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Abstract—Hyperspectral unmixing aims at identifying the
hidden spectral signatures (or endmembers) and their corre-
sponding proportions (or abundances) from an observed hyper-
spectral scene. Many existing hyperspectral unmixing algorithms
were developed under a commonly used assumption that pure
pixels exist. However, the pure-pixel assumption may be seriously
violated for highly mixed data. Based on intuitive grounds, Craig
reported an unmixing criterion without requiring the pure-pixel
assumption, which estimates the endmembers by vertices of a
minimum-volume simplex enclosing all the observed pixels. In this
paper, we incorporate convex analysis and Craig’s criterion to
develop a minimum-volume enclosing simplex (MVES) formula-
tion for hyperspectral unmixing. A cyclic minimization algorithm
for approximating the MVES problem is developed using linear
programs (LPs), which can be practically implemented by readily
available LP solvers. We also provide a non-heuristic guarantee
of our MVES problem formulation, where the existence of pure
pixels is proved to be a sufficient condition for MVES to perfectly
identify the true endmembers. Some Monte Carlo simulations and
real data experiments are presented to demonstrate the efficacy of
the proposed MVES algorithm over several existing hyperspectral
unmixing methods.

Index Terms—Convex analysis, convex optimization, hyperspec-
tral unmixing, linear programming, minimum-volume enclosing
simplex.

I. INTRODUCTION

YPERSPECTRAL remote sensing [1], [2] is a crucial
H technique for the identification of disparate material
substances from observed spectra, and has been utilized for
planetary exploration [3], [4] to analyze the composition and
mineralogy of an observed planet in the solar system, e.g., Mars.
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Hyperspectral imaging also has a wide range of applications to
the Earth, such as terrain classification, agricultural monitoring,
environmental monitoring, and military surveillance [5]-[8].
When the hyperspectral scene is over solid surfaces, each pixel
of the observed spectra usually comprises multiple spectral
signatures (or endmembers) due to low spatial resolution of
the sensor used. Hyperspectral unmixing [9]-[26], a procedure
of decomposing the measured spectrum of an observed scene
into a collection of endmembers and their corresponding pro-
portions (or abundances), is essential in identifying individual
materials from a hyperspectral scene.

In hyperspectral unmixing, basically there are three major
processes, namely dimension reduction, endmember extraction,
and the inversion process. Dimension reduction is useful for
complexity reduction of the subsequent endmember extraction
and inversion process. Principal component analysis (PCA) [10]
and maximum noise fraction (MNF) [11] are typical dimen-
sion reduction algorithms. However, accurate estimation of the
number of dimensions that can truly represent the data space still
remains a challenging task, for which some model order estima-
tion methods have been developed, for instance, virtual dimen-
sionality (VD) [12] and hyperspectral signal subspace identifi-
cation by minimum error (HySime) [13]. Endmember extrac-
tion is to determine the endmembers that contribute to the mea-
sured spectra. A number of endmember extraction algorithms
have been reported, e.g., pixel purity index (PPI) [14], N-finder
(N-FINDR) [15], [16], vertex component analysis (VCA) [17],
and convex cone analysis (CCA) [18]. Finally, the inversion
process is to estimate the abundances associated with the end-
member estimates. For instance, fully constrained least squares
(FCLS) [19] is an effective algorithm for estimating the abun-
dances. Moreover, there are unmixing methods that are capable
of determining endmembers and abundances simultaneously,
such as alternating projected subgradients (APS) [20], iterated
constrained endmembers (ICE) [21], nonnegative matrix factor-
ization (NMF) [22], [23], joint Bayesian approach (JBA) [24],
and minimum volume transform (MVT) [25].

A number of endmember extraction algorithms, such as PPI,
N-FINDR and VCA, adopt the assumption of existence of pure
pixels (i.e., pixels that are fully contributed by a single end-
member) in the observed data set. Simply speaking, those al-
gorithms attempt to search for the purest observed pixels over
the data set as the endmember estimates, and are usually fol-
lowed by FCLS to complete hyperspectral unmixing. PPI [14]
projects all the observed pixels onto randomly generated unit-
norm vectors and counts the number of times (i.e., scores) of
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the event that the value of each projected pixel reaches an ex-
treme value (either minimum or maximum projected value).
Then the purest pixels are identified as those pixels with the
highest scores. N-FINDR [15] is based on a criterion that the
volume of a simplex formed by the purest pixels is maximum,
and fulfills this criterion by inflating the simplex inside the data
set. VCA [17] iteratively projects the data onto a vector orthog-
onal to the subspace spanned by all the obtained endmember
estimates before the current iteration, and identifies a new end-
member as the one with the extreme value of the projected data.
However, for the case of highly mixed data, the pure-pixel as-
sumption may be seriously violated.

Hyperspectral unmixing algorithms that do not require the
pure-pixel assumption would be appropriate for highly mixed
data. Examples of such algorithms are CCA, APS, ICE, NMF,
JBA, and MVT. CCA [18] determines the endmembers by
searching for the boundary points of a convex cone constructed
from the observed spectra. APS [20] is an alternating projected
subgradient approach to solving a least squares problem,
through the use of a regularization parameter that controls the
difference between each target pixel of the abundances and its
neighbors. ICE [21] uses quadratic programming to solve a
least squares problem with a regularized term added to the ob-
jective function to limit the sum of the variances of the simplex
vertices. NMF [22] was originally proposed for object recogni-
tion and has been recently applied to hyperspectral unmixing
[23]. It decomposes the observation matrix into a product
of two nonnegative matrices, one serving as the endmember
estimates while the other serving as the abundance estimates.
However, NMF may suffer from a nonunique decomposition
problem. To provide a more reliable decomposition in hyper-
spectral unmixing, a variant of NMF, called minimum volume
constrained NMF (MVC-NMF) [26], has been proposed. JBA
[24] estimates the endmembers by generating the posterior
distribution of abundances and endmember parameters under
a hierarchical Baysian model that assumes conjugate prior dis-
tributions for these parameters. Moreover, Craig [25] reported
an unmixing criterion based on the belief that the vertices of
a minimum-volume simplex enclosing all the observed pixels
should serve as high-fidelity estimates of the endmembers. To
find such a simplex, Craig suggested a method (i.e., MVT) that
begins with a simplex of large volume and then literally moves
the faces of the simplex in toward the data cloud. However,
MVT may be computationally intractable when dealing with a
large amount of observed pixels.

In this paper, we use convex analysis and optimization to de-
velop a hyperspectral unmixing algorithm, called the minimum-
volume enclosing simplex (MVES) algorithm. The endeavor of
employing convex analysis is motivated by the fact that some
concepts, such as affine hull and convex hull, are quite suitable
for analysis of the hyperspectral unmixing problem [27], [28].
We first perform dimension reduction of the observed pixels
through a convex analysis concept called affine set fitting [29].
Then we employ Craig’s unmixing criterion [25] to formulate
the hyperspectral unmixing as an MVES optimization problem.
We prove a non-heuristic guarantee of MVES, where we show
that the MVES problem leads to unique identification of the
true endmembers when pure pixels exist. Thus, MVES is ex-
pected to provide unmixing performance at least no worse than
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other pure-pixel based algorithms. In our formulation, we show
how the MVES problem can be properly recast to a form where
the MVES feasible set becomes polyhedral (and convex). The
MVES objective function is nonconvex, but the MVES problem
can be handled in a cyclic fashion by solving a sequence of
linear programs (LPs), which can be readily implemented by
any available LP solver. Using both simulated and real data, we
found numerically that the MVES algorithm is superior in per-
formance over some existing benchmark methods.

