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mDASH: A Markov Decision-Based Rate Adaptation
Approach for Dynamic HTTP Streaming

Chao Zhou, Chia-Wen Lin, Senior Member, IEEE, and Zongming Guo

Abstract—Dynamic adaptive streaming over HTTP (DASH) has
recently been widely deployed in the Internet. It, however, does
not impose any adaptation logic for selecting the quality of video
fragments requested by clients. In this paper, we propose a novel
Markov decision-based rate adaptation scheme for DASH aiming
to maximize the quality of user experience under time-varying
channel conditions. To this end, our proposed method takes into
account those key factors that make a critical impact on visual
quality, including video playback quality, video rate switching
frequency and amplitude, buffer overflow/underflow, and buffer
occupancy. Besides, to reduce computational complexity, we
propose a low-complexity sub-optimal greedy algorithm which
is suitable for real-time video streaming. Our experiments in
network test-bed and real-world Internet all demonstrate the
good performance of the proposed method in both objective and
subjective visual quality.

Index Terms—Dynamic adaptive streaming over HTTP (DASH),
Markov decision, quality of experience, rate adaptation.

I. INTRODUCTION

YNAMIC adaptive streaming over HTTP (DASH) has

been recently widely adopted for providing uninterrupted
video streaming services to users with dynamic network condi-
tions and heterogeneous devices [1], [2]. In contrast to the past
RTP/UDP, the use of HTTP over TCP is easy to configure and,
in particular, can greatly simplify the traversal of firewalls and
network address translators. Besides, the deployment cost of
DASH is relatively low since it employs standard HTTP servers
and, therefore, can easily be deployed within content delivery
networks. In DASH, a video clip is encoded into multiple ver-
sions at different bitrates, each being further divided into small
video fragments containing seconds or tens of seconds worth of
video. At the client side, a DASH client continuously requests
and receives video fragments from the DASH servers that own
the fragments. To adapt the video bitrate to a varying network
bandwidth, DASH allows clients to request video fragments
from different versions of a video, each of which being coded
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with a specific bitrate. This is known as dynamic rate adaptation,
which is one of the most important features of DASH since it
can automatically throttle the visual quality to match the avail-
able bandwidth so that a user receives the requested video at the
maximum quality possible.

Since network conditions can be highly dynamic, it is very
challenging to provide satisfactory user experience during an
entire video session. Without an effective rate adaption algo-
rithm, a DASH client may suffer from frequent interruptions
and significant visual quality degradation. For example, a video
bitrate higher than the available bandwidth would cause net-
work congestion and, on the other hand, when the video bitrate
is lower than the available bandwidth, the visual quality cannot
reach the maximum allowed by the available bandwidth.

There are several rate adaptation schemes proposed for
DASH, such as bandwidth-based schemes![3]-[4] and buffer-
based schemes [S]-[7]. The bandwidth-based schemes mainly
aim to dynamically adapt the video bitrate to an available band-
width, which usually leads to a low bandwidth utilization and
cannot reach the maximum quality allowed by the available
bandwidth. This is because, in such schemes, the video bitrates
higher than the available bandwidth are never allowed to be
selected to avoid playback interruptions. On the other hand,
buffer-based schemes are focused on stabilizing the buffer oc-
cupancy within a certain range to ensure continuous video play-
back. However, such kind of schemes generally lead to frequent
bitrate switching which could be visually very annoying [8].
This is mainly because there is a trade-off between the stability
of buffer occupancy and the smoothness of video bitrate due to
the time-varying bandwidth.

To consider the influence of a rate selection decision on its
future fragments to be downloaded, Markov decision-based ap-
proaches have been proposed to model the dynamics of a video
streaming system under time-varying network conditions [9]-
[12]. However, these existing schemes do not comprehensively
take into account the factors that that make critical influence
on visual quality. Moreover, the existing schemes usually resort
to a single reward mechanism for a whole streaming session,
making it not well adapted to the dynamic network conditions,
thereby degrading quality of experience (QoE). This motivates
us to propose a more effective Markov-decision-based rate adap-
tation scheme which has the advantages of both the bandwidth-
based and buffer-based schemes, while getting rid of their
disadvantages.

In this paper, by extending our previous works in [13]
and [14], we formulate rate adaption for DASH as a Markov

1“Open source media framework,” [Online]. Available: http://www.osmf.org/
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decision-based optimization problem. In our method, a state
vector is defined to describe the current system situation, in-
cluding the current buffer occupancy and its changing rate,
the video bitrates for previously downloaded fragments, the
bitrate consistency function, and the bandwidth conditions. Ac-
cordingly, based on the probabilistic characteristics of system
states, the transition probability matrix comprising the transfer
probabilities between every two consecutive states is derived.
Considering those factors affecting QoE for a video streaming
session, including video playback quality, video rate switching
frequency and amplitude, buffer overflow/underflow, and buffer
occupancy, we propose a reward function for three different sce-
narios of buffer occupancy to measure the effectiveness of each
rate-switching decision. As a result, the optimal streaming pol-
icy, i.e., the best video bitrates for all fragments, can be found
by maximizing the long-term reward.

The main contribution of this paper is threefold.

1) We formulate rate adaption for DASH as a Markov
decision-based optimization problem. To improve the sys-
tem performance, we systematically characterize the be-
havior of a DASH video streaming system in terms of the
buffer occupancy transfer model, video rate switching,
and channel condition transfer model.

2) We propose a reward function to take into account key
factors that affect visual quality, including video play-
back quality, video rate switching frequency and ampli-
tude, buffer overflow/underflow, and buffer occupancy.
Accordingly, we propose to dynamically adapt the reward
function to three different scenarios.

3) To reduce computation, we propose an efficient sub-
optimal greedy rate-adaptation algorithm without signifi-
cantly sacrificing visual quality.

II. RELATED WORK

Although DASH is a relatively new application, due to its
popularity, it has attracted much research effort recently. Watson
systematically introduced the DASH framework of Netflix [15],
which has been the largest DASH stream provider in the world.

