaneously
determine the associated abundance fractions while extracting
the endmember signatures. Nevertheless, some EEAs perform
endmember estimation, followed by abundance estimation
using such as the fully constrained least squares (FCLS) [15] to
complete the entire HU processing.
The pure-pixel assumption has been exploited in devising

fast blind HU algorithms to search for the purest pixels over
the data set as the endmember estimates, and such searching
procedure can always be carried out through simple linear al-
gebraic formulations; see, e.g., pixel purity index (PPI) [16]
and vertex component analysis (VCA) [17]. An important blind
HU criterion, called Winter’s criterion [18], also based on the
pure-pixel assumption, is to identify the vertices of the max-
imum-volume simplex inscribed in the observed data cloud as
endmember estimates. HU algorithms in this category include
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N-finder (N-FINDR) [18], simplex growing algorithm (SGA)
[19] (also the real-time implemented SGA [20]), and worst case
alternating volume maximization (WAVMAX) [21], to name a
few. However, the pure-pixel assumption could be seriously in-
fringed in practical scenarios especially when the pixels are in-
timately mixed, for instance, the hyperspectral imaging data for
retinal analysis in the ophthalmology [9]. In these scenarios, HU
algorithms in this category could completely fail; actually, it is
proven that perfect endmember identifiability is impossible for
Winter-criterion-based algorithms if the pure-pixel assumption
is violated [21].
Without relying on the existence of pure pixels, another

promising blind HU approach, advocated by Craig in early
1990’s [22], exploits the simplex structure of hyperspectral
data, and believes that the vertices of the minimum-volume
data-enclosing simplex can yield good endmember estimates,
and algorithms developed accordingly include such as min-
imum-volume transform (MVT) [22], minimum-volume con-
strained nonnegative matrix factorization (MVC-NMF) [23],
and minimum-volume-based elimination strategy (MINVEST)
[24]. Moreover, some linearization-based methods have also
been reported to practically identify Craig’s minimum-volume
simplex, e.g., the iterative linear approximation in min-
imum-volume simplex analysis (MVSA) [25] (also its fast
implementation using the interior-point method [26], termed
as ipMVSA [27]), and the alternating linear programming in
minimum-volume enclosing simplex (MVES) [28]. Empirical
evidences do well support that this minimum-volume approach
is resistant to lack of pure pixels, and can recover ground truth
endmembers quite accurately even when the observed pixels
are heavily mixed. Very recently, the validity of this empirical
belief has been theoretically justified; specifically, we show
that, as long as a key measure concerning the pixels’ mixing
level is above a certain (small) threshold, Craig’s simplex
can perfectly identify the true endmembers in the noiseless
scenario [29]. However, without the guidance of the pure-pixel
assumption, this more sophisticated criterion would generally
lead to more computationally expensive HU algorithms. To the
best of our knowledge, the ipMVSA algorithm [27] and the
simplex identification via split augmented Lagrangian (SISAL)
algorithm [30] are the two state-of-the-art Craig-criterion-based
algorithms in terms of computational efficiency. Nevertheless,
in view of not only the NP-hardness of the Craig-simplex-iden-
tification (CSI) problem [31] but also heavy simplex volume
computations, all the above mentioned HU algorithms are yet
to be much more computationally efficient. Moreover, their
performances may not be very reliable owing to the sensitivity
to regularization parameter tuning, non-deterministic (i.e.,
non-reproducible) endmember estimates caused by random ini-
tializations, and, most seriously, lack of rigorous identifiability
analysis.
In this work, we break the deadlock on the trade-off between

a simple fast algorithmic scheme and the estimation accuracy in
the no pure-pixel case. We have observed that when the pure-
pixel assumption holds true, the effectiveness of a simple fast
HU algorithmic scheme could be attributed to that the desired
solutions (i.e., pure pixels) already exist in the data set. Inspired

by this observation, we naturally raise a question: Can Craig’s
minimum-volume simplex be identified by simply searching for
a specific set of pixels in the data set regardless of the existence
of pure pixels? The answer is affirmative and will be given in
this paper.
Based on the convex geometry fact that a simplest simplex

of vertices can be characterized by the associated hy-
perplanes, this paper proposes an efficient and effective unsu-
pervised Craig-criterion-based HU algorithm, together with an
endmember identifiability analysis. Each hyperplane, parame-
terized by a normal vector and an inner product constant [26],
can then be estimated from affinely independent pixels
in the data set via simple linear algebraic formulations. The re-
sulting hyperplane-based CSI (HyperCSI) algorithm, based on
the above pixel search scheme, can withstand the no pure-pixel
scenario, and can yield deterministic, non-negative, and, most
importantly, accurate endmember estimates. After endmember
estimation, a closed-form expression in terms of the identified
hyperplanes’ parameters is derived for abundance estimation.
Then some Monte Carlo numerical simulations and real hyper-
spectral data experiments are presented to demonstrate the su-
perior efficacy of the proposed HyperCSI algorithm over some
benchmark Craig-criterion-based HU algorithms in both esti-
mation accuracy and computational efficiency.
The remaining part of this paper is organized as follows.

In Section II, we briefly review some essential convex geom-
etry concepts, followed by the signal model and dimension re-
duction. Section III focuses on the HyperCSI algorithm devel-
opment, and in Section IV, some simulation results are pre-
sented for its performance comparison with some benchmark
Craig-criterion-based HU algorithms. In Section V, we further
evaluate the effectiveness of the proposed HyperCSI algorithm
with AVIRIS [32] data experiments. Finally, we draw some con-
clusions in Section VI.
The following notations will be used in the ensuing presenta-

tion. is the set of real numbers ( -vectors,
matrices). is the set of non-negative real

numbers ( -vectors, matrices). is
the set of positive real numbers ( -vectors, matrices).

denotes the Moore-Penrose pseudo-inverse of a matrix .
and are all-one and all-zero -vectors, respectively.

denotes the unit vector of proper dimension with the th entry
equal to unity. is the identity matrix. and stand
for the componentwise inequality and strictly componentwise
inequality, respectively. denotes the Euclidean norm (i.e.,
2-norm). The distance of a vector to a set is denoted by

[26]. denotes the cardinality
of the set . The determinant of matrix is represented by

. stands for the set of integers , for any
positive integer .