We should mention a concurrent development by Li and
Bioucas-Dias described in a recent conference paper [30],
called minimum volume simplex analysis (MVSA). In that
work Craig’s criterion is also considered, and unlike this paper
the authors used sequential quadratic programming to handle
the nonconvex unmixing problem. This very recently emerged
method will also be included in our simulation comparison.
Simply speaking, we found that MVSA and MVES algorithm
are both competitive in performance, and that the MVES
algorithm proposed here may slightly outperform the MVSA
in most white noise cases with lower purity levels and various
signal-to-noise ratios (SNRs).

The organization of this paper is as follows. In Section II,
we present the problem statement and some general assump-
tions in hyperspectral imaging. Section III introduces some con-
cepts of convex analysis for ease of mathematical derivations
that follow. Section IV presents the proposed MVES algorithm.
Section V presents some simulation results to demonstrate the
efficacy of the proposed MVES algorithm. In Section VI, some
real data experiments of hyperspectral imaging are presented to
evaluate the effectiveness of the proposed MVES algorithm. Fi-
nally, some conclusions are drawn in Section VII.

Prior to the ensuing presentation, let us define the following
notations for ease of later use:

R, RN, RMxN Set of real numbers, N-vectors, M x N

matrices

Set of nonnegative real numbers,

N pMxN
Ry, Ry, RY .
N-vectors, M x N matrices

x it Moore-Penrose inverse or pseudoinverse
of matrix X

1x N -vector with all the components equal
to unity

e; Unit vector of proper dimension with the
ith entry equal to unity

Iy N x N identity matrix

> Componentwise inequality

| -1l Euclidean norm

det(X) Determinant of square matrix X

II. PROBLEM STATEMENT AND ASSUMPTIONS

Consider a scenario where a hyperspectral sensor explores
a scene of interest where N distinct yet unknown substances
are involved over M spectral bands. The sensor measures solar
electromagnetic radiation reflecting from the substances, and
further forms a spectral image cube in which each pixel vector
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Abundance maps

Fig. 1. An illustration of the linear mixing model for hyperspectral imaging.

can be described by the following M x N linear spectral mixing
model:

N
xX[n] = As[n] =Y si[nlai, n=1,...,L (1)
=1

where x[n] = [z1[n],...,zap[n]]T is the nth observed pixel
vector comprising M spectral bands, A = [a;,...,ay] €
RM XN denotes the si gnature matrix whose ¢th column vector a;
is the ith endmember signature, s[n] = [s1[n],...,sy[n]]T €
RY is an abundance vector comprising N fractional abun-
dances, and L is the total number of observed pixel vectors.
Fig. 1 illustrates the linear spectral mixing model for hyper-
spectral imaging, where each observed pixel x[n] is a linear
combination of endmember signatures ay, . .., ay weighted by
their abundance fractions s1[n], ..., sn[n].

The goal of hyperspectral unmixing is to estimate the signa-
ture matrix A and the abundances s[1],..., s[L] from the ob-
served pixels x[1], ..., x[L] without prior knowledge about A,
s[n], and the number of endmembers N. Such a problem state-
ment has a lot in common with that of blind source separation
(BSS) [31]. However, the interdependence and nonstationarity
nature of the abundance maps (or sources) may lead to some dif-
ficulty in direct utilization of statistical BSS approaches, such as
independent component analysis (ICA) [32], [33].

Like many existing unmixing methods in hyperspectral
imaging [5]-[8], the MVES algorithm assumes the number of
endmembers N to be known a priori. This can be done be-
forehand by applying model order estimation methods, such as
VD [12] and HySime [13]. Furthermore, our MVES algorithm
for hyperspectral unmixing is based on the following general

assumptions:
Al) (Nonnegativity condition) For all # = 1,..., N and
n=1,...,L, s[n] > 0.
A2) (Full additivity condition) For all n = 1,... L,

YL sifn] = 1.

A3) min{L, M} > N and A is of full column rank.

Assumption A1) is true in hyperspectral imaging because in-
tensities of all the abundance vectors must be nonnegative. As-
sumption A2) holds true because the fractional abundances are
the proportion distribution of all the endmembers in every ob-
served pixel. Assumption A3) is generally valid because the hy-
perspectral scene of interest [1], [2], [5]-[8] often involves a

large number of image pixels and spectral bands but only a small
number of endmembers.

III. SOME BASIC CONCEPTS OF CONVEX ANALYSIS

This work will extensively use two convex analysis concepts,
namely affine hull and convex hull [34]. A concise review of
these two concepts and some essential properties is presented in
this section.

A. Affine Hull

Given a set of vectors {ay,...,ayx} C RM, the affine hull of

{ay,...,ay} is defined as
N
aff{ay,...,an} = {x: Z@iai 0c RN,ITI\}G = 1} 2)
i=1
where 6 = [01,...,0x]T. An affine hull is an affine set, and,

therefore, can always be represented as
aff{a;,...,ay} = {x = Ca+d|a e R"} £ A(C,d) (3)

where A(-, -) denotes an affine set parameterized by a 2-tuple
(C,d) € RMXP x RM with rank(C) = P. Here, P is the
affine dimension of aff {ay, ..., ax}, and must satisfy P < N—

1. If {a1,...,ay} is affinely independent (which means that
{a; —ap,...,ay_1 —ay} is linearly independent), then P =
N — 1.

An interesting question is how to obtain an affine set param-
eter (C,d), given {a;,...,ay} and P. This affine set con-
struction problem is very simple for the special case of P =
N — 1, where a solutionis C = [a; — ay,...,ay_1 —apy]| €
RM*(N=1) and d = ay. For the general case of P < N — 1,
the 2-tuple (C, d) can be found by solving the following affine
set fitting problem [29]:

N
,d) = i ; 4
(C.d) =arg min > cac.a (@) @
c’c=1, =1
where e _4(a; ) is the projection error of a; onto the set A, defined
as

&)

eala:) = min a; - al?
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aff{a;, as, a3} = {x = Ca + d|a € R?}

conv{ay, as, az}

Fig. 2. Geometric illustration of affine hull, convex hull, and vertices for N =
3.

and the constraint CTC = 1Ip is to restrict C to have
rank(C) = P. The problem in (4) finds a (C,d) such that
{aj,...,ay} has the minimum total projection error with
respect to the affine set A(C,d) (which will be zero in the
absence of additive noise). It is shown that problem (4) has a
simple closed-form solution [29] given by

1 N

C = [¢,(UU"),q,(UUY),....¢p(UUN)] (]

? ?

where U = [a; — d,...,axy — d] € R™*Y and ¢;(R)
is the eigenvector associated with the ¢th principal eigenvalue
of the square matrix R. It is worth noticing that if the given
{ai,...,an} is a noisy or corrupted version of their true coun-
terpart, then affine set fitting provides a least-squares estimate

of the true affine set for any chosen P.

B. Convex Hull

Given a set of vectors {ay,...,ay} C RM, the convex hull
of {ay,...,an} is defined as
N
conv{a,...,ay} = {x & Zﬂiaq; 0 c Rf,lﬁo = 1}.
i=1
(®)
A convex hull is called a simplexif M = N —1anday,...,ay
are affinely independent. A point x € conv{a,...,ax} is a
vertex (or extreme point) of conv{ai,...,ay} if x cannot be
a nontrivial convex combination of aj,...,ay (more specifi-

cally, x # 3" | 6;a, forall € RY, 150 = 1, and 8 # e; for
any 7). For a general convex hull, the set of all of its vertices is
a subset of {ay,...,ax}, but, for a simplex, the set is exactly
{ah Cee ,aN}.