As mentioned above, dynamic rate adaptation is one of the
most important features of DASH since it can automatically
throttle the visual quality to match the available bandwidth
so that each user receives the video with the maximum qual-
ity possible. Akhshabi et al. [16] compared the rate adaption
schemes used for three popular DASH clients: Netflix client
[15], Microsoft Smooth Streaming [17], and Adobe OSMF. It
was reported in [16] that none of the DASH client-based rate
adaptation is good enough, as they are either too aggressive
or too conservative. Some clients even just switch between the
highest and lowest bitrates. Also, all of them lead to relatively
long response time under the shift of network congestion level.
Existing rate adaptation schemes for DASH, such as bandwidth-
based schemes [3]-[4] and buffer-based schemes [5]-[7], aim
to either achieve a high bandwidth utilization efficiency by
dynamically adapting the video bitrate to an available band-
width, or maintain continuous video playback by smoothing
the video bitrate to avoid buffer overflow/underflow. Neverthe-
less, due to unavoidable bandwidth variations, existing schemes

usually cannot achieve a good tradeoff between video bitrate
smoothness and bandwidth utilization. In our previous work
[13], a dual-threshold-based buffer occupancy model was pro-
posed to smooth out the short-term bandwidth variations so as to
maintain the smoothness of video rate. To avoid buffer overflow
and playback interruptions, the video rate is dynamically regu-
lated by a PD controller which has proven to effectively mitigate
buffer overflow/underflow. The main objective of the rate adap-
tion method in [13] is, however, to avoid buffer overflow and
underflow without considering other factors, such as switching
frequency and amplitude, which also can affect the perceived
visual quality [18]. Furthermore, the method does not consider
the influence of the current rate selection decision on the future
fragments to be downloaded, making it unable to achieve the
optimal performance possible.

QoE is defined in [19] as the overall acceptability of an ap-
plication or service, as perceived subjectively by an end-user,
which typically involves several factors such as network, client,
and terminal. Under time-varying network conditions, the objec-
tive of rate adaptation for DASH is to maximize the QoE, which
is influenced by several factors, such as video playback quality
[12], [20], [21], video rate switching frequency and amplitude
[12], [18], [22], buffer overflow/underflow [6], [7], and buffer
occupancy [23]. In [18], Mok et al. presented a QoE-aware
DASH system that estimates the bandwidth by probing with the
video data and keeping the video rate as smooth as possible. It
was shown that users generally prefer a gradual quality change
to an abrupt switching. The work in [12] addresses the issues
of DASH with scalable video coding, in which both the visual
quality and bitrate smoothness are considered when making
rate-switching decision. There are also some other works ad-
dressing issues in QoE for DASH [11], [22]-[24]. Nevertheless,
the existing methods only take into account part of the criti-
cal factors of DASH, which usually may not achieve the best
performance.

Fig. 1 illustrates the rate switching process for DASH prior
to downloading each fragment, where the segment’s bitrate is
determined based on the current system state and network con-
dition. The bitrates of all fragments form a streaming policy
and the aim is to find the best streaming policy that maximizes
the QoE. Markov decision process (MDP) has been employed
in rate adaptation for DASH in the literature as it can be used
to effectively model the dynamics of a video streaming system
under time-varying network conditions. For example, in [25],
rate selection is performed offline by an MDP assuming that the
available bandwidth can be estimated using a transition matrix.
Applying the model on-line, however, may result in inaccu-
rate estimations due to unpredictable characteristics of network
conditions. This work is further extended in [9], [10]. However,
no subjective validation was conducted to convincingly justify
the proposed rate adaption scheme and visual quality model. In
[11], [12], a stochastic dynamic programming (SDP) technique
was proposed for rate adaption for DASH, where the system rate
is determined based on client buffer occupancy and bandwidth
condition. While selecting the rate adaptation strategy, a cost
function involving the video rate level, video rate switching and
video freezes was proposed.
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Fig. 2. System state evolution model. u; denotes the system state at stage &,
according to uy, the next requested video rate is derived under the action ay,,
and the state moves to uy 4 1 through system function hy, .

III. FORMULATION OF RATE ADAPTION

Without loss of generality, in our proposed DASH system,
the video bitrate can be adapted only when the last fragment has
been downloaded completely. Besides, since the time-varying
network bandwidth can greatly affect the decision of the video
bitrate switching, the rate adaption process can be considered
as a discrete-time stochastic system that evolves along time in
stages. Considering the Markov property of the system states,
an MDP can be adopted in DASH for bitrate adaption. We
therefore propose an MDP-based DASH (or mDASH for short)
in this paper.

In order to apply MPD techniques, the state transition model
of mDASH needs to be devised. In mDASH, a rate decision is
made at stage k for fragment £ + 1, so the total number of stages
equals the number of fragments K. For stage k, we denote the
state as uy,, which contains all the information gathered from the
network once fragment k has been completely downloaded, and
the controller applies control action a; to determine the video
rate for fragment £ + 1 based on the information in state uy. In
this work, the output of a control action is the video bitrate to
be requested, i.e., vx+1 = ai (ug). Then, the current state wuy,
along with action ay,, determines the evolution of the system
state towards state w1, through system function hy, as Fig. 2
shows.

Rate switching process for a whole DASH streaming session.

Now, we will give the details of the considered system param-
eters that make significant influence on the states and actions.
Our previous work [13] shows that the buffered video time and
its changing rate play important roles in rate switching decision.
Also, the estimated bandwidth is indispensable in rate adapta-
tion schemes. Thus, similar to what we did in [13], these three
system parameters are considered in this work as well. Besides,
it has been shown that video bitrate switching frequency and
amplitude also have great effect on the QoE [18], [22]. There-
fore, we consider two additional system parameters: the historic
video bitrate vector and the video bitrate consistency function.
As aresult, in mDASH, each state vector uy, involves five system
parameters as follows:

ey

where ¢ is the buffered video time (buffer occupancy, in this
work, we use buffered video time and buffer occupancy inter-
changeably) once fragment & has been completely downloaded,
q), is the average changing rate of the buffered video time when
downloading fragment k, v, = [Ug N1, Vk—N42, " Vk—1,Uk]
isal x N video rate vector, where v, is the video rate assigned
to fragment k, by, is the average bandwidth during the period
of downloading fragment & which is also used as the estimated
available bandwidth for downloading fragment k + 1, and XA,
is the video bitrate consistency function with A; = 1 indicat-
ing that all the latest N fragments have the same video rate;
otherwise, A, = 0, i.e.

we = (s G Vis M, br)

1, ika,NJrl =UVg_—N42 ="+ =V}

A =
0,

@)

else.