II. CONVEX GEOMETRY AND SIGNAL MODEL

In this section, a brief review on some essential convex geom-
etry will be given for ease of later use. Then the signal model
for representing the hyperspectral imaging data together with
dimension reduction preprocessing will be presented.
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Fig. 1. A graphical illustration in for some convex geometry concepts,
where the line segment connecting and is the convex hull of ,
the straight line passing and is the affine hull of , the shaded tri-
angle is the convex hull of , and the plane passing the three points

is the affine hull of . As an affine hull in is called
a hyperplane if its affine dimension is 2, is a hyperplane, while

is not.

A. Convex Geometry Preliminary
The convex hull of a given set of vectors

is defined as [26]

where (cf. Fig. 1). A convex hull
is called an -dimensional simplex

with vertices if is affinely
independent, or, equivalently, if
is linearly independent, and it is called a simplest simplex in

when [33]. For example, a triangle is a
2-dimensional simplest simplex in , and a tetrahedron is a
3-dimensional simplest simplex in (cf. Fig. 1).
For a given set of vectors , its affine hull

is defined as [26]

where (cf. Fig. 1). This affine hull can be
parameterized by a 2-tuple using the
following alternative representation [26]:

where (the rank of ) is the affine dimension of
. Moreover, an affine hull

is called a hyperplane if its affine dimension
(cf. Fig. 1).

B. Signal Model and Dimension Reduction
Consider a scenario where a hyperspectral sensor measures

solar electromagnetic radiation over spectral bands from
unknown materials (endmembers) in a scene of interest. Based
on the linear mixing model (LMM) [2]–[8], [10], [28], where
the measured solar radiations are assumed to reflect from the ex-
plored scene through one single bounce, and the endmembers’
spectral signature vectors are assumed to be invariant

with the pixel index , each pixel in the observed
data set can then be represented as a linear mixture of the
endmembers’ spectral signatures1

(1)

where is the spectral signature ma-
trix, is the abundance vector,
and is the total number of pixels. The following standard as-
sumptions pertaining to the model in (1), which also charac-
terize the simplex structure inherent in the hyperspectral data,
are used in our HU algorithm development later [2]–[8], [10],
[28]:

(Non-negativity) and .
(Full-additivity) .

and is full column
rank.

Moreover, like most benchmark HU algorithms (see, e.g., [23],
[25], [28], [30]), the number of endmembers is assumed to
be known a priori, which can be determined beforehand by
applying model-order selection methods, such as hyperspec-
tral signal subspace identification by minimum error (HySiMe)
[36], and Neyman-Pearson detection theory-based virtual di-
mensionality (VD) [37].
We aim to blindly estimate the unknown endmembers (i.e.,

), as well as their abundances (i.e., ),
from the observed spectral mixtures (i.e., ). Due
to the huge dimensionality of hyperspectral data, directly an-
alyzing the data may not be very computationally efficient. In-
stead, an efficient data preprocessing technique, called affine set
fitting (ASF) procedure [38], can be applied to compactly rep-
resent each measured pixel in a dimension-reduced
(DR) space as follows:

(2)

where

(3)

(4)
(5)

in which denotes the th principal eigenvector
(with unit norm) of the square matrix , and

is the mean-removed
data matrix. Actually, like other dimension reduction algorithms
[39], ASF also performs noise suppression in the meantime. It
has been shown that the aboveASF best represents themeasured
data in an -dimensional space in the sense of least-
squares fitting error [38], while such fitting error vanishes in the

1Note that there is a research line considering non-linear mixtures for mod-
eling the effect of multiple reflections of solar radiation [34]. Moreover, the
endmember spectral signatures may be spatially varying, hence leading to the
full-additivity in being violated [10]. However, studying these effects is
out of the scope of this paper, and the representative LMM is sufficient for our
analysis and algorithm development; interested readers can refer to the maga-
zine papers [34] and [35], about the non-linear effect and the endmember vari-
ability effect, respectively.
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noiseless scenario [38]. Note that the data mean in the DR space
is the origin (by (2) and (3)).
Because of in typical HU applications, the

HyperCSI algorithm will be developed in the DR space
wherein the DR endmembers are estimated. Then,
by (5), the endmember estimates in the original space can
be restored as

(6)

where ’s are the endmember estimates in the DR space.

III. HYPERPLANE-BASED CRAIG-SIMPLEX-IDENTIFICATION
ALGORITHM

First of all, due to (2) and – , the true endmembers’
convex hull itself is a data-enclosing sim-
plex, i.e.,

(7)

According to Craig’s criterion, the true endmembers’ convex
hull is estimated by minimizing the volume of the data-en-
closing simplex [22], namely, by solving the following volume
minimization problem (called the CSI problem interchangeably
hereafter):

(8)

where denotes the volume of the simplex
. Under some mild conditions on

data purity level [29], the optimal solution of problem (8) can
perfectly yield the true endmembers .2
Besides in the HU context, the NP-hard CSI problem in (8)

[31] has been studied in some earlier works in mathematical
geology [40] and computational geometry [41]. However, their
intractable computational complexity almost disable them from
practical applications for larger problem size [41], mainly owing
to calculation of the complicated nonconvex objective function
[28]

in (8). Instead, the HyperCSI algorithm to be presented can judi-
ciously bypass simplex volume calculations, and meanwhile the
identified simplex can be shown to be exactly the “minimum-
volume” (data-enclosing) simplex in the asymptotic sense

.
First of all, let us succinctly present the actual idea on which

the HyperCSI algorithm is based. As the Craig’s minimum-

2In [29], is used
to measure the data purity level of , where
and ; the geometric interpretations of can
be found in [29]. Simply speaking, one can show that , and the
most heavily mixed scenario (i.e., ) will lead to the
lower bound [29]. On the contrary, the pure-pixel assumption is equivalent to
the condition of (the upper bound) [29], in comparison with which a mild
condition of only is sufficient to guarantee the perfect endmember
identifiability of problem (8) [29].

Fig. 2. An illustration of hyperplanes and DR data in for the case of
, where is a purest pixel in (a purest pixel can be considered

as the pixel closest to ) but not necessarily very close to hyperplane
, leading to nontrivial orientation difference between and .