A geometric illustration of affine hull, convex hull, and ver-
tices for N = 3 is given in Fig. 2. The affine hull of {a;, a5, a3}
is the hyperplane passing through the three points a;, as, as,
and the convex hull is the triangle on the hyperplane with the
three vertices ap, as, as.

IV. MINIMUM-VOLUME ENCLOSING SIMPLEX ALGORITHM

Considering the signal model in (1) under the full additivity
condition of the abundance vectors [A2)], one can immediately
infer that

x[n] € aftf{ay,...,an}, Vn. )
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In addition, we can recover the affine hull of a;,...,ay from
the given observed pixels x[1],x[2], ..., x[L]. Consider the fol-

lowing lemma.
Lemma 1. (Affine Hull Consistency [29]): Under A2) and A3)

aff {x[1],...,x[L]} = aff{ay,...,an}. (10)

Since aj,...,ayn are linearly independent [as assumed in
A3)], the endmember affine hull aff{a;,...,ay} can be rep-
resented by

aff{ar,...,ay} = {x = Ca+dlae R¥™'} £ A(C,d)
(11)
for some (C,d) € R™*(V=1) x RM and rank(C) = N — 1.
From Lemma 1 and (11), the affine hull parameter pair (C, d)
for both aff{a;,...,ay} and aff{x[1],...,x[L]} can be esti-
mated through the affine set fitting (as presented in Section III)
as follows:

L

d=1 3" xlnl, (by (6))

n=1

(12)

C= [411(UUT) Q2(UUT)---~7(1N71(UUT

? Y

where U = [x[1] — d,...,x[L] — d] € RM*L,
Since x[n] € A(C, d), we can write its affine representation

as
x[n] = Cx[n] +d (14)

where x[n] is the inverse image of x[n] under (14), i.e.
x[n] = CT(x[n] — d) e RV 1, (15)
The affinely transformed data X[1], ..., X[L] can be thought of

as dimension-reduced pixels. It follows by substituting (1) into
(15) that

N
x[n] = Z sj[n]CTaj - cfa. (16)
j=1

Since Zé\rzl sjln] = 1 [A2)], the dimension-reduced pixels
x[n] can be expressed as
N

N
xn] = 3" sjln)(CTa; - CTd) = Y sjlnley;  (17)
j=1 j=1
where
a; = Cl(a; — d) e RN! (18)

is the jth dimension-reduced endmember. The formulation
given by (17) not only reduces the computational complexity
of the subsequent processing steps, but also enables us to apply
the simplex geometry concept to the dimension-reduced pixels
x[1],...,X%[L], as stated in the following lemma.
Lemma 2. (Simplex Geometry): Under Al), A2), and A3),
x[n] € conv{ay, ..., ay} CRY"1 vnp

’ ’

19)

and conv{ay,...,ay} is a simplex.
Proof: 1t is easy to see from Al) and (17) that (19) is
true. Next, let us prove that conv{ey,..., ay} is a simplex.

’ ’
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band 2

band 1

Fig. 3. Scatter plot of two-dimensional dimension-reduced pixels illustrating
the MVES problem for hyperspectral unmixing.

Assume that {a, ..., ay} is affinely dependent, i.e., there ex-
ists an a; = Zi\;] 0;c; where Zf\;@ f; = 1. One then has
a; = Ca; +d = Zf\;] f;a; where Zf\;] 6; = 1 by (13),
implying ay, ..., ay are affinely dependent (or linearly depen-
dent), which is a contradiction to A3). |

Lemma 2 implies that all the dimension-reduced pixels
x[1],...,%[L] must be inside the simplex constructed by the
dimension-reduced endmembers «; forz = 1, ..., N. This key
property is geometrically illustrated in Fig. 3. In the figure,
we also demonstrate that x[1],...,X[L] can also be enclosed
by a different simplex, denoted by conv{By,...,Bn}. Nev-
ertheless, by intuitive grounds, one would expect that the data
enclosing simplex with the minimum volume should coincide
with the true endmember simplex conv{e,...,an}. This
is exactly the belief of Craig’s unmixing criterion [25]. The
problem of finding an MVES has been considered in compu-
tational geometry [35], [36], where the existing algorithms are
combinatorial in nature and could be too complex to practically
run for N > 4. In what follows, we will consider an optimiza-
tion formulation for MVES that enables us to utilize LPs to
approximate the problem. A sufficient condition for the MVES
belief to identify the endmembers will also be proven.

A. MVES Problem for Hyperspectral Unmixing

The problem of finding an MVES can be formulated as an
optimization problem as follows:

ﬂmi% V(Bi,...,B8N)

" st. X[n] € conv{Bi,.... By}, Vo 0
where V(Bi,...,Bn) is the volume of the simplex
conv{Bi,...,Bn} C RN~1 given by [37]

_|det (A(B4,...,B8n))]
where
A(Bi.....Bx) = {311 N BIN} (22)
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Let us consider the endmember identifiability of the MVES
criterion, that is, a condition under which the optimal solution
of (20) is identical to {ay,...,ay}. Consider the following
assumption

A4) (Pure pixel assumption) There exists at least one index
set {¢1,4s,...,{n} suchthat X[¢;] = @; fori=1,..., N.

The above assumption is frequently employed in pure-pixel
based hyperspectral unmixing methods [14], [15], [17], and may
be valid for certain hyperspectral scenes. Also, note that A4)
never assumes prior knowledge of the pure pixel positions in
the dimension reduced data; that is, {1, £2, ..., ¢x}. We have
the following theorem.

Theorem 1. (Endmember Identifiability): Under A4), the op-
timal solution of (20) is uniquely given by ay, ..., axy.

Proof: The constraint of (20) can be equivalently written

as
conv{x[1],...,X[L]} C conv{Bi,...,Bn}.  (23)
Under A4), we can have
conv{x[1],...,x[L]} =conv{x[l1],...,x[{n]}
=conv{ay,...,ay}. (24)
Hence, (23)  becomes  conv{ey,...,ayx} C

conv{B,...,Bn}, which means @; € conv{fBi,...,Bn},
ie.,

N
a; = 0B, (25)
i=1

where Zj\;l 0;;j =1andf;; > Ofori=1,..., N. Then, from
(22) and (25), one can easily infer that

Alay,...,ay)=AB4,....Bx)0"

where © = [0;;] € RY*" and ©1y = 1y. By (26) and (21),
we can have

(26)

‘det (AB:.....Bx)0") ‘
- (N —1)!
-, BN ) |det (©)].

V(ah...,

ax) 27)

=V(B1,.. (28)
According to Lemma 1 reported in [38], we have |det (©)| <
1 and the equality holds if and only if © is a permutation matrix.
Hence, we can easily see from (28) that
V(al7"'7aN) < V(ﬁh'"vﬂN) (29)
and that the equality holds (or the optimality of (20) is
achieved) if and only if © is a permutation matrix. This further
implies that the optimum solution for {81, ...,8n} is exactly
{ai,...,ax} by (25). [ |
It should be pointed out that Theorem 1 provides a sufficient
identifiability condition, but not a necessary one. We found that
accurate endmember identification could still be possible in the
absence of pure pixels, by our experience. So far our conjecture
is that if there exist pixels that are close to pure pixels within
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some amount of tolerance, there is a good chance for MVES to
achieve accurate endmember identification.