According to the Markov property, the state at any time in-
stance only depends on its immediately previous state. Given
any state u; and actions ay, the transition probability of the
MPD can be given as
3)

P (upr1lur, ar) = Pr(up1 Jur, ap (ur)) -
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In order to evaluate the effectiveness of an action, we define a
reward value 7, associated with action ay, at stage k as a function
of state uy, i.e., 7y = R (uy ). We then define 1) as the streaming
policy as a mapping of the action taken at each stage. Then, the
long-term reward R¥ (uy,) under policy v can be computed by

RY (up) = D P (wpst [, ag (ur)) (rk + YR (wps1))

Uk +1
“4)
where v € [0, 1] is a discount parameter reflecting the present
value of future reward where a small ~y leads to “myopic” eval-
uation, where as a large vy leads to “far-sighted” evaluation.
Our goal is to find the optimal strategy policy ¥* that maxi-
mizes the reward during streaming. To this end, the video rate
adaptation process can be formulated as the following optimiza-
tion problem:

Y* = argmax RY (uy). (5)

In order to find the optimal streaming policy " in (5), we need
to derive the state transition probability P (uj1|ug,ar) and
devise the reward function 7, for each state k& associated with
action ay, as will be elaborated below.

IV. TRANSITION PROBABILITY EVOLUTION

In this section, we derive the transition probability evolution
defined in (3) by considering all the five system parameters.

A. Buffered Video Time Model

To maintain continuous playback, a video streaming client
normally contains a video buffer to absorb temporary mismatch
between the video downloading rate and video playback rate. In
conventional single-version video streaming, the buffered video
playback time can be easily measured by dividing the buffered
video size by the average video playback rate. In DASH, how-
ever, different video versions have different video playback
rates. Since a video buffer contains fragments from different ver-
sions, there is no longer a direct mapping between the buffered
video size and the buffered video time. To tackle the problem,
we use the buffered video time to measure the length of video
playback buffer.

The buffered video time process, represented as ¢ (t), can be
modeled as a queue with a constant service rate of unity, i.e., in
each second, a piece of video with playback length of one sec-
ond is dequeued from the buffer and then played. The enqueue
process is driven by the video download rate and the down-
loaded video version. Specifically, we assume a video clip is
encoded into L different versions, with different playback rates
Vi <V, < ... < V. All versions of the video are partitioned
into equal-length fragments, each of which consuming the same
playback time of T". We adapt the video bitrate when a fragment
has been downloaded completely. Without loss of generality,
suppose a client starts downloading fragment & at time instant
t; and the fragment is downloaded completely at ¢j.. Then, we
have

¢ s Vk+1 ax (ur)
k+1 ~ tet1 = bZ T= by T. (6)

And the buffered video time evolution becomes

o () 7 )

q(ti) =q (i) +T—
where the second term of (7) is the added video time upon
the completion of the downloading of fragment k£ + 1, and the
third term reflects the fact that the buffered video time is con-
sumed linearly at a rate of unity during the downloading process.
Therefore, when the fragment are requested continuously, we
have t; | =t} and

ag (u
i1 =q(th) =an + T~ %T ®

On the other hand, if the bandwidth is too high, a sleep mech-
anism is used to postpone the the fragment request so as to avoid
buffer overflow [13]. Assuming the sleeping time is 7, we have
tp . =1t} + 75 and

: (Uk:)T

a
%H:qﬁﬂ):%+Tfkm T )

For the changing rate of buffer occupancy, since it is hard to
obtain the accurate expression for any time instance, we propose
to use the fluid approximation [26], which evenly distributes
the added video time over the download interval for the whole
fragment, then we have

dq (t)
()=
k41 ( ) dt
~ q (tiﬂ) —4q (%1)
t2+1 —tiﬂ
by,
= —1,te (.4, t5 . (10)
ay, (uk) (L-‘rl k+1]

B. Video Rate Switching Model

According to the above-mentioned system evolution and state
definition, the video rate of fragment k£ + 1 is determined by the
associated state and action as follows:

(1)

Thus, given state u; and action ay, the video rate vector and
video rate consistency function are updated as

Vky1 = ap (ug) .

Vgl = [Uk-N12,Uk-N13, " Uk, Gk (U)] (12)
L, ifvp_yyo=Vk-nNi3="=v = ay (up)
A1 =
0, else
(13)
where v, _N12,Vk_N13,- -,V are given in state uy,.

C. Markov Channel Model

In this work, the smoothed throughput is used for bandwidth
estimation. However, instead of directly using the smoothed
throughput, a heterogeneous and time-varying Markov model
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is used to estimate the future bandwidth [27], [28]. To intro-
duce the channel model based on Markov theory, we first di-
vide the bandwidth into several regions, each presenting a state
of the Markov channel model, where the total number of states
equals the number of regions. Assuming that there are C' states,
i.e., the bandwidth is divided into C regions, the following
C x C transition matrix is used to characterize the state transi-
tions of a Markov channel at stage k:
p’f1 p’fc
Pr = (14)
Pen Pec
where element pfj denotes the transition probability from state
1 to state j.

The matrix is initialized with p{; = 5.Vi<C,j<C. As-
suming that the smoothed throughput of downloading fragments
k and k + 1 falls in region i’ and j’ respectively, the matrix is
then updated after successfully downloading fragment k + 1 as
follows:

Cxph +1
—z%%r—,ifi:f&j:f

Pij Cf? it ity
pf’j, else.

Note, the number of states C' can be adjusted considering that a
large C' will generate smaller quantification intervals and hence
provide a more accurate bandwidth predication, while increas-
ing the number of state-variables and computational complexity.

D. Transition Probability

The set of transition probabilities between consecutive system
states is used to characterize the system evolution. For a selected
action ay, the transition probability from state uj to w4 iS
given by (3), which can be rewritten as

P(Uk+1‘uk,ak)
=Pr(@rs1, @hats Vit Moty bot Qs @y Vi, Ak brey ar ()
(16)

Considering that the system parameters are independent of each
other, from (8)—(9), we can find that 7) buffer occupancy g+ 1 is
a function of gy, by, and ay, (uy); 2) the changing rate of buffer
occupancy q;;+1 is a function of g and ay, (uy) as shown in (10);
3) (11)—(13) show that video rate vector v; 1 and video rate
consistency function Ay 1 are only dependent on action ay, (ug);
and 4) the bandwidth model is independently formulated by a
Markov channel. Besides, for a given state and action at stage &,
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qx, bi., and ay, (uy) are constant. Therefore, (16) can be further
rewritten as

P (wps1 |ug, ag)
=Pr(qr+1 gk, by ar (ui)) * Pr(qhyq |br, ar (ur))
#Pr (Vi1 [ Vi, a (we) ) * Pr(Apir [Ar, ar (ur))
* Pr (by41 [br) a7

where at the right hand side of (17), the first and second
terms about buffer occupancy can be obtained by (8)—(10), the
third and fourth terms about video rates can be obtained by
(11)—(13), and the last term is derived from the Markov channel
model in Section IV-C.