However, the active pixels and identified by (17) will be very close
to (especially, for large ), and hence the orientations of and will
be almost the same. On the other hand, one can see that the pixels identified by
(21) are (that are very close to each other), and thus the associated
normal vector estimate is obviously far away from the true .

volume simplex can be uniquely determined by tightly en-
closed -dimensional hyperplanes, where each hyper-
plane can be reconstructed from any affinely indepen-
dent points of the hyperplane, we hence endeavor to search for

affinely independent pixels (referred to as active pixels
in ) that are as close to the associated hyperplane as possible.
We begin with purest pixels that define disjoint proper re-
gions, each centered at a different purest pixel. Then for each
hyperplane of the minimum-volume simplex, the desired
active pixels, that are as close to the hyperplane as possible, are
respectively sifted from subsets of , each from the data
set associated with one different proper region (cf. Fig. 2). Then
the obtained pixels are used to construct one estimated
hyperplane. Finally, the desired minimum-volume simplex can
be determined from the obtained hyperplane estimates.

A. Hyperplane Representation for Craig’s Simplex
The idea of solving the CSI problem in (8), without involving

any simplex volume computations, is based on the hyperplane
representation of a simplest simplex as stated in the following
proposition:
Proposition 1: If is affinely inde-

pendent, i.e., is a simplest
simplex, then can be reconstructed from the associated hy-
perplanes , that tightly enclose , where

.
Proof: It suffices to show that can be deter-

mined by . It is known that hyperplane can
be parameterized by a normal vector and an inner
product constant as follows:

(9)

As for all , we have
from (9) that for all , i.e.,

(10)

where are defined as

(11)
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(12)

As is a simplest simplex in must be of full rank
and hence invertible [26]. Hence, we have from (10) that

(13)

implying that can be reconstructed. The proof is therefore
completed.
As it can be inferred from that the set of DR end-

members is affinely independent, one can apply
Proposition 1 to decouple the CSI problem (8) into sub-
problems of hyperplane estimation, namely, estimation of
parameter vectors in (9). Then (13) can be utilized to
obtain the desired endmember estimates. Next, let us present
how to estimate the normal vector and the inner product
constant from the data set , respectively.

B. Normal Vector Estimation
The normal vector of hyperplane can be obtained by

projecting the vector (for any ) onto the subspace
that is orthogonal to the hyperplane [42], i.e.,

(14)

where , and
is the matrix with its

th and th columns removed. Besides (14) for obtaining the
normal vector of , we also need another closed-form ex-
pression of in terms of distinct points as given in the
following proposition.
Proposition 2: Given any affinely independent set

can be alternatively obtained by
(except for a positive scale factor)

(15)

where is defined in (14).
The proof of Proposition 2 can be shown from the fact that
is the data mean in the DR space (by (2) and (3)), and is
omitted here due to space limitation.
Based on Proposition 2, we estimate the normal vector by

finding affinely independent data points

that are as close to as possible. To this end, an observation
from (7) is needed and given in the following fact:
Fact 1: Observing that (i) (i.e., all

the points lie on the same side of ; cf. (7)), and
that (ii) , the point
closest to is exactly the one with maximum of , provided
that points outward from the true endmembers’ simplex (cf.
Fig. 2 and (14)).
Suppose that we are given “purest” pixels , which

basically maximize the simplex volume inscribed in , and they
can be obtained using the reliable and reproducible successive
projection algorithm (SPA) [10], ([43], Algorithm 4). So can
be viewed as the pixel in “closest” to (cf. Fig. 2). Let

be the outward-pointing normal vector of hyperplane
, i.e.,

(16)

Considering Fact 1 and the requirement that the set must
contain distinct elements (otherwise, is not affinely
independent), we identify the desired affinely independent set

by:

(17)

where are disjoint sets defined as

(18)

in which is the
open Euclidean norm ball with center and radius

. Note that
the choice of the radius is to guarantee that
are non-overlapping regions, thereby guaranteeing that
contains distinct points. Moreover, each hyperball
must contain at least one pixel (as it contains either or ;
cf. (18)), i.e., , and hence problem (17) must be
a feasible problem (i.e., a problem with non-empty feasible set
[26]).
If the points extracted by (17) are affinely independent,

then the estimated normal vector associated with can be de-
termined as (cf. Proposition 2)

(19)

Fortunately, the obtained by (17) can be proved (in Theorem
1 below) to be always affinely independent with one more as-
sumption:3

The abundance vectors (defined
below (1)) are independent and identically distributed
(i.i.d.) following Dirichlet distribution with parameter

whose probability density
function (p.d.f.) is given by [44]:

(20)

where
, and

denotes the gamma function.
Theorem 1: Assume – hold true. Let

be a solution to (17) with defined in (18), for all

3The rationale of adopting Dirichlet distribution in is not only that it is
a well known distribution that captures both the non-negativity and full-addi-
tivity of [44], but because it has been used to characterize the distribution of

in the HU context [45], [46]. However, the statistical assumption is
only for analysis purpose without being involved in our geometry-oriented algo-
rithm development. So even if abundance vectors are neither i.i.d. nor Dirichlet
distributed, the HyperCSI algorithm can still work well (cf. Subsection IV-D).
Furthermore, we would like to emphasize that, in our analysis (Theorems 1 and
2), we actually only use the following two properties of Dirichlet distribution:
(i) its domain is , and (ii) it is a continuous
multivariate distribution with strictly positive density on its domain [47] (cf.
Appendixes A and B). Hence, any distribution with these two properties can be
used as an alternative in .
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and . Then, the set is affinely independent with
probability 1 (w.p.1).
The proof of Theorem 1 is given in Appendix A.
Note that the orientation difference between and the true
may not be small (cf. Fig. 2). Hence, itself may not be a

good estimate for either. On the contrary, it can be shown that
the orientation difference between and tends to be small
for large , and actually such difference vanishes as goes to
infinity (cf. Theorem 2 as well as Remark 1 in Subsection III-E).
On the other hand, if the pixels with maximum inner products
in are jointly sifted from the whole data cloud , i.e.,

(21)

where and , rather than
respectively from different regions , as
given in (17), the identified pixels in may stay quite close,
easily leading to large deviation in normal vector estimation as
illustrated in Fig. 2 where are the identified
pixels using (21). This is also a rationale of finding using
(17) for better normal vector estimation.