B. MVES Algorithm

We now describe the optimization algorithm proposed for
MVES. An alternative expression of the cost function in (20)
is given by [37]

| det(B)]
V(By,... = —= 30
where
B=[8—Bn,....Ax-1 — By] € RVDXD a1
Moreover, any dimension-reduced pixel X[n] €
conv{f1,...,Bn} can be represented by
N
x[n] =) si[nlBi = Bx + Bs'[n] (32)
i=1

where s'[n] = (s1[n],...,sn_1[n])T = 0 and sy[n] = 1 —
1% ,s’[n] > 0. Therefore, problem (20) is equivalent to

i B
guin - |det(B)] (332)
s'[1],...,s'[L]
st. s'[n] =0,1%_s'[n] <1 (33b)

)~([TL] = ﬂN + BSI[TL]

Problem (33) is nonconvex. While the nonconvexity of the ob-
jective function | det(B)]| is an obstacle, the nonlinear equality
constraints in (33c) impose additional difficulty.

We propose a reformulation of (33) where the original
nonconvex constraints are transformed into convex constraints.
Consider the following one-to-one mappings of the optimiza-
tion variables:

H :B71 c R(N*l)X(N*l)

g =B !By e RV L

(34a)
(34b)

Then s’[n] can be represented by
s'[n] = B~(x[n]

Substituting (34) and (35) into (33), we obtain an equivalent
problem of (33)

—Bn) =Hx[n] - g. (35)

max | det(H)|
Hg
s.t. Hx[n]—g > 0,
1% _(HX[n]—g) <1,Vn=1,...,L. 6

in which all constraints are linear (and convex).
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The equivalent MVES problem in (36) has a convex fea-
sible set, but its objective is still nonconvex. Nevertheless, the
problem structures of (36) provide an opportunity for us to use
the efficient LPs to tackle the problem. The idea is motivated by
the cofactor expansion for det(H) as follows:

N-1
det Z L+jhi]' det(’HU—) (37)
7j=1
forany i = 1,...,N — 1, where h;; is the (¢, j)th entry of

H,and H;; € [R(N 2)x(N=2) i5 a submatrix of H with the ith
row and jth column removed [37]. Note that with a fixed H;;,
det(H) is a linear function of h;;, 7 = 1,2,..., N — 1. Let us
consider updating one row vector of H and one entry of g while
fixing the other rows of H and the other entries of g. Let hY
denote the ¢th row vector of H, and g; denote the ¢th entry of
g. The partial maximization of (36) with respect to h; and g; is
given by

N-1
v+j .. ..
}I}%&; Z: hi;j det(H;;)
i ]_1
st. 0<hf%[n]— g <1-> (hf%[n] - g;), Vn.(38)
J#i

Note that the objective function in (38) is still nonconvex. How-
ever, the partial maximization problem in (38) can be solved in
a globally optimal manner by breaking it into two LPs

n} Z L+jhi]' det(H;;)
hi.g: j=1
st.0<hfx[n]—g;:<1— Z(h]Ti[”] - ;) vn
i
(39a)
N-1
o i+ip g
_}STH,SZ ]; (—=1)"" h;; det(H,;;)
s£.0<hf%[n]—g; <1-> (h]x[n]—g;) Vn.
J#
(39b)

The optimal solution of (38), denoted by ((h)*, g¥), is chosen
as the optimal solution of (39a) if [p*| > |¢*|, and the optimal
solution of (39b) if |¢*| > |p*|. This row-wise minimization is
conducted cyclically (i.e., ¢ :== ( modulo (N — 1)) + 1 at each
iteration) until some stopping rule is satisfied.

Suppose that a solution (H*, g*) is obtained by cyclic maxi-
mization of (36). By (31) and (34) the dimension-reduced end-
member estimates, denoted by @1, . .., @y, are obtained by

(40)

[817"'7/\ (41)
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The endmember signatures can then be recovered by (18), i.e.,
a; = Ca; +d fori = 1,..., N. Furthermore, from (35), the
abundance vectors can be estimated as

Sl =[s'[n]" 1-15 4s'Inl]"

= [(E*[n] - g)" 1-15_,(H'%[n] - g")]"

vV n.
(42)

Therefore, the proposed MVES algorithm yields the estimates
of the endmembers and abundances given by (40), (41), and (42)
simultaneously without involving any inversion process.

To initialize the proposed MVES algorithm, a feasible (H, g)
for problem (38) is needed. We can find one feasible (H, g) by
solving the following feasibility problem:

find
s.t.

(H.g)

Hx[n] -g =0

15 _(Hx[n] -g) <1, Vn=1,...,.L (43)
which can also be implemented by LP.

The proposed MVES algorithm is summarized in Table I.
If the LP solver used is a primal-dual interior-point method
[39], [40], then each LP problem in (39a) or (39b) can be
solved practically with a worst-case computational complexity
of O(LY5(2LN + N3)) ~ O(NL') for L > N [29].
Moreover, the proposed MVES algorithm involves 2N LPs
per iteration, implying that its worst-case computational com-
plexity order is O(N2L'?) per iteration.

V. COMPUTER SIMULATIONS

To demonstrate the efficacy of the proposed MVES al-
gorithm, four Monte Carlo simulations are presented in this
section. Each Monte Carlo simulation is based on 100 ran-
domly generated realizations. Section V-A presents some
results for data with different purity levels for the noiseless
case. Section V-B presents the results for different number of
endmembers. Sections V-C and D consider white and nonuni-
form noise scenarios for different SNRs, respectively. We also
tested seven existing algorithms, N-FINDR [15], PPI [14],
VCA [17], APS [20], MVC-NMF [26], MVSA [30], and ICE
[21] for performance comparison. Note that the first three
algorithms require the pure pixel assumption, while the other
four do not.

The simulation settings for each unmixing algorithm under
test are as follows. In PPI, the number of skewers (which is data
dependent) was set to 1000 beyond which no further perfor-
mance improvements were noticeable in the simulations. The
affine set fitting [29] (as presented in Section III) was used for
dimension reduction in N-FINDR, PPI, and MVES algorithm.
Since PPI, N-FINDR, and VCA are endmember extraction al-
gorithms only, the FCLS [19] was used to find their associ-
ated abundances. To distinguish such abundance extraction esti-
mates, we term them as N-FINDR-FCLS, PPI-FCLS, and VCA-
FCLS, respectively. Since the operations of APS, MVC-NMF,
and ICE are data dependent, the regularization parameters in
APS, MVC-NMEF, and ICE were set to the values between 0.01
and 0.0001 to ensure the best performance. The convergence ac-
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TABLE I
THE PROPOSED MVES ALGORITHM FOR HYPERSPECTRAL UNMIXING