V. REWARD FOR RATE SWITCHING

In this section, we propose a reward function to measure the
effectiveness of an action. The reward function is then used to
find the optimal video rate that maximizes the QoE. Thus, when
we determine the actions, i.e., the bitrates of video segments to
be requested, we need to consider the factors that affect the QoE.
In this work, we take into account the effects of video playback
quality, video rate switching frequency and amplitude, buffer
overflow/underflow, and buffer occupancy on user experience.

For the video playback quality and video rate switching fre-
quency and amplitude, the mean video rate and temporal vari-
ance of video rate associated with the latest [N segments are
used to measure the rewards. Therefore, for action a;, the mean
video rate my, and temporal variance o}, are calculated by

1 N-1
N_1 (Z Vk+i-N+1 T Gk (uk)>

i=1

my, (18)

B \/Z,N_ll (Uksion+1 —me)® + (ag (up) —mi)?
ok N_-1

19)

and the rewards of these two factors by taking action aj are
denoted by 7,,,, and r,, respectively.

On the other hand, from the control point of view, there may
exist fundamental conflict between stabilizing video rate and
maintaining stable buffer occupancy, due to unavoidable net-
work bandwidth variations. Nevertheless, from the end user
point of view, video rate fluctuations are much more visually
perceivable than buffer size oscillations. The recent work in
[18] shows that switching back-and-forth between different rates
can significantly degrade a user’s viewing experience, whereas
buffer occupancy variations do not have direct impact on visual
quality as long as the video buffer dose not deplete. But playback
freeze (due to buffer underflow) generally has a much more neg-
ative impact on user experience than rate switching [23], [29].

PD __
Vpy1 =

Vs

v + 7 (K (a (1) — a0) + Kad's)

if q (tZJrl) > Ghigh Orq (ti+1) > Qlow
(20)

else
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To address this problem, Our previous work [13] proposed to
use two buffer thresholds, g, and giow , as the operating points
for rate switching decision to avoid buffer overflow/underflow.
In this method, the video rate is selected by a PD controller when
the buffered video time is higher than gy,;4), or lower than g6y ;
otherwise, it keeps unchanged. Thus, the video rate for fragment
k + 1is given in (20), at the bottom of the previous page, where
vy denotes the video rate at the operating point, which equals
the estimated bandwidth ¢;,, K, and K are the proportional co-
efficient and differential coefficient, respectively, and qq is the
operating point. More details about this algorithm can be found
in [13], which shows that video rate selected by the PD controller
can mitigate buffer underflow/overflow effectively. Therefore,
we use the difference between video rates v/’ and ay, (uy) to
measure the reward of buffer overflow/underflow (denoted by
7y, ) associated with action ay.

Moreover, to maintain continuous video playback, the buffer
occupancy needs to be controlled in a certain range, too high or
too low of the buffer occupancy runs the risk of buffer overflow
or underflow. Therefore, the decision on action a;, must consider
the influence of buffer occupancy, and the reward of buffer
occupancy associated with action ay, is denoted as 7, .

At last, the overall reward of action a; under state wu; is
defined as the linear combination of the factors discussed above

rE=R(up) =a*ry, +bxr,, +cxry +dxr, (21
where parameters a, b, ¢, d are used to weight the four factors
properly witha + b+ c+d = 1.

In the following, we will derive the four reward functions
involved in 7 under three scenarios, since those factors that a
user concerns are generally different under different streaming
scenarios. For example, when the buffer occupancy is high,
we should pay more attention on avoiding buffer overflow by
increasing the video playback quality (rate). On the other hand,
when the buffer occupancy is low, reducing the video rate to
avoid playback interruptions is more urgent.

A. Buffer Overflow Control

When ¢ (ti +1) > nign, buffer overflow needs to be avoided
by selecting a higher video rate. As reported in [30], user expe-
rience follows the logarithmic law, and the QoE function can be
modeled in a logarithmic form for applications of file download-
ing and web browsing. As such, we use the logarithmic function
of the mean video rate as the reward of video rate switching
amplitude

Tm, = 1n(m; +¢€) (22)
where ¢ is a small positive number with € > 1 to ensure that
T, > 0.

While for the video switching frequency, if the video rates for
the previous N fragments remain stable, we can ignore its effect
on visual quality since user is sensitive to frequent short-term
rate fluctuations rather than long-term rate switchings. Other-
wise, we use the following logarithmic function to represent the

temporal variance:

—111(0'1€ —|—€), if A, =0
Ty, = (23)
0, if Ay =1.
On the other hand, it is expected to take an action to drag the
buffer occupancy to be not higher than g1 to avoid buffer
overflow. For this single purpose, the PD controller in (20)

has proven to be effective for rate selection [13]. Thus, ry, is
defined as

ry =—In (fak (ug) — vfﬁ‘ + 8) 24)

and the reward of buffer occupancy is simply measured by the
gap with the bound of buffer overflow gyig1,

Top = Qhigh — Jk+1- (25)

B. Buffer Underflow Control

When ¢ (£§, 1) < iow. buffer underflow needs to be avoided
by taking action ay, i.e., a lower video rate should be selected
to ensure continuous video playback. Similar to the case that
q (ti +1) > @nign, the rewards of video rate switching ampli-
tude, switching frequency, and buffer underflow associated with
action ay are the same as in (22)—(24). The reward of buffer
occupancy in (25) is rewritten as

Tor = dk+1 — Glow - (26)

C. Smooth Rate Control

When giow < ¢ (£;,1) < Guign. the probability of buffer un-
derflow/overflow is low. The reward of video rate switching
amplitude and switching frequency associated with action ay,
are therefore set as the same as (22)—(23). Besides, the reward
of buffer underflow/overflow is simply set as

r =0 27)

considering the low risk of buffer underflow/overflow when the
buffer occupancy stays at a moderate level.