C. Inner Product Constant Estimation
For Craig’s simplex (the minimum-volume data-enclosing

simplex), all the data in should lie on the same side of
(otherwise, it is not data-enclosing), and should be as tightly
close to the data cloud as possible (otherwise, it is not min-
imum-volume); the only possibility is when the hyperplane
must be externally tangent to the data cloud. In other words,
will incorporate the pixel that has maximum inner product with
, and hence it can be determined as , where is

obtained by solving
(22)

However, it has been reported that when the observed data
pixels are noise-corrupted, the random noise may expand the
data cloud, thereby inflating the volume of the Craig’s data-en-
closing simplex [21], [33]. As a result, the estimated hyper-
planes are pushed away from the origin (i.e., the data mean in
the DR space) due to noise effect, and hence the estimated inner
product constant in (22) would be larger than that of the ground
truth. To mitigate this effect, the estimated hyperplanes need to
be properly shifted closer to the origin, so instead,

, are the desired hyperplane estimates for some .
Therefore, the corresponding DR endmember estimates are ob-
tained by (cf. (13))

(23)

where and are given by (11) and (12) with and
replaced by and , respectively. Moreover, it

is necessary to choose such that the associated endmember
estimates in the original space are non-negative (cf. ), i.e.,

(24)

By (23) and (24), the hyperplanes should be shifted closer to the
origin with at least, where

(25)

TABLE I
PSEUDO-CODE FOR HYPERCSI ALGORITHM

which can be further shown to have a closed-form solution:
(26)

where is the th component of and
is the th component of .
Note that is just the minimum value for to yield non-nega-

tive endmember estimates. Thus, we can generally set
for some . Moreover, the value of is

empirically found to be a good choice for the scenarios where
signal-to-noise ratio (SNR) is greater than 20 dB; typically, the
value of SNR in hyperspectral data is much higher than 20 dB
[32]. Let us emphasize that the larger the value of (or the
smaller the value of ), the farther the estimated hyperplanes
from the origin , or the closer the estimated endmembers’
simplex to the boundary of the nonnegative
orthant . On the other hand, we empirically observed that
typical endmembers in the U.S. geological survey (USGS) li-
brary [48] are close to the boundary of . That is to say, a
reasonable choice of should be relatively large (i.e.,
relatively close to 1), accounting for the reason why the preset
value of can always yield good performance. The re-
sulting endmember estimation processing of the HyperCSI al-
gorithm is summarized in Steps 1 to 6 in Table I.

D. Abundance Estimation
Though the abundance estimation is often done by solving

FCLS problems [15], which can be equivalently formulated in
the DR space into (cf. ([49], Lemma 3.1))

(27)

it has been reported that some geometric quantities, acquired
during the endmember extraction stage, can be used to signif-
icantly accelerate the abundance estimation procedure [50].
With similar computational efficiency improvements taken into
account, we aim at expressing the abundance in terms
of readily available quantities (e.g., normal vectors and inner
product constants) obtained when estimating the endmembers,
in this subsection. The results are summarized in the following
proposition:
Proposition 3: Assume – hold true. Then

has the following closed-form expression:

(28)
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Proposition 3 can be derived from some simple geometrical ob-
servations (cf. items (i) and (ii) in Fact 1) and the following well
known formula in the Algebraic Topology context

(29)

and its proof is omitted here due to space limitation; note that
the formula (29) has been recently derived again using different
approach in the HU context ([50], (12)).
Based on (28), the abundance vector can be estimated as

(30)

where is to enforce the non-negativity
of abundance fractions (cf. Step 7 in Table I). One can
show that when , the abundance
estimates obtained using (30) is exactly the solution to the
FCLS problem in (27), while using (30) yields much lower
computational cost than solving FCLS problems. Nevertheless,
one should be aware of a potential limitation of using (30).
Specifically, if is too far away from the endmembers’
simplex (i.e., is much larger than

for some ), the zeroing operation in (30) could cause
nontrivial deviation in abundance estimation. This can happen
if is an outlier or the SNR is very low. However, as the
SNR is reasonably high (like in AVIRIS data [21], [32]), most
pixels in the hyperspectral data are expected to lie inside or
very close to the endmembers’ simplex (cf.

– )—especially when the endmembers are extracted
based on Craig’s criterion. Hence, with the endmembers esti-
mated by the Craig-criterion-based HyperCSI algorithm, simply
using (30) to enforce the abundance non-negativity is not only
computationally efficient, but also still capable of yielding good
abundance estimation as will be demonstrated later with the
simulation results (Table III in Subsection IV-C and Table IV in
Subsection IV-D).
Unlike most of the existing abundance estimation algorithms,

where all the abundance maps must be jointly estimated (e.g.,
FCLS [15]), the proposed HyperCSI algorithm offers an option
of solely obtaining the abundance map of a specific material of
interest (say the th material)

(31)

to save computational cost, or obtaining all the abundance maps
by parallel processing (cf. (30)). Moreover, when

calculating using (30), the denominator is a con-
stant for all pixel indices and hence only needs to be
calculated once regardless of (which is usually large).

E. Identifiability and Complexity of HyperCSI
In this subsection, let us present the identifiability and com-

plexity analyses of the proposed HyperCSI algorithm. Particu-
larly, the asymptotic identifiability of the HyperCSI algorithm
can be guaranteed as stated in the following theorem with the
proof given in Appendix B:
Theorem 2: Under – , the noiseless assumption and

, the simplex identified by HyperCSI algorithm with

(in Step 5 in Table I) is exactly the Craig’s minimum-volume
simplex (i.e., solution of (8)) and the true endmembers’ simplex

w.p.1.
Two noteworthy remarks about the philosophies and intu-

itions behind the proof of this theorem are given as follows:
Remark 1: With the abundance distribution stated in ,

the pixels in can be shown to be arbitrarily close to
as the pixel number , and they are affinely independent
w.p.1 (cf. Theorem 1). Therefore, can be uniquely obtained
by (19), and its orientation approaches to that of w.p.1.
Remark 2: Remark 1 together with (7) implies that is

upper bounded by w.p.1 (assuming without loss of generality
that ), and this upper bound can be shown to be
achievable w.p.1 as . Thus, as , we have that

w.p.1.
It can be further inferred, from the above two remarks, that

is exactly the true w.p.1 (cf. (23)) as in the absence
of noise. Although the identifiability analysis in Theorem 2 is
conducted for the noiseless case and , we empirically
found that the HyperCSI algorithm can yield good endmember
estimates for a moderate and finite SNR, to be demonstrated
by simulation results and real data experiments later.
Next, we analyze the computational complexity of the Hy-

perCSI algorithm. The computation time of HyperCSI is pri-
marily dominated by the computations of the feasible sets