Given A convergence tolerance € > 0, the observed pixels x[n] for n =
1,...,L, and the number of endmembers N.
Step 1.  Find the endmember affine set parameters (C,d) by
1 X
d=—
LS i,
n=1
C=[q(UUT),q:(UUT),...,qn_1(UUT) ]
where U = [ x[1] —d,...,x[L] —d ] € RMXL,
Step 2.  Obtain the dimension-reduced pixels %[n] = C*(x[n] — d) for all
n.
Step 3. Seti:= 1 and p := | det(H)|. Obtain a feasible initial (H, g) by
solving the LP feasibility problem in (43).
Step 4. Solve the LPs
p* = max Z (=1)*td hijdet(Hj)
h;-ry 9i j=1
st. 0<hTx[n]—g;i<1-— Z h?i[n] + g5, Vn.
Jj#i
N-1 o
¢*= min > (—1)"h;;det(H;;)
hi, g; j=1
st. 0<hfx[n]—g;<1-— Z h’JTi[n] + g5, Vn.
j#i
and obtain their optimal solutions, denoted by (ﬁf, i) and
(uf, g,), respectively.
Step 5. If |p*| >T|q*|, then l%pdate (bT,g;) := (hT,g). Otherwise,
update (h;",g;) := (h;,g.).
Step 6. If (¢ modulo (N — 1)) # 0, then ¢ := 7 + 1, and go to Step 4,
else
If | max{|p*|,|¢*|} — ¢|/0 <&, then H* = H and g* = g.
Otherwise, set ¢ := max{|p*|, |¢*|}, ¢ := 1, and go to Step
4.
Step 7. Calculate &y = (H*)!g* and [@y,...,6n—1] = an1%_ +
(%)~
Step 8. Obtain endmember estimates a; = C&; +d for i = 1, ..., N.
Step 9. Recover the abundance vectors
8ln] = [ (H*%[n] —g")"  1-1%_(H*%[n] -g*) |”
forn=1,..., L.

curacy for APS, MVC-NMF, and ICE was set to 107, and the
convergence tolerance in MVES algorithm was settoe = 1077,
We should mention that APS, MVC-NMF, ICE, and MVSA
were initialized by the endmember and abundance estimates of
VCA-FCLS.

Let a;1,...,ay denote a set of the endmembers estimates,
andletsy,...,sy and 81, ...,y denote the true and estimated
abundances, respectively, where s; = [s;[1],...,s;[L]]" € RY
and 8; = [3;[1],...,5][L]]" € R". The root-mean-square (rms)
spectral angle distance between endmembers and their estimates
was used as a performance measure [17]:

¢en = min
welly

1 & aTa ?
— arccos [ ——Tt _ 44)
N ; [ (HaiH”am H

where 1 = (71,...,7x), and lIy = {m € RN |7 €
{1,2,...,N}, m; # m; for i # j} is the set of all the permuta-
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tions of {1,2,..., N}. Similarly, the performance measure for
the estimated abundances was

sT's 2
arccos U (45)
N Z [ (IIslllllsnllﬂ

It is clear that the smaller the values of ¢.,, and ¢y, the better
the performance of the unmixing algorithm. The performance
measures defined in (44) and (45) themselves are optimal as-
signment problems due to N! permutations 7, but it can be ef-
ficiently solved by Hungarian algorithm! [41].

As for the computational complexity comparison of the pro-
posed MVES algorithm and the other seven unmixing methods,
the computation time (in secs) of each algorithm (implemented
in Mathworks Matlab 7.0) running in a desktop computer
(equipped with Pentium 4 CPU 3.03 GHz, 4 GB memory) was
used as our computational complexity measure.

(:bab = min
welly

A. Monte Carlo Simulations For Data With Various Purity
Levels

Six endmembers (i.e., Alunite, Buddingtonite, Calcite, Copi-
apite, Kaolinite, and Muscovite) with 417 bands selected from
the U.S. geological survey (USGS) library [42] [see Fig. 4] were
used to produce 1000 observed pixels (i.e., N = 6, M = 417,
L = 1000). The corresponding abundances were generated fol-

lowing a Dirichlet distribution with g = (p1,...,unx)T =
(1/N)1y [17], given by
N N
s s o
D(s,p) = L—le () I (46)

D ) =

where s = (s1,...,58)7,0 < s; < 1, Zf\;l s; = 1, and
T'(-) denotes the Gamma function. Note that the expected value
of the ith fraction s; is F[s;] = pi/ Zf\il ;. The Dirichlet
distribution of the abundances automatically enforces A1) and
A2).

To generate the observed data set with different purity levels,
let us define a purity measure for an observed pixel x[n], in-
dicating how quantitatively x[n] = As|[n] is dominated by a
single endmember, as follows:

[Is{nlll

on = T = 50

(47)

due to A2). Note that 1/ VN < pn < 1 and the purity of the
observed pixel x[n] is higher for larger p,,. A set of L observed
pixels x[n] with p — 0.1 < p, < p is called a data set with
purity level of p (where (0.1 +1/v/N) < p < 1), which can be
generated through the following steps.
S1) Generate a set of K = 10L observed pixels where the
abundance vectors s[k] following a Dirichlet distribu-
tion, i.e.,

Q= {x[k] = As[k]|s[k] ~

A Matlab implementation is available at http://si.utia.cas.cz/Tichavsky.html.

D(sk],u), Vk=1,...,K}

4425

Reflectance
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Spectral bands

Fig. 4. USGS library spectra of the six minerals: Alunite, Buddingtonite, Cal-
cite, Copiapite, Kaolinite, and Muscovite.

and calculate the corresponding purity pp = ||s[k]|| of
each x[k] for all k.

Construct a set of observed pixels with purity level equal
to p by randomly picking L observed pixels from 2
while satisfying p,, € [p — 0.1, p], i.e.,

S2)

{x[n]|x[n] € Q,pn €[p—0.1,p], Vn=1,...,L}.

Note that the generated data for p = 1 include some x[n] with
pn =~ 1, i.e., highly pure pixels.

The average ¢.,, and ¢, of the unmixing methods under
test for different values of p = 0.7,0.75,...,1 are shown in
Figs. 5 and 6, respectively. One can see from Figs. 5 and 6
that all the algorithms perform better for higher purity level.
Obviously, all the algorithms achieve almost perfect unmixing
(i.e., pen = ¢ap = 0) for p = 1. The ICE, MVC-NMF,
MVSA, and MVES algorithm provide better robustness against
lower p, while the performance of N-FINDR-FCLS, PPI-FCLS,
VCA-FCLS, and APS degrades significantly. In addition, the
MVSA and proposed MVES algorithm outperform all the other
algorithms. The results also validate the endmember identifia-
bility of the MVES belief for p = 1 (see Theorem 1), and sup-
port our conjecture that the MVES belief can also achieve accu-
rate endmember identification when p < 1.

The average computation time (secs) per realization of
each unmixing method for the noiseless case is shown in
Table II. From this table, one can observe that the average
computation time spent by the pure-pixel based unmixing
algorithms, N-FINDR-FCLS, PPI-FCLS, and VCA-FCLS, are
less than that of the other algorithms that do not require pure
pixels. Among the algorithms without need of pure pixels, the
proposed MVES algorithm spent less computation time than
MVC-NMF and ICE, but more than APS and MVSA.