Moreover, the ideal case is to keep the buffer occupancy at
the middle of the two buffer thresholds so as to maximize the
safe margin for avoiding buffer underflow/overflow. Therefore,
the reward of buffer occupancy is defined as

Qlow T+ Ghigh

To, = —|4k+1 — 9 (28)

With the transition probability in Section IV and the reward
functions mentions above, the optimal rate adaption policy can
be found by solving the optimization in (5).

VI. Low-COMPLEXITY SUB-OPTIMAL GREEDY ALGORITHM

Directly solving the optimization problem in (5), however,
poses several challenges. First, solving (5) implies to determine
the video rates for all fragments when making rate adaptation
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decisions, which is impractical since there are quite a few uncer-
tainties during a streaming session due to time-varying network
and user conditions. Besides, the computational complexity in-
creases exponentially with the total number of fragments K,
making it too expensive to support on-line video streaming
services. Therefore, we propose a sub-optimal algorithm that
greedily selects the video rates for individual fragments sequen-
tially, instead of determining the video rates for all fragments
concurrently.

In mDASH, the current state involves all relevant information
contained in historical data. Once the state is known, the historic
data can then be thrown away, since the current state provides
sufficient statistics for estimating the future states. On the other
hand, action a; at stage k£ not only affects reward r;, but also
affects state uy . 1, which further affects action ay at stage k +
1. This effect will propagate to the future until all the fragments
are completely downloaded.

Since more future states are considered in (4), generally better
actions can be selected at stage k. Meanwhile, the search time
consumed by a rate-switching action increases exponentially
with the number of considered future states. Therefore, there is a
trade-off between visual quality and computational complexity.
In mDASH, when the buffered video time satisfies that g <
q (t; 1) < auign. continuous video playback can be guaranteed
in the near future, and there is sufficient time to take more future
states into consideration to improve QoE. Otherwise, when the
buffered video time satisfies that ¢ ( A +1) > Qhigh OT ¢ (tz +1) <
Glow » 1t 18 likely that a buffer overflow/underflow may happen
soon, and thus less future states are preferred. Therefore, in
this work, the reward gained at stage k is revised as shown in
(29) at the bottom of the page, which indicates that when the
buffer occupancy is too high or too low, we make the action
decision without taking any future states into consideration;
otherwise, one additional future state is considered. Though it is
a sub-optimal strategy compared to the reward in (4), the state
and reward definitions have considered the long-term effects of
video rates, thereby still doing a good job as will be validated
by our experimental results.

VII. PERFORMANCE EVALUATION

In this section, we evaluate our rate adaption algorithms by
conducting both controlled experiments on a network test-bed
and uncontrolled experiments in real Internet. In addition, the
subjective quality of received video is also evaluated.

A. Experiment Setup

We implement our mDASH system in linux/unix platforms.
Our testbed consists of three nodes: one web server used for
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media delivery, one router, and one DASH client. The server
and client run the standard Ubuntu of version 12.04.1. The
server is installed with the Apache HTTP server of version
2.4.1. Dummynet is used in the server to control the upload
bandwidth [31], therefore, the bottleneck is the bandwidth be-
tween the server and the router. In our experiments, same as Net-
flix, the server provides five different versions of video bitrates:
300 Kbps, 700 Kbps, 1.5 Mbps, 2.5 Mbps, and 3.5 Mbps. Each
video is divided into equal-length video fragments with a length
of 2s.

Due to the complex network characteristics, it is hard to find
the optimal values of the two thresholds ¢,.x and gy [13].
In our experiments, we set ¢,,i, = 5 s since this start-up delay
can be tolerated by most existing streaming systems, and ¢, ax
= 25 s considering that it is reasonable for current existing de-
vices, including mobile phones, to buffer such a length of media
data. The maximal buffer size is set to 30 s for all schemes in
this work. However, In general, a better performance can be
achieved with a larger buffer size if the buffer delay is allowed.
This is because with a large buffer size, the bandwidth varia-
tions can be compensated with the buffered video and a smooth
video rate is guaranteed. Besides, we can also set a relatively
large buffer occupancy threshold ¢y,i, to maintain high buffer
occupancy so as to ensure continuous video playback. We eval-
uate the performances of all schemes with buffer sizes of 30 s,
60 s, and 90 s, but due to the space limit, we only show the
results with a 30 s buffer size, and put the complete results in
the supplementary material.

For performance comparison, besides our mDASH method,
we also implement the famous DASH clients, i.e., Netflix [15],
the latest SDP-based (named sdpDASH) [11] and typical buffer-
based (named bufDASH) [6], [7] scheme. In Netflix, the video
rate is selected mainly based on the bandwidth. In sdpDASH,
the video rate is selected by the Markov decision. In order
to mitigate the influence of bandwidth estimation errors in
video rate selection, a map between the buffer occupancy and
video rate is defined [6], [7], and the video rate is switched ac-
cording to the map and buffer occupancy in bufDASH. Besides,
to evaluate the performance of our proposed greedy algorithm,
the results of the optimal solution (namely Optimal), i.e., set the
search depth as the number of fragments, are also shown.

B. Impact of Short-Term Bandwidth Variations

Here we summarize the results in the case that the avail-
able bandwidth goes through some positive or negative spikes
that last for 3 s—6 s. As shown in Fig. 3, avail_bw denotes the
available bandwidth controlled by Dummynet, and fragment
throughput refers to the download throughput for a particular

Z’Uk+ 1 P (uk'+1 Iuka Qg (uk) ) Tk,

if q (t]:+1) < Qlow OI' g (t]:+1) > Ghigh

'Rw (uk ) =

Uk +1

> P (uwpsr |k, ar (uk)) (Tk D upsy P (o [ups1, akr (Uk+1))"”k+l)>

(29)

if qow < ¢ (t}:Jrl) < Ghigh
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Fig. 3.  Test pattern with short-term bandwidth variations.

fragment, which tracks the available bandwidth avail-bw quite
well. Since such short-term variations are common in practice,
an effective rate adaption scheme should be able to well com-
pensate for such spikes using its buffered video, without causing
short-term rate switchings.