(in Step 3), the active pixels in (in Step 4), and the
abundances (in Step 7), and they are respectively analyzed
in the following:

Step 3: Computing the feasible sets
, is equivalent to computing the

sets ; cf. (18). Since is an
open Euclidean norm ball, the computation of each set

can be done by examining inequalities
. However, examining each

inequality requires (i) calculating one 2-norm (in ),
which yields , and (ii) checking whether this 2-norm
is smaller than , which yields . Hence, Step 3 yields

.
Step 4: To determine , we have to identify the pixel
from the set , whose complexity
amounts to computing inner products in
(each yielding ), and performing the point-wise max-
imum operation among the values of these inner products
(cf. (17)), and hence the complexity of identifying is
easily verified as . More-
over, gathering requires the com-
plexity

; the inequality is due to that s are disjoint. Re-
peating the above for , Step 4 yields

.
Step 7: Estimation of the abundances requires to com-
pute the fraction in (30) times. Each fraction involves
2 inner products (in ), 2 scalar subtractions, and 1
scalar division, and thus costs . So, this step yields

.
Therefore, the overall computational complexity of HyperCSI
is .
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Surprisingly, the complexity order of the proposed
HyperCSI algorithm is the same as (rather than much higher
than) that of some pure-pixel-based EEAs; see, e.g., [17], [21],
[43], [51]. Moreover, to the best of our knowledge, the MVES
algorithm [28] for which the CSI problem in (8) is handled by
solving linear programing (LP) subproblems in an alternative
fashion, and the LPs are solved using efficient primal-dual in-
terior-point method [26], is the existing Craig-criterion-based
algorithm with lowest complexity order , where
is the number of iterations [28]. Hence, the introduced hyper-
plane identification approach (without simplex volume compu-
tations) indeed yields much smaller complexity than most ex-
isting Craig-criterion-based algorithms.
Let us conclude this section with a summary of some re-

markable features of the proposed HyperCSI algorithm (given
in Table I) as follows:
a) Without involving any simplex volume computations, the

Craig’s minimum-volume simplex is reconstructed from
hyperplane estimates, i.e., the estimates ,

which can be obtained in parallel (cf. Step 4 in Table I)
by searching for active pixels from . The
reconstructed simplex in the DR space is actually
the intersection of halfspaces

.
b) By noting that if, and only if, , the po-

tential requirement of pixels lying on, or close
to, the associated hyperplanes is not too difficult to be met
in practice because the abundance maps in hyperspectral
imaging often show large sparseness. This will be further
discussed in more detail in experiments with AVIRIS data
in Section V.

c) All the processing steps (including SPA in Step 2 of
Table I; cf. Algorithm 4 in [43]) can be carried out either
by simple linear algebraic formulations or by closed-form
expressions, and so its high computational efficiency can
be anticipated.

IV. COMPUTER SIMULATIONS

This section demonstrates the efficacy of the proposed Hy-
perCSI algorithm by Monte Carlo simulations. In the simula-
tion, endmember signatures with spectral bands ran-
domly selected from USGS library [48] are used to generate
noise-free synthetic hyperspectral data according to linear
mixing model in (1), where the abundance vectors are i.i.d. gen-
erated following the Dirichlet distribution with (cf.
(20)) as it can automatically enforce and [28], [33].
Then we add i.i.d. zero-mean Gaussian noise with variance
to the noise-free synthetic data for different values of SNR
defined as , and those neg-
ative entries in the generated noisy data vectors are artificially
set to zero, so as to maintain the non-negativity nature of hyper-
spectral imaging data.
The root-mean-square (rms) spectral angle error between

the true endmembers and their estimates
defined as [17], [28]

(32)

Fig. 3. The endmember identifiability of the HyperCSI algorithm with finite
data length .

is used as the performance measure of endmember esti-
mation, where

is the set of all permutations of
. Similarly, the performance measure of abundance

estimation is the rms angle error defined as [28]

(33)

where and are the true abundance map of th endmember
(cf. (31)) and its estimate, respectively. All the HU algorithms
under test are implemented using Mathworks Matlab R2013a
running on a desktop computer equipped with Core-i7-4790K
CPU with 4.00 GHz speed and 16 GB random access memory,
and all the performance results in terms of , and compu-
tational time are averaged over 100 independent realizations.
Next, we show some simulation results for the endmember

identifiability for moderately finite data length (cf. Theorem 2),
the choice of the parameter , and the performance evaluation of
the proposed HyperCSI algorithm, in the following subsections,
respectively.

A. Endmember Identifiability of HyperCSI for Finite Data

In Theorem 2, the perfect endmember identifiability of the
proposed HyperCSI algorithm (with in Step 5 in Table I)
under the noise-free scenario is proved in the asymptotic sense
(i.e., the data length ). In this subsection, we would
like to show some simulation results (cf. Fig. 3) to illustrate
the asymptotic identifiability of the HyperCSI algorithm and its
good endmember estimation accuracy even with a moderately
finite number of pixels .
Fig. 3 shows some simulation results of versus for

. From this figure, one can observe that for a
given decreases as increases, and the HyperCSI algo-
rithm indeed achieves perfect identifiability (i.e., , cf.
(32)) as . On the other hand, the HyperCSI algorithm
needs to identify essential pixels for the construc-
tion of the Craig’s simplex, which indicates that the HyperCSI
algorithm would need more pixels to achieve good performance
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Fig. 4. The average r.m.s. spectral angle error versus different values of .

for larger . Intriguingly, the results shown in Fig. 3 are con-
sistent with the above inferences, where a larger corresponds
to a slightly slower convergence rate of . However, these
results also allude to a high possibility that the HyperCSI al-
gorithm can yield accurate endmember estimates with a typical
data length (i.e., several ten thousands) for high SNR in HRS
applications.