The complexity results in Table II also indicate that the pro-
posed MVES algorithm has relatively high complexity (though
not the highest). As a future direction, the complexity of MVES
may be reduced by making specialized LP algorithms, and by
introducing a warm start for each LP in running the MVES al-
gorithm.
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TABLE II
THE AVERAGE COMPUTATION TIME (SECS) PER REALIZATION OF THE VARIOUS UNMIXING METHODS IN TWO SCENARIOS
Scenarios N-FINDR-FCLS | PPI-FCLS | VCA-FCLS | APS | MVC-NMF | MVSA | ICE | MVES
No noise (Sec. V-A) 335 3.23 3.06 40.70 64.54 4.08 81.37 | 54.79
With noise (Sec. V-C) 3.37 3.42 5.62 31.55 54.57 17.11 96.95 | 47.34
16 ' ' ' ' - —+— N-FINDR-FCLS
—+— N-FINDR-FCLS ol —A— VCA-FCLS
14 —&A— VCA-FCLS T —v— PPI-FCLS
—v— PPI-FCLS —APS
—&— MVC-NMF
121 —APS ] & 15¢ —%— MVSA
—&— MVC-NMF 8 —8—ICE
@ 10+ i MVSA i g —©— MVES (proposed)
g —&— ICE 3
ko) 8 —&6— MVES (proposed) |
vs q
o’ 64
i 3 @ S A ®
4 6 8 10 12 14
Number of endmembers
2
Fig. 7. Simulation results of different number of endmembers (.., ) for the
0% ® ® ® P4 endmember estimates obtained by the various algorithms.
0.7 0.75 0.8 0.85 0.9 0.95 1

p (purity level)

Fig. 5. Simulation results of different purity levels ((T/)m) for the endmember
estimates obtained by the various algorithms.

50

—+— N-FINDR-FCLS
—=4&— VCA-FCLS
40 —v— PPI-FCLS .
—APS
4 —&— MVC-NMF
@ —»— MVSA 1
o 30
% —&— ICE
3 —©— MVES (proposed)
8 207 |
<

& & %
0.85 0.9 0.95

p (purity level)

0.7 0.75

Fig. 6. Simulation results of different purity levels (¢, ) for the abundance
estimates obtained by the various algorithms.

B. Monte Carlo Simulations for Various Number of
Endmembers

The synthetic data were generated in the same manner as in
Section V-A, where the purity level was given by p = 0.75 and
the NV endmembers were randomly picked from USGS library

[42].
The average ¢.,, and ¢, of the unmixing methods for N =
6,8, ..., 14 are shownin Figs. 7 and 8, respectively. One can ob-

serve that the performance of the unmixing algorithms (except
MVSA and MVES algorithm) slightly degrade as the number
of endmembers increases. Specifically, MVSA and our MVES

60 ' " ' —+— N-FINDR-FCLS
{ | —A— VCA-FCLS
50 —— PPI-FCLS
——APS
—O— MVC-NMF
a2 % —— MVSA
i:’ —8— ICE
_§’ 30] —6— MVES (proposed)
~ A
e‘-a / I
20

10
Number of endmembers

o®

@
8

Fig. 8. Simulation results of different number of endmembers (¢,,) for the
abundance estimates obtained by the various algorithms.

algorithm show the best performance, and the PPI-FCLS is the
worst one, among the algorithms under test.

C. Monte Carlo Simulations for Various SNRs

The noise-free synthetic data x[n] were generated in the
same manner as in Section V-A. The noisy data were ob-
tained by adding independent and identically distributed (i.i.d.)
zero-mean Gaussian noise to the noise-free data for different
values of SNR, where

L 2
2 (<[l
SNR ==t
o?ML

in which o is the noise variance. To maintain nonnegativity of
the noisy observed pixels, we artificially set the negative values
of the noisy pixels to zero. Again 100 Monte Carlo runs were
performed to evaluate the performance of the unmixing algo-
rithms under test.
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TABLE III
PERFORMANCE COMPARISON OF AVERAGE ¢.,, AND ¢,;, (DEGREES) OVER THE VARIOUS UNMIXING METHODS FOR DIFFERENT PURITY LEVELS ( /)) AND SNRs
¢en ¢ab
Methods p SNR (dB) SNR (dB)

20 25 30 35 40 00 20 25 30 35 40 00
0.7 6.24 | 6.09 | 6.02 | 6.05 | 6.01 6.66 | 44.77 | 45.80 | 46.27 | 46.60 | 45.78 | 48.78
PPI-FCLS 0.85 | 4.05 | 3.56 | 277 | 278 | 2.71 258 | 23.46 | 20.02 | 12.02 | 11.59 | 10.82 | 9.65
1 1.46 | 0.58 | 0.33 | 0.17 | 0.09 0 7.59 3.46 2.04 1.21 0.70 0.02
0.7 545 | 531 | 524 | 5.11 | 5.16 5.30 22.54 | 21.86 | 21.63 | 19.76 | 19.82 | 20.10
N-FINDR-FCLS | 0.85 | 2.65 | 2.67 | 2.66 | 2.65 | 2.61 2.63 9.60 8.37 8.03 7.93 7.77 7.64
1 1.15 | 0.58 | 0.33 | 0.18 | 0.10 0 6.14 3.59 2.13 1.24 0.72 0.02
0.7 577 | 5.56 | 5.64 | 5.56 | 5.50 5.96 31.57 | 2997 | 29.71 | 28.54 | 28.38 | 32.62
VCA-FCLS 0.85 | 279 | 2.70 | 2.67 | 2.71 | 2.61 2.68 10.83 | 9.45 9.00 8.89 8.82 9.37
1 112 | 0.61 | 0.32 | 0.18 | 0.11 0 6.00 345 2.05 1.23 0.76 0.03
0.7 822 | 756 | 779 | 7.22 | 698 | 1544 | 28.45 | 28.13 | 27.49 | 24.98 | 26.83 | 43.16
APS 0.85 | 4.16 | 4.27 | 4.04 | 393 | 401 3.88 18.56 | 15.67 | 13.98 | 13.67 | 13.11 | 13.43
1 275 | 1.55 | 1.25 | 1.10 | 1.01 0.02 12.59 | 7.18 4.99 4.75 4.47 0.23
0.7 6.80 | 532 | 450 | 6.05 | 4.49 3.32 26.69 | 20.55 | 16.54 | 21.89 | 15.60 | 11.16
MVC-NMF 085 | 247 | 1.37 | 1.31 | 1.34 | 132 | 0.84 5.81 4.61 4.26 4.27 4.18 1.81
1 148 | 0.89 | 0.71 | 0.66 | 0.64 | 0.35 7.87 4.52 2.87 2.07 1.75 0.59
0.7 595 [ 403 | 2.67 | 2.12 | 1.40 | 0.03 20.80 | 14.56 7.88 4.81 3.14 0.45

MVSA 0.85 | 599 | 3.75 | 2.61 | 2.07 | 1.27 0 19.65 | 12.12 | 7.17 4.16 2.34 0

1 6.12 | 396 | 2.71 | 2.14 | 1.33 0 18.93 | 11.55 6.68 3.85 2.15 0
0.7 6.43 | 5.13 | 421 | 422 | 422 | 441 24.13 | 17.85 | 12.03 | 12.23 | 12.62 | 10.09
ICE 0.85 | 2.86 | 2.76 | 2.79 | 2.78 | 2.79 2.27 9.45 8.66 8.58 8.40 8.48 6.99
1 1.69 | 1.50 | 1.47 | 142 | 1.36 | 0.14 7.21 6.63 6.28 5.64 4.88 0.26
0.7 517 | 326 | 243 | 1.73 | 1.01 | 0.06 | 16.66 | 10.58 | 6.51 3.81 2.17 0.17
MVES 0.85 | 528 | 3.59 | 265 | 1.85 | 1.11 | 0.02 16.88 | 10.98 | 7.20 4.26 2.38 0.08
1 6.67 | 437 | 3.35 | 250 | 1.55 0 19.81 | 13.09 | 9.58 6.81 4.50 0.02