We evaluate the performances of all the schemes under the
short-term bandwidth variations as shown in Fig. 4. Fig. 4(a)
shows that in Netflix, when there are positive or negative band-
width spikes, the video rate is switched immediately. This is
because the video rate in Netflix is selected solely based on
the bandwidth with some predefined threshold. Besides, the se-
lected video bitrate is never allowed to be higher than the avail-
able bandwidth, therefore, its buffer occupancy usually stays at
a very high level (about 25 s, the maximal buffer size is 30 s).
In contrast, although the average bandwidth remains stable as
shown in Fig. 3, the video rate with bufDASH is periodically
switched up and down to avoid buffer overflow and underflow,
making the buffer occupancy fluctuates periodically. This is be-
cause its video rate is solely a function of buffer occupancy.
Though buffer overflow and underflow are avoided, such fre-
quent video rate fluctuations usually deteriorate QoE signifi-
cantly. In sdpDASH, the video rate fluctuates heavily while it
stabilizes the buffer occupancy. This is because the cost func-
tion with sdpDASH is mainly focused on stabilizing the buffer
occupancy, whereas the smoothness of video rate is not well
considered. Thus, its buffer occupancy keeps stable to guarantee
continuous video playback while sacrificing the smoothness of
video rate. Besides, since the video rate with bufDASH is only
dependent on the current buffer occupancy, when a negative
spike occurs, the buffer occupancy decreases rapidly, leading to
an unnecessary rate switching down, and vice versa when there
is a positive spike.

Different from these schemes, with mDASH, the rate is
switched between 1.5 Mbps and 2.5 Mbps. This is because
mDASH selects the video rate based on Markov decision, which
is further dependent on the system state and reward function,
where a video rate higher than the available bandwidth is al-
lowed, thus achieving better bandwidth utilization. Compared
to Netflix, sdpDASH, and bufDASH, besides continuous video
playback, our method takes into account the smoothness of
video rate in estimating the system state and reward. We can
observe that the video playback rate keeps unchanged for at

least 80 s (about 40 fragments), making rate switching infre-
quent and thereby avoiding significant degradation on QoE.
Moreover, Fig. 4(d) shows that the lowest buffer occupancy is
about 6 s (three fragments) which is sufficient to guarantee con-
tinuous video playback. Furthermore, the performance of the
optimal algorithm is close to that of mDASH. The reasons why
mDASH can achieve comparable performance with the optimal
algorithm are threefold. First, the effect of future actions on the
decision becomes smaller and smaller due to the discount pa-
rameter A. Besides, since the available video bitrate is discrete,
the same video bitrate may be selected even if the action costs
are different. Finally, the most important reason is that mDASH
dynamically adapts the reward function to three different sce-
narios of buffer occupancy. Under a certain scenario, the effect
of some factors on the cost function may be negligible even
if more future actions are considered. For example, when the
buffer occupancy is low, the video rate switching decision is
mainly decided by avoiding playback freeze.

Furthermore, in Table I, we compare the performance of var-
ious methods in terms of several quality metrics, including the
average video bitrate, bandwidth utilization, average buffer oc-
cupancy, maximal buffer occupancy, minimal buffer occupancy,
and instability [32]. The instability metric is used to measure
the smoothness of video rate, where a small value indicates
high smoothness. From Table I we can observe that Netflix
leads to the lowest average video bitrate and bandwidth utiliza-
tion, while the other schemes achieve very close performance in
average video bitrate and bandwidth utilization. This is mainly
because the Netflix method is too conservative to select a video
bitrate higher than the available bandwidth. As a result, the
buffer occupancy usually stays at a relatively high level, mak-
ing the bandwidth utilization low. In contrast, with the other
schemes, the buffer occupancy fluctuates between empty and
the full buffer size (30 s) to ensure continuous video playback.
At last, we also compare the instability performance. The results
in Table I shows that mDASH achieves the smallest value of in-
stability (i.e., the smoothest video bitrate). This is also consistent
with the results in Fig. 4.

C. Impact of Long-Term Bandwidth Variations

We then evaluate the impact of long-term bandwidth varia-
tions on QoE under the scenario depicted in Fig. 5. As shown
in Fig. 6, in the intervals where the available bandwidth keeps
unchanged, all the schemes perform similarly to that in Fig. 4.
When the bandwidth changes, all the schemes switch the re-
quested video rate to avoid buffer overflow/underflow as demon-
strated in the buffer occupancy results in Fig. 6.

Again, the video bitrate with Netflix is switched immedi-
ately when the bandwidth changes, and smooth video bitrate
is obtained under the long-term bandwidth variations depicted
in Fig. 6(a). However, such bandwidth-based scheme tends to
select video bitrates lower than the available bandwidth, which
leads to low bandwidth utilization as shown in Table II. In
contrast, with both bufDASH and sdpDASH, similar to that
in Fig. 4, the smoothness of video bitrate is sacrificed in or-
der to stabilize the buffer occupancy. Compared to bufDASH
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TABLE I
PERFORMANCE COMPARISON UNDER SHORT-TERM BANDWIDTH VARIATIONS

Scheme Average video Bandwidth Average buffer Maximum buffer Minimum buffer Instability
bitrate(Mbps) utilization(%) occupancy(sec) occupancy(sec) occupancy(sec)
Netflix 1510 81.4 232 28 12 0.027
bufDASH 1831 98.7 14.9 24 6 0.046
sdpDASH 1832 98.8 157 19 11 0.370
mDASH 1826 98.6 16.9 24 6 0.010
Optimal 1828 98.7 16.7 24 6 0.010
4000 aval bw ing is preferred to r'ate smoothing. But th.e sw1t(.:h1ng amplitude
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3000k | (e.g., see fragment 110 at 220 s). At last, when the buffer occu-
& ’»“"’W’W’a pancy increases to gpign, avoiding buffer overflow becomes the
Q L 4 . . . .
) 2500 Lw—— most important, so video rate is further switched up. Conversely,
B 2000 W when the bandwidth goes low, the video rate is switched from
E A . .
2 4500+ ] 3.5 Mbps to 2.5 Mbps, and is then further switched down to
© - . . .
@ 1000 1.5 Mbps to avoid buffer underflow. The proposed switching
scheme is advantageous because, on one hand, it avoids buffer
5001 ] overflow and underflow, and, On the other hand, it can also avoid
0 ‘ ‘ ! ! ! frequent video rate fluctuations and maintain the smoothness of
0 100 200 300 400 500 600 . L
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Fig. 5. Test pattern with long-term bandwidth variations.

and sdpDASH, mDASH achieves a better tradeoff between the
smoothness of video rate and bandwidth utilization as illustrated
in Fig. 6. Based on the reward function used in mDASH, when
the buffer occupancy is too high or too low, rate switching is
performed to avoid buffer overflow or underflow. Otherwise, it
tends to maintain the smoothness of video rate. From Fig. 6(d)
we can observe that when the video rate is smaller than the avail-
able bandwidth, the buffer occupancy increases without causing
video rate switchings to maintain the smoothness of video rate.
When the number of consecutive fragments requested at the
same video rate increases to a certain threshold, rate switch-

be avoided which is useful in improving the QoE.