B. Choice of the Parameter
The simulation results for versus obtained by

the proposed HyperCSI algorithm, for
(dB), and are shown in

Fig. 4. From this figure, one can observe that for a fixed ,
the best choice of (i.e., the one that yields the smallest )
decreases as SNR decreases. The reason for this is that the
larger the noise power, the more the data cloud is expanded,
and hence the more the desired hyperplanes should be shifted
towards the data center (implying a larger or a smaller ).
Moreover, one can also observe from Fig. 4 that for each
scenario of , the best choice of basically belongs
to the interval [0.8, 1], a relatively large value in the interval
(0, 1], as discussed in Subsection III-C. It is also interesting
to note that for a given SNR, the best choice of tends to
approach the value of 0.9 as increases. For instance, for

dB, the best choices of for are
, respectively.

The above observations also suggest that , the only
parameter in the proposed HyperCSI algorithm, is a good
choice. Next, we will evaluate the performance of the proposed
HyperCSI algorithm with the parameter preset to 0.9 for all
the simulated scenarios and real data tests, though it may not
be the best choice for some scenarios.

C. Performance Evaluation of HyperCSI Algorithm
We evaluate the performance of the proposed HyperCSI

algorithm, along with a performance comparison with five
state-of-the-art Craig-criterion-based HU algorithms, including
MVC-NMF [23], MVSA [25], MVES [28], SISAL [30], and
ipMVSA [27]. As the operations of MVC-NMF, MVSA,
SISAL, and ipMVSA are data-dependent, their respective
regularization parameters have been well selected in the simu-
lation, so as to yield their best performances. In particular, the
regularization parameter involved in SISAL is the regression

TABLE II
SIMULATION SETTINGS FOR THE ALGORITHMS UNDER TEST

weight for robustness against noise, and hence has also been
tuned w.r.t. different SNRs. The implementation details and
parameter settings for all the algorithms under test are listed in
Table II.
The purity index for each synthetic pixel [28], [29],

[33] has been defined as (due to
and ); a larger index means higher pixel purity of

. Each synthetic data set in the simulation
is generated with a given purity level denoted as , following
the same data generation procedure as in [28], [29], [33], where
is a measure of mixing level of a data set. Specifically, a pool

of sufficiently large number of synthetic data is first generated,
and then from the pool, pixels with the purity index not
greater than are randomly picked to form the desired data set
with a purity level of .
In the above data generation, six endmembers (i.e., Jarsoite,

Pyrope, Dumortierite, Buddingtonite, Muscovite, and Goethite)
with 224 spectral bands randomly selected from the USGS li-
brary [48] are used to generate 10000 synthetic hyperspectral
data (i.e., ) with

and (dB). The sim-
ulation results for , and computational time are dis-
played in Table III, where bold-face numbers correspond to the
best performance (i.e., the smallest , and ) of all the
HU algorithms under test for a specific .
Some general observations from Table III are as follows. For

fixed purity level , all the algorithms under test perform better
for larger SNR. As expected, the proposed HyperCSI algorithm
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TABLE III
PERFORMANCE COMPARISON, IN TERMS OF (DEGREES), (DEGREES), AND AVERAGE RUNNING TIME (SECONDS), OF VARIOUS HU ALGORITHMS FOR

DIFFERENT DATA PURITY LEVELS AND SNRS, WHERE ABUNDANCES ARE I.I.D. AND DIRICHLET DISTRIBUTED

rightly performs better for higher data purity level , but this
performance behavior does not apply to the other five algo-
rithms, perhaps because the non-convexity of the complicated
simplex volume makes their performance behaviors more in-
tractable w.r.t. different data purities.
Among the five existing benchmark Craig-criterion-based

HU algorithms, MVC-NMF yields more accurate endmember
estimates than the other algorithms at the highest computational
cost, while ipMVSA is the most computationally efficient one
but with lower performance as a trade-off. Nevertheless, the
proposed HyperCSI algorithm outperforms all the other five
algorithms when the data are heavily mixed (i.e., )
or moderately mixed (i.e., ). As for high data purity

, the HyperCSI algorithm also performs best except for
the case of . On the other hand, the
computational efficiency of the proposed HyperCSI algorithm
is about 1 to 4 orders of magnitude faster than the other five HU
algorithms under test. Note that the computational efficiency of
the HyperCSI algorithm can be further improved by an order
of if parallel processing can be implemented in Step
4 (hyperplane estimation) and Step 7 (abundance estimation)
in Table I. Moreover, ipMVSA is around 4 times faster than
MVSA, but performs slightly worse than MVSA, perhaps
because ipMVSA [27] does not adopt the hinge-type soft
constraint (for noise resistance) as used in MVSA [25].

D. Performance Evaluation of HyperCSI Algorithm With
Non-i.i.d., Non-Dirichlet and Sparse Abundances

In practice, the abundance vectors may not be i.i.d. and
seldom follow the Dirichlet distribution, and, moreover, the
abundance maps often show large sparseness [52]. In view of
this, as considered in [52], [53], two sets of sparse and spatially
correlated abundance maps displayed in Fig. 5 were used to
generate two synthetic hyperspectral images, denoted as SYN1

and SYN2 . Then all
the algorithms listed in Table II are tested again with these
two synthetic data sets for which the abundance vectors are
obviously neither i.i.d. nor Dirichlet distributed.

The simulation results, in terms of , and com-
putational time , are shown in Table IV, where bold-face
numbers correspond to the best performance among the al-
gorithms under test for a particular data set and a specific

(dB). As expected, for both data
sets, all the algorithms perform better for larger SNR.
One can see from Table IV that for both data sets, Hy-

perCSI yields more accurate endmember estimates than the
other algorithms, except for the case of (dB).
As for abundance estimation, HyperCSI performs best for
SYN1, while MVC-NMF performs best for SYN2. Moreover,
among the five existing benchmark Craig-criterion-based HU
algorithms, ipMVSA and SISAL are the most computationally
efficient ones. However, in both data sets, the computational
efficiency of the proposed HyperCSI algorithm is at least
more than one order of magnitude faster than the other five
algorithms. These simulation results have demonstrated the
superior efficacy of the proposed HyperCSI algorithm over the
other algorithms under test in both estimation accuracy and
computational efficiency.