The average ¢.,, and ¢, of all the unmixing algorithms over
SNR = 15,20,...,40,00dB and p = 0.7,0.85, 1 are shown in
Table III, where each bold-faced number denotes the minimum
rms spectral angle associated with a specific pair of (p, SNR)
over all the algorithms. Some observations from Table III are as
follows. Basically, for a fixed SNR most algorithms (except for
MVSA and the proposed MVES) perform better for higher pu-
rity level. For a fixed purity level, most algorithms (without in-
volving pure pixels, i.e., MVC-NMF, MVSA, ICE, and MVES)
perform better for higher SNR. This is also true for APS and
PPI-FCLS for p = 0.85 and p = 1, and true for N-FINDR-
FCLS and VCA-FCLS for p = 1. Specifically, in terms of ¢,
the proposed MVES algorithm performs best for p = 0.7 and
20 < SNR < 40 dB, and p = 0.85 and SNR = 40 dB,
and in terms of ¢, the MVES algorithm outperforms all the
other algorithms for p = 0.7 and any SNR. The pure-pixel
based methods, PPI-FCLS, N-FINDR-FCLS, and VCA-FCLS
generally perform better than the other algorithms for p = 1
and SNR < 40 dB. However, the proposed MVES algorithm
shows slightly worse performance as purity level increases, so
does MVSA. The reason for this may be due to their slight sus-
ceptibility to noise effects. Nevertheless, their performances for
SNR = oo indeed become better as purity level increases. On
the other hand, the average computation time (secs) per realiza-
tion for each unmixing method for the noisy case is also dis-
played in Table II. The complexity comparison results of all the
algorithms are similar to those in the noise-free case.

D. Monte Carlo Simulations for Nonuniform Noise

Here we consider a more realistic scenario where noise vari-
ances over spectral bands are nonuniform. To do this, we gen-
erated independent zero-mean Gaussian noise for the M spec-

tral bands, whose variances denoted as o7,...,03, follow a
Gaussian shape centered at the (M /2)th band [13], i.e.,

L e (=072 207)
=9 J
S e (G=M/2)7/20)

Jj=1

where 7 controls the variance of the Gaussian shape among
o%,...,0%,. It corresponds to white noise for n = oo, and
one-band noise for n = 0.

The average ¢., and ¢, of all the unmixing algorithms
for p = 0.75, SNR = 20,25,...,40 dB, n = 00,18,9 are
shown in Table IV, where each bold-faced number again is the
minimum rms spectral angle associated with a specific pair of
(n,SNR) over all the algorithms. One can see that while the
performance of our MVES algorithm almost outperforms all
the other algorithms under the white noise scenario (n = 00),
MVES algorithm may lose its leading performance for some
nonuniform noise scenarios (7 = 18,9). Nevertheless, MVES
shows competitive performance in general. Our speculation
is that the affine set fitting in MVES may not provide very
accurate affine subspace estimates (i.e., d and C in (6) and
(7), respectively) in the presence of nonuniform noise. To miti-
gate this problem, a recently proposed subspace identification
method [13] that considers the nonuniform noise may provide
more accurate subspace estimates than those used in this paper.
This may be an interesting future direction to pursue.

The above Monte Carlo simulation results (as shown in
Figs. 5-8, and Tables III and IV) demonstrate the efficacy
of the proposed MVES algorithm, and show that the MVES
algorithm performs better than N-FINDR-FCLS, VCA-FCLS,
PPI-FCLS, APS, MVC-NMF, and ICE for both the noiseless
and noisy cases (especially for data with lower purity levels).
Regarding the comparison of MVSA and our MVES algorithm,
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TABLE IV
PERFORMANCE COMPARISON OF AVERAGE ¢.,, AND ¢,;, (DEGREES) OVER THE VARIOUS UNMIXING METHODS FOR WHITE NOISE (77 = oc¢) AND NON-UNIFORM
NoOISE (n = 18,9), AND PURITY LEVEL p = 0.75

(ben ¢ab
Methods n SNR (dB) SNR (dB)
20 25 30 35 40 20 25 30 35 40
oo | 648 | 6.74 | 6.09 | 6.07 | 6.11 | 44.60 | 49.68 | 45.18 | 47.65 | 40.66
PPI-FCLS 18 | 7.08 | 6.43 | 6.39 | 6.29 | 6.01 | 47.04 | 48.29 | 48.68 | 41.26 | 42.13
9 875 | 6.61 | 632 | 6.21 | 6.29 | 55.63 | 48.04 | 42.97 | 44.67 | 44.90
oo 4.51 4.57 | 448 | 438 | 451 | 1575 | 14.84 | 1431 | 14.11 | 14.12
N-FINDR-FCLS | 18 | 4.77 448 | 430 | 450 | 449 | 17.69 | 14.71 | 14.08 | 14.33 | 13.98
9 6.06 | 458 | 422 | 454 | 436 | 3432 | 15.83 | 1490 | 1553 | 14.97
oo [ 576 | 540 | 539 | 500 | 4.86 | 27.59 | 28.63 | 26.08 | 25.94 | 23.94
VCA-FCLS 18 | 586 | 5.19 | 513 | 5.10 | 493 | 33.81 | 28.02 | 27.31 | 25.24 | 23.60
9 6.01 574 | 456 | 491 | 494 | 38.78 | 3331 | 24.18 | 22.87 25.5
oo | 436 | 498 | 461 | 437 | 412 | 1753 | 17.18 | 1543 | 15.40 | 14.89
APS 18 | 5.03 | 479 | 428 | 429 | 432 | 22.61 | 1857 | 16.50 | 1574 | 14.42
9 7.54 6.31 | 393 | 438 | 3.23 | 3241 | 2254 | 17.31 | 14.61 | 13.75
) 542 | 421 | 295 | 271 | 1.70 | 16.22 | 16.68 | 15.51 9.42 7.14
MVC-NMF 18 | 5.14 | 3.37 | 2.66 | 2.60 | 2.21 | 26.20 | 12.29 | 8.13 8.17 8.32
9 6.60 | 7.00 | 3.60 | 2.08 | 2.60 | 29.60 | 28.79 | 14.91 8.25 8.47
o0 5.28 375 | 277 | 2.11 | 1.17 | 1948 | 12.75 7.49 441 2.52
MVSA 18 | 9.21 4.09 | 226 | 1.31 | 0.71 | 2795 | 12.93 5.85 3.18 1.73
9 10.13 | 9.15 | 2.43 | 1.35 | 0.62 | 37.78 | 31.85 | 4.12 3.25 1.67
oo | 5.83 | 574 | 565 | 5.69 | 530 | 28.36 | 2539 | 25.92 | 25.07 | 26.19
ICE 18 | 5.40 537 | 537 | 464 | 530 | 2547 | 2549 | 2421 | 30.75 | 26.19
9 5.40 529 | 540 | 5.16 | 546 | 26.11 | 27.59 | 26.47 | 25.16 | 27.41
oo | 5.18 | 3.30 | 2.47 | 1.74 | 1.05 | 16.83 | 10.74 | 6.88 3.96 2.25
MVES 18 | 7.11 348 | 2.57 | 1.62 | 1.16 | 22.14 | 10.57 6.41 4.22 2.36
9 856 | 3.67 | 2.09 | 140 | 0.73 | 32.20 | 12.23 5.28 3.65 2.05
we conclude that their performances are very comparable, and 0.7
in most white noise cases with lower purity levels and various
SNRs the MVES algorithm slightly outperforms the MVSA. 0.6
However, we also see from Table II that MVES algorithm 05
spent more computation time than MVSA. There appears to '
be a tradeoff between performance and complexity for each 0.4
algorithm.
0.3
VI. REAL HYPERSPECTRAL IMAGE EXPERIMENTS

We applied the VCA-FCLS [17], [19], MVC-NMF [26], and

the proposed MVES algorithm to process real hyperspectral
image data [43], which were collected by airborne visible/in-
frared imaging spectrometer (AVIRIS) flight over the Cuprite
mining site, Nevada, in 1997. This data set has been widely used
for remote sensing experiments [4], [17], [26], and it consists of
224 spectral channels with 10 nm spectral resolution covering
wavelengths ranging from 0.4 to 2.5 pm. The spectral bands
1-2, 104113, 148-167, and 221-224 were removed due to low
SNR and water-vapor absorption. Hence, a total of 188 bands
were tested in this experiment. The subimage of the 150th band,
including 200 vertical lines with 200 pixels per line is shown in
Fig. 9.