The comparison of various quality metrics with long-term
bandwidth variations are summarized in Table II. The buffer
occupancy results indicate that all the schemes effectively mit-
igate buffer overflow/underflow. Besides, Netflix again leads to
the lowest average video bitrate and bandwidth utilization due
to its conservative rate adaptation scheme. On the other hand, it
achieves smoother video bitrate than bufDASH and sdpDASH
as measured by the instability metric. Overall, nDASH achieves
comparable performance with the optimal scheme as evi-
denced in Fig. 6(d) and Table II, while achieving much lower
complexity than the optimal scheme which takes about 5 min
on average to make a decision. This also demonstrates the ef-
fectiveness of our proposed rate adaptation approach.



ZHOU et al.: mDASH: A MARKOV DECISION-BASED RATE ADAPTATION APPROACH FOR DYNAMIC HTTP STREAMING

Time(Sec)

Time(Sec)

Time(Sec)

747

0 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600
4000 . : ; — 40 4000 . : : — 40 4000 . : ; . 40
* Video Bitrate * Video Bitrate = Video Bitrate
3500 —Buffer Occupancy(| 3% 3500 — —Buffer Occupancyl| 3% 3500 Sem——— —Buffer Occupancy]| 3%
3000 1 1 130
22500 _fm- 253
)
<2000 1205
2 =
81500 — 153
1000 110
-
500 15
0 . . . . . 0 0 . . . . . 0 0 . . . . . 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Fragment Index Fragment Index Fragment Index
(2) (b) (©)
Time(Sec) Time(Sec)
0 100 200 300 400 500 600 0 100 200 300 400 500 600
4000 v ; - — 40 4000 40
= Video Bitrate + Video Bitrate
3500 T— —Buffer Occupancyf| 3% 3500 T— —Buffer Occupancy]| 35
3000 30 30001 30
§_2500 P s e 25 E §_2500 E R was—— e 258
<2000 205 £2000F 205
] 2z 2
& 1500 153 £1500 r15 3
1000 10 1000 10
500 5 500 5
0 . . . . . 0 0 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Fragment Index Fragment Index
(d) (e)
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(d) mDASH. (e) Optimal.

TABLE II

PERFORMANCE COMPARISON UNDER LONG-TERM BANDWIDTH VARIATIONS

Scheme Average video Bandwidth Average buffer Maximum buffer Minimum buffer Instability
bitrate(Mbps) utilization(%) occupancy(sec) occupancy(sec) occupancy(sec)

Netflix 1464 69.3 23.1 25 12 0.053

bufDASH 2085 98.8 18.6 30 10 0.023

sdpDASH 2087 98.9 14.6 18 7 0.239

mDASH 2079 98.5 139 25 3 0.012

Optimal 2087 98.6 13.4 25 3 0.012

D. Internet Experiments

We then test our proposed scheme in the Internet. We set
up one Planetlab node as the DASH server which is located
in Hong Kong, China (plabl.cs.ust.hk) and another Planetlab
node as the DASH client in Beijing, China (pl1.pku.edu.cn).
We do not inject any background traffic between the server and
client.

We conduct different experiments sequentially, in which the
bandwidth patterns are not controllable. The real bandwidth
traces for all compared schemes are illustrated in Fig. 7. For the
optimal scheme, since it is too time consuming to be performed
on-line, we implement it off-line using the bandwidth traces
collected from the results of mDASH. In all experiments, we
can observe long-term shift and short-term fluctuations of band-
width along the Internet transmission path. The video bitrate
(blue curves) and buffer size (red curves) evolution results of
various schemes are compared in Fig. 8. The results demonstrate
that our rate adaptation algorithm can well adapt to the vary-
ing network conditions, which is consistent with our testbed-
based results. The results show that mDASH can effectively
absorb short-term spikes using buffered video, without causing
short-term rate switching. While for long-term bandwidth
changes, it switches to an appropriate rate without causing buffer
overflow/underflow or playback interruptions. In contrast, Net-
flix implements a conservative rate adaptation scheme that tends

to maintain a high buffer occupancy. As for bufDASH, both the
buffer occupancy and the video bitrate fluctuate frequently since
it solely relies on switching the video bitrate to avoid buffer over-
flow/underflow. Compared to mDASH, although sdpDASH, can
better stabilize buffer occupancy, it also leads to frequent unnec-
essary bitrate switching since it does not maintain the smooth-
ness of video bitrate well. The buffer occupancy with bufDASH
and mDASH fluctuates within a certain range, whereas mDASH
more effectively suppress short-term rate switching compared
to sdpDASH. This is mainly because mDASH performs rate se-
lection by jointly considering the buffer occupancy, video rate
switching frequency and amplitude, buffer overflow/underflow,
and video playback quality. Note, the results show that sacri-
ficing the smoothness of video rate to stabilize the buffer occu-
pancy usually cannot do a good job in maintaining QoE since
from the end user point of view, visual quality degradation due
to rate fluctuations are much more perceivable than that due
to buffer occupancy oscillations as long as no playback freeze
happens.

The comparison of quality metrics shown in Table III shows
that, similar to results in Tables I and II, all the schemes
lead to very close average bandwidth utilization except Netflix.
Besides, all schemes can maintain that continuous playback
well. Again, mDASH achieves comparable performances with
the optimal scheme.
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TABLE III
PERFORMANCE COMPARISON OF RATE ADAPTATION OF DASH IN THE INTERNET (PLANETLAB)

Video bitrate adaptation over the Internet (Planetlab): video bitrate and buffer size evolution results. (a) Netflix. (b) bufDASH. (c) sdpDASH. (d) mDASH.