V. EXPERIMENTS WITH AVIRIS DATA

In this section, the proposed HyperCSI algorithm along with
two benchmark HU algorithms, i.e., the MVC-NMF algorithm
[23] developed based on Craig’s criterion, and the VCA algo-
rithm [17] (in conjunction with the FCLS algorithm [15] for
the abundance estimation) developed based on the pure-pixel
assumption, are used to process the hyperspectral imaging data
collected by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) [32] taken over the Cuprite mining site, Nevada,
in 1997. We consider this mining site, not only because it has
been extensively used for remote sensing experiments [54],
but also because the available classification ground truth in
[55], [56] (though which may have coregistration issue as it
was obtained earlier than 1997, this ground truth has been
widely accepted in the HU context) allows us to easily verify
the experimental results. The AVIRIS sensor is an imaging
spectrometer with 224 channels (or spectral bands) that cover
wavelengths ranging from 0.4 to 2.5 m with an approximately
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TABLE IV
PERFORMANCE COMPARISON, IN TERMS OF (DEGREES), (DEGREES) AND RUNNING TIME (SECONDS), OF VARIOUS HU ALGORITHMS USING

SYNTHETIC DATA SYN1 AND SYN2 FOR DIFFERENT SNRS, WHERE ABUNDANCES ARE NON-I.I.D., NON-DIRICHLET AND SPARSE (SEE FIG. 5)

Fig. 5. Two sets of sparse and spatially correlated abundance maps, where each
subblock in subfigure (b) contains 10 10 pixels. (a) Ground truth abundance
maps of SYN1, (b) Ground truth abundance maps of SYN2.

10-nm spectral resolution. The bands with low SNR as well
as those corrupted by water-vapor absorption (including bands
1–4, 107–114, 152–170, and 215–224) are removed from the
original 224-band imaging data cube, and hence a total of

bands is considered in our experiments. Furthermore,
the selected subscene of interest includes 150 vertical lines with
150 pixels per line, and its 50th band is shown in Fig. 6, where
the 10 pixels marked with yellow color are removed from the
data set as they are outlier pixels identified by the robust affine
set fitting (RASF) algorithm [57].
The number of the minerals (i.e., endmembers) present in

the selected subscene is estimated using a virtual dimension-
ality (VD) approach [37], i.e., the noise-whitened Harsanyi-

Fig. 6. The subimage of the AVIRIS hyperspectral imaging data cube for the
50th band, where the locations of the ten outliers identified by the RASF algo-
rithm are marked with yellow color.

Farrand-Chang (NWHFC) eigenvalue-thresholding-based algo-
rithm with false-alarm probability . The obtained
estimate is and used in the ensuing experiments for all
the three HU algorithms under test.
The estimated abundance maps are visually compared with

those reported in [17], [23], [28] as well as the ground truth
reported in [55], [56], so as to determine what minerals they
are associated with. The nine abundance maps obtained by the
proposed HyperCSI algorithm are shown in Fig. 7, and they
are identified as mineral maps of Muscovite, Alunite, Desert
Varnish, Hematite, Montmorillonite, Kaolinite #1, Kaolinite #2,
Buddingtonite, Chalcedony, respectively, as listed in Table V.
The minerals identified by MVC-NMF and VCA are also listed
in Table V, where MVC-NMF also identifies nine distinct min-
erals, while only eight distinct minerals are retrieved by VCA,
perhaps due to lack of pure pixels in the selected subscene or
randomness involved in VCA. Owing to space limitation, their
mineral maps are not shown here.
The mineral spectra extracted by the three algorithms under

test, along with their counterparts in the USGS library [48], are
shown in Fig. 8, where one can observe that the spectra ex-
tracted by the proposed HyperCSI algorithm hold a better re-
semblance to the library spectra. For instance, the spectrum of
Alunite extracted by HyperCSI shows much clearer absorption
feature than MVC-NMF and VCA, in the bands approximately
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Fig. 7. The abundance maps of minerals estimated by HyperCSI algorithm.

TABLE V
THE COMPUTATIONAL TIMES (SECONDS) AND SPECTRAL ANGLE

DISTANCE (DEGREES) BETWEEN LIBRARY SPECTRA AND ENDMEMBERS
ESTIMATED BY HYPERCSI, MVC-NMF, AND VCA. THE BOLD FACE
NUMBERS CORRESPOND TO THE SMALLEST VALUES OF OR

AMONG THE THREE ALGORITHMS UNDER TEST

from 2.3 to 2.5 m. To quantitatively compare the endmember
estimation accuracy among the three algorithms under test, the
spectral angle distance between each endmember estimate and
its corresponding library spectrum serves as the performance
measure and is defined as

The values of associated with the endmember estimates for
all the three algorithms under test are also shown in Table V,
where the number in the parentheses is the value of associ-
ated with Kaolinite #1 repeatedly classified by VCA. One can
see from Table V that the average of of the proposed Hy-
perCSI algorithm is the smallest. The good performance of Hy-
perCSI in endmember estimation in the experiment also implies

Fig. 8. (a) The endmember signatures taken from the USGS library, and sig-
natures of the endmember estimates obtained by (b) HyperCSI, (c) MVC-NMF
and (d) VCA.

that the potential requirement of sufficient number (i.e.,
, in this experiment) of pixels lying close to the

hyperplanes associated with the actual endmembers’ simplex,
has been met for the considered hyperspectral scene. However,
we are not too surprised with this observation, since the number
of minerals present in one pixel is often small (typically,
within five [10]), i.e., the abundance vector often shows
sparseness [52] (cf. Fig. 7), indicating that a non-trivial por-
tion of pixels are more likely to lie close to the boundary of
the endmembers’ simplex (note that if, and only if,

). Moreover, as the pure pixels may not be present in
the selected subscene, as expected the two Craig-criterion-based
HU algorithms (i.e., HyperCSI and MVC-NMF) outperform
VCA in terms of endmember estimation accuracy. On the other
hand, in terms of the computation time as given in Table V, in
spite of parallel processing not yet applied, the HyperCSI algo-
rithm is around 2.5 times faster than VCA (note that VCA itself
only costs 0.31 seconds (out of the 5.40 seconds), and the re-
maining computation time is the cost of the FCLS) and almost
four orders of magnitude faster than MVC-NMF.