One of VD methods [12], the noise-whitened HFC
(NWHFC)-based eigenthresholding method with false-alarm
probability Pr = 1073, was applied to the data set to estimate
the number of endmembers, and the estimated number of
endmembers is N = 14. By visually comparing the abundance
maps estimated by the MVES algorithm with the ground
truth reported in [44], [45], the abundance maps obtained
by MVES algorithm are identified as mineral maps of Mus-
covite, Goethite, Halloysite, Nontronite, Montmorillonite,
Alunite, Buddingtonite, Pyrope, Kaolinite #1, Kaolinite #2,
Chalcedony, Desert Varnish, Kaolinite #3, and Andradite as
shown in Fig. 10(a)—(n), respectively. Likewise, the abundance
maps obtained by MVC-NMF are identified as mineral maps

Fig. 9. The subimage of the AVIRIS hyperspectral image data for the 150th
band.

of Muscovite, Nontronite, Montmorillonite, Alunite, Bud-
dingtonite, Pyrope, Kaolinite #1, Chalcedony, Desert Varnish,
Andradite, Kaolinite #4, and Dumortierite, and those obtained
by VCA-FCLS are identified as mineral maps of Muscovite,
Nontronite, Montmorillonite, Alunite, Buddingtonite, Pyrope,
Kaolinite #1, Chalcedony, Desert Varnish, Andradite, Kaolinite
#4, and Dumortierite. The individual abundance maps estimated
by MVC-NMF and VCA are omitted here due to space limit, but
can be found at http://www.ee.nthu.edu.tw/cychi/HI_results.
Furthermore, the endmember estimates obtained by the three
unmixing algorithms associated with the identified minerals are
also shown in Fig. 11. Fig. 11(a) shows the library spectra of all
the identified minerals. The endmember estimates obtained by
MVES algorithm are shown in Fig. 11(b), and those obtained by
MVC-NMF and VCA are shown in Fig. 11(c) and (d), respec-
tively. One can see from Fig. 11 that fourteen distinct minerals
are retrieved by MVES algorithm, while twelve distinct min-
erals are retrieved by both MVC-NMF and VCA. Although
MVC-NMF adds Craig’s criterion (as a regularization term) in
its objective function, the reason for fewer minerals retrieved
by MVC-NMF may be due to its initialization by VCA. By the
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Fig. 10. Fourteen respective estimated abundances obtained by MVES algorithm: (a) Muscovite; (b) Goethite; (c) Halloysite; (d) Nontronite; (¢) Montmorillonite;
(f) Alunite; (g) Buddingtonite; (h) Pyrope; (i) Kaolinite #1; (j) Kaolinite #2; (k) Chalcedony; (1) Desert Varnish; (m) Kaolinite #3; and (n) Andradite.

same token, one can also observe that MVC-NMF and VCA
retrieve the same minerals in this experiment.

To further evaluate the accuracy of the mineral-identified end-
member estimates obtained by the three unmixing algorithms,
we used the mean-removed spectral angle between each min-
eral-identified endmember estimate a and the library spectrum
of the identified mineral a [46] as a performance index, i.e.

((5 —m@)’(a— m(a))> (49)

a —m(a)||[la — m(a)]|

where m(a) = (15,a/M) 1, for any vector a € RM.

The values of ¢ associated with the endmember estimates ob-
tained by the three unmixing algorithms are shown in Table V
where those numbers in the parentheses stand for the mean-re-
moved spectral angles of the endmember estimates classified as
the same mineral. One can see from Table V that the average
mean-removed spectral angle associated with MVES algorithm
is smaller than that associated with MVC-NMF, but larger than
that associated with VCA. The possible cause may be due to
serious effect of nonuniform noise on our proposed MVES al-
gorithm, leading to some performance degradation. We would
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Fig. 11. (a) The endmember signatures provided by the USGS library, and the endmember estimates obtained by: (b) MVES algorithm; (c¢) MVC-NMF; and (d)

VCA.

consider how to deal with the nonuniform noise issues for the
MVES algorithm as our future research. Even so, MVES algo-
rithm shows the capability of retrieving some less prevalent min-
erals, i.e., Goethite and Halloysite, which are not retrieved by
MVC-NMF and VCA. Moreover, we also compared the above

TABLE V
MEAN-REMOVED SPECTRAL ANGLES ¢ (DEGREES) BETWEEN
LIBRARY SPECTRA AND ENDMEMBERS ESTIMATED BY
MVES ALGORITHM, MVC-NMF, AND VCA

. . MVES MVC-NMF VCA
experimental results to the results rep.or.ted in [17], [20], [26], Muscoviie 3564 3303 370
[44], [45], and found that they all exhibit a high agreement be- Goethite 15.08 ) -
tween them. Halloysite 13.10 - -

Nontronite 29.74 20.21 16.14
VII. CONCLUSION Montmorillonite 25.54 19.81 15.98
. . Alunite 19.55 18.97 23.48
We have presented a convex analysis based MVES algorithm Buddingtonite 20.68 36.91 27.25
for hyperspectral unmixing without involving pure pixels. Pyrope 32.37 14.49 19.97
Th h s ¢ fitti fob d vixels followed by th Kaolinite #1 2295 | 27.74 (31.84) | 22.55 (22.04)
rough an affine set fitting of observed pixels followed by the Kaolinite 42 5132 ) )
use of Craig’s unmixing criterion, the MVES problem was cast Chalcedony 26.01 23.02 31.09
as a problem of minimizing a simplex volume subject to the l?fself} Yar;;S}h :‘7‘;‘2‘ 15.69 16.13
. . . . aolinite . - -
'constral'nt that all the dimension-reduced .plxels 'b'e enclosed Andradite 26.80 1921 18.16
in the simplex. The proposed MVES algorithm utilizes LPs to Kaolinite #4 _ 19.77 (12.00) | 18.17 (21.05)
approximate the MVES problem in a cyclic fashion, and is easy Dumortierite - 33.34 20.44
to implement since LP softwares are readily available today. Average ¢ 22.92 23.35 21.80
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We also discussed the endmember identifiability of the MVES
criterion, and proved it under the existence of pure pixels. Some
computer simulation results were presented to demonstrate
that the proposed MVES algorithm outperforms some existing
benchmark hyperspectral unmixing algorithms, especially for
data sets with lower purity levels. Some experimental results
with real hyperspectral image data also show that the proposed
MVES algorithm can estimate endmembers and abundances
both in a high agreement with the reported ground truth.
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