Scheme Average video Bandwidth Average buffer Maximum buffer Minimum buffer Instability
bitrate(Mbps) utilization(%) occupancy(sec) occupancy(sec) occupancy(sec)

Netflix 656 713 17.8 19 10 0.069

bufDASH 854 98.9 9.2 18 2 0.100

sdpDASH 914 98.3 17 22 10 0.185

mDASH 930 98.4 14.3 25 3 0.028

Optimal 941 98.5 14.2 25 3 0.027

Furthermore, to make a fair comparison, we also used the
same bandwidth trace collected from the Planetlab experiment
to evaluate all methods off-line. The bandwidth trace used for the
evaluation is shown in Fig. 8(d), and the bitrate and buffer results
for all methods are shown in Fig. 9. The results clearly show that
mDASH achieves much smoother video bitrate (i.e., much fewer
short-term bitrate switching) compared with the other meth-

ods. Besides, the buffer occupancy result demonstrates that no
playback freeze happens with mDASH. Furthermore, we also
compare several quality metrics for the five methods as
summarized in Table IV, which all consistently show that
mDASH achieves almost the same performance as the Op-
timal scheme and outperforms the other schemes in terms
of all metrics including the smoothness of video bitrate
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Fig. 9. Video bitrate adaptation under the same Internet (Planetlab) trace: video bitrate and buffer size evolution results under the same bandwidth trace.
(a) Netflix. (b) bufDASH. (c) sdpDASH. (d) mDASH. (e) Optimal.

TABLE IV
PERFORMANCE COMPARISON UNDER THE SAME INTERNET (PLANETLAB) BANDWIDTH TRACE

Scheme Average video Bandwidth Average buffer Maximum buffer Minimum buffer Instability
bitrate(Kbps) utilization(%) occupancy(sec) occupancy(sec) occupancy(sec)
Netflix 692 72.6 15.9 17 12 0.209
bufDASH 945 99.1 9.83 19 3 0.084
sdpDASH 940 98.6 16.1 21 11 0.299
mDASH 947 99.2 14.3 25 3 0.028
Optimal 951 99.4 14.2 26 3 0.028
TABLE V
DETAILED INFORMATION ABOUT THE TEST SEQUENCES
Content Version Length Resolution Average bitrate (Kbps) PSNR (dB)
Big Movie with 1 9m56s 720 x 480 286 31.7
Buck fast and 1 9Im56s 720 x 480 693 332
Bunny slow motion 3 9m56s 1920 x 1080 1482 36.1
4 9m56s 1920 x 1080 2469 38.6
5 9Im56s 1920 x 1080 3451 39.7
Tears Movie with 1 12m14s 720 x 480 291 30.8
of fast and 2 12m14s 720 x 480 678 32.1
Steel slow motion 3 12m14s 1920 x 800 1479 35.1
4 12m14s 1920 x 800 2589 36.9
5 12m14s 1920 x 800 3421 37.8
Sintel Movie with 1 14m48s 720 x 480 276 30.1
fast and 1 14m438s 720 x 480 657 31.9
slow motion 3 14m48s 1920 x 818 1446 33.7
4 14m48s 1920 x 818 2456 35.6
5 14m438s 1920 x 818 3411 36.9

(i.e., smaller instability), average video rate and bandwidth

utilization.

E. Subjective Visual Quality Evaluation

At last, we conduct subjective tests in order to validate the
performance of the proposed algorithm compared to the others.
We use three video sequences {Big Buck Bunny, Tears of Steel,

and Sintel} in the tests, which are all encoded into five ver-
sions with a rate of {300 Kbps, 700 Kbps, 1.5 Mbps, 2.5 Mbps,
3.5 Mbps}. Each version is further divided into equal-length
video fragments with a length of 2 s. The details of the test se-
quences are listed in Table V. For fair comparison, all the meth-
ods are tested against the same bandwidth traces collected from
the Planetlab. Then, for each rate adaptation scheme, according
to the video bitrate results, we combine the video fragments into
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Fig.10.  Subjective visual quality comparison in terms of average MOS scorers
for different methods.

a single video file. In our experiments, we invited 32 subjects to
participate in the subjective tests, all having normal visual acu-
ity, and color vision. None of the subjects had knowledge about
the algorithm implementations. Since there were 15 sequences
to be evaluated, asking subjects to evaluate all test sequence
would give them too much workload to keep their concentra-
tion on the evaluation. To avoid the problem, each subject was
asked to evaluate nine sequences, which are randomly chosen
from the 15 test sequences. Therefore, each test sequence was
thus evaluated by 19 subjects, which is enough to ensure the
results not be biased by a few subjects. The subjective evalua-
tions were carried out in a lab with controlled ambient light. The
displays used for presenting the sequences were 22 inches, with
a resolution of 1920 x 1080 and an aspect ratio of 16:9. The
subjects are asked to give a score immediately after watching
a sequence. The score ranges from O to 5 (a continuous scale),
where 0 indicates very poor quality of experience and 5 indicates
perfect quality of experience. The scores are given based on the
comprehensive feeling of the subjects themselves without any
suggestions.

For each test sequence, the highest and lowest scores are re-
moved and the MOS scores of all schemes are summarized in
Fig. 10. The results show that, consistent with the objective test
results, mDASH and the Optimal scheme receive near the same
MOS, which is much higher than the others. In contrast, Netflix
and sdpDASH receive the worst subjective scores. The perfor-
mance loss of Netflix mainly comes from its low bandwidth
utilization that leads to a much lower average video bitrate,
whereas the poor performance of sdpDASH is mainly due to
its frequent bitrate switching. At last, the MOS of sdpDASH is
slightly higher than that of bufDASH because both sdpDASH
and bufDASH achieve high and comparable bandwidth utiliza-
tion, but the video rate with bufDASH is smoother than that with
sdpDASH. Compared with the existing schemes, our proposed
mDASH jointly considers the bandwidth utilization, buffer state
and video bitrate’s smoothness, thereby leading to superior sub-
jective user experience as justified by its high MOS rating.

VIII. CONCLUSION

In this paper, we proposed a Markov decision based rate
adaption approach for dynamic HTTP streaming. We pro-
posed to take into account several system parameters that
have critical impact on visual quality, including video playback
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quality, video rate switching frequency and amplitude, buffer
overflow/underflow, and buffer occupancy. By carefully analyz-
ing the probabilistic characteristics of the DASH system, we
have proposed effective reward functions in terms of the con-
sidered system parameters for rate switching decision, so as
to maximize the quality of user experience. Moreover, to re-
duce the computational complexity, we have also proposed a
low-complexity sub-optimal greedy algorithm to support on-
line real-time video streaming. Our experiment results in both
the network test-bed and the real-world Internet all demonstrate
that our proposed method achieves significantly higher video
quality while maintaining smoother video rate compared to ex-
isting methods. In addition, the subjective quality tests further
demonstrate the effectiveness of our proposed method in terms
of the subjective user experience.
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