VI. CONCLUSION
Based on the hyperplane representation for a simplest sim-

plex, we have presented an effective and computationally effi-
cient Craig-criterion-based HU algorithm, called HyperCSI al-
gorithm, given in Table I. The proposed HyperCSI algorithm
has the following remarkable characteristics:
• It never requires the presence of pure pixels in the data.
• It is reproducible without involving random initialization.
• It only involves simple linear algebraic computations,
so suitable for parallel implementation. Its computa-
tional complexity (without using parallel implementation)
is , which is also the complexity of some
state-of-the-art pure-pixel-based HU algorithms.
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• It estimates Craig’s minimum-volume simplex by finding
only pixels (regardless of the data length )
from the data set for the construction of the associated hy-
perplanes, without involving any simplex volume compu-
tations, thereby accounting for its high computational effi-
ciency in endmember estimation.

• The estimated endmembers are guaranteed non-negative,
and the identified simplex was proven to be both Craig’s
simplex and true endmembers’ simplex w.p.1. as
for the noiseless case.

• The abundance estimation is readily fulfilled by a closed-
form expression, and thus is computationally efficient.

Some simulation results were presented to demonstrate the
analytic results on the asymptotic endmember identifiability of
the proposed HyperCSI algorithm, and its superior efficacy over
some state-of-the-art Craig-criterion-based HU algorithms in
both solution accuracy and computational efficiency. Finally,
the proposed HyperCSI algorithm was tested using AVIRIS hy-
perspectral data to show its applicability.

APPENDIX

A. Proof of Theorem 1
For a fixed , one can see from (18) that

, implying that the pixels
, identified by solving (17) must be distinct. Hence,

it suffices to show that is affinely independent w.p.1 for any
that satisfies

(34)

Then, as , we have from and
(34) that there exist i.i.d Dirichlet distributed random vectors

such that (cf. (2))

(35)

For ease of the ensuing presentation, let denote the prob-
ability function and define the following events:

The set is affinely dependent.
The set is affinely dependent.

.
Then, to prove that is affinely independent w.p.1, it suffices
to prove .
Next, let us show that implies . Assume is true. Then

for some . Without loss of
generality, let us assume . Then,

(36)

for some , satisfying

(37)

By substituting (35) into (36), we have
(38)

where . For notational simplicity,
let for any given vector

. Then, from the facts of (by (37))
and , (38) can be rewritten as

(39)

where . As is
affinely independent (by ), the matrix is of full column
rank [26], implying that (by (39)). Then,
by the facts of and , one can readily
come up with , or, equivalently,

(by (37)), implying that is true [26].
Thus we have proved that implies , and hence

(40)

As Dirichlet distribution is a continuousmultivariate distribu-
tion [47] for a random vector to satisfy – with
an -dimensional domain, any given affine hull
with affine dimension must satisfy [44]

(41)

Moreover, as are i.i.d. random vectors and the
affine hull must have affine dimen-
sion , we have from (41) that

(42)

Then we have the following inferences:

i.e., . Therefore, the proof is completed.

B. Proof of Theorem 2
It can be seen from (20) that the p.d.f. of Dirichlet distribution

satisfies

(43)

Moreover, by the facts of and

where denotes the interior of a set , the linear mapping
(i.e., ) of the abundance domain full fills the
interior of the true endmembers’ simplex ,
namely

(44)

Then, from (43)–(44) and , it can be inferred that

which, together with the fact that the affine mapping (cf. (2))
preserves the geometric structure of [38] (note
that ), further implies

(45)
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where throughout the ensuing
proof. It can be inferred from (45) that there is always a pixel

that can be arbitrarily close to the extreme point
of the simplex , i.e., for all ,

(46)

Let denote the set of all minimum-volume en-
closing simplexes of (i.e., Craig’s simplex containing the set
). Then, one can infer from the convexity of a simplex that (cf.

[29, eq. (32)])

(47)

Moreover, by the fact that any simplex must
also be a closed set and the fact that the closure of

is exactly , it
can be seen that if and only if

[58], and hence

(48)

Thus, it can be inferred from (45), (47) and (48) that

(49)

As itself is a simplex,
, which together with

(49) yields

(50)

In other words, we have proved that the Craig’s min-
imum-volume simplex is always the true endmembers’ simplex

. To complete the proof of Theorem 2, it
suffices to show that the true endmembers’ simplex is always
identical to the simplex identified by the HyperCSI algorithm,
i.e., for all ,

(51)

where are the estimated DR endmembers using Hy-
perCSI algorithm.
To this end, let us first show that, for all ,

(52)

where are the purest pixels identified by SPA (cf.
Step 2 in Table I). However, directly proving (52) is difficult due
to the post-processing involved in SPA (cf. Algorithm 4 in [43]).
In view of this, let be those pixels identified
by SPA before post-processing. Because the post-processing is
nothing but to obtain the purest pixel by iteratively pushing
each away from the hyperplane [43], we
have the following simplex volume inequalities

(53)

where the last inequality is due to
. Hence, by (53), to prove (52), it

suffices to show that, for all ,

(54)

However, the SPA before post-processing (cf. Algorithm 4 in
[43]) is exactly the same as the TRIP algorithm (cf. Algorithm
2 in [51]), and it has been proven in ([51], Lemma 3) that (46)
straightforwardly yields (54) for ; note that the condition
“(46) with ” is equivalent to the pure-pixel assumption re-
quired in ([51], Lemma 3). One can also show that (46) yields
(54) for any , and the proof basically follows the same
induction procedure as in the proof of ([51], Lemma 3) and is
omitted here for conciseness. Then, recalling that (54) is a suf-
ficient condition for (52) to hold, we have proven (52).
By the fact that is a continuous function (cf. (14)) and by

(16) and (18), we see that

(55)

Moreover, we have from (43), (52), (55) and that
the pixel identified by (17) can be arbitrarily close to

. Furthermore, by Theorem 1, we have that the vectors
are not only arbitrarily close to , but also

affinely independent w.p.1, which together with Proposition 2
implies that the estimated (cf. (19)) is arbitrarily close to
the true w.p.1, provided that the outward-pointing normal
vectors and have the same norm without loss of gen-
erality. Then, from (43), (22), and the premises of
and , it can be inferred that the estimated hyperplane

is arbitrarily close to the true
(cf. (9)); precisely, we have

(56)

Consequently, by comparing the formulas of (cf. (13)) and
(cf. (23)), we have, from and (56), that is always

arbitrarily close to , i.e., (51) is true for all , and hence
the proof of Theorem 2 is completed.
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