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Temporally Coherent Superresolution of Textured
Video via Dynamic Texture Synthesis

Chih-Chung Hsu, Li-Wei Kang, Member, IEEE, and Chia-Wen Lin, Senior Member, IEEE

Abstract— This paper addresses the problem of hallucinating
the missing high-resolution (HR) details of a low-resolution (LR)
video while maintaining the temporal coherence of the recon-
structed HR details using dynamic texture synthesis (DTS). Most
existing multiframe-based video superresolution (SR) methods
suffer from the problem of limited reconstructed visual quality
due to inaccurate subpixel motion estimation between frames in
an LR video. To achieve high-quality reconstruction of HR details
for an LR video, we propose a texture-synthesis (TS)-based video
SR method, in which a novel DTS scheme is proposed to render
the reconstructed HR details in a temporally coherent way, which
effectively addresses the temporal incoherence problem caused
by traditional TS-based image SR methods. To further reduce the
complexity of the proposed method, our method only performs
the TS-based SR on a set of key frames, while the HR details
of the remaining nonkey frames are simply predicted using the
bidirectional overlapped block motion compensation. After all
frames are upscaled, the proposed DTS-SR is applied to maintain
the temporal coherence in the HR video. Experimental results
demonstrate that the proposed method achieves significant
subjective and objective visual quality improvement over
state-of-the-art video SR methods.

Index Terms— Video super-resolution, video hallucination,
dynamic texture synthesis, video upscaling, motion-compensated
interpolation.

I. INTRODUCTION

W ITH the rapid development of multimedia and network
technologies, delivering and sharing multimedia

contents through the Internet and heterogeneous devices has
been more and more popular. However, limited by the storage
capability, channel bandwidth, and source resolution, videos
distributed over the Internet may exist in low-resolution (LR)
versions degraded from the sources. Moreover, consumer
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multimedia devices with high-definition and ultra-high-
definition displays have also been very popular. Nevertheless,
the resolutions of most existing videos are still not such high.
In this paper, we focus on investigating an efficient video
super-resolution (SR) approach for resolution enhancement
of a dynamic-texture video captured by a resource-limited
device (e.g., low-cost surveillance camera) or stored in a
lower resolution than the capability of a display device.
Enhancement of video resolutions would be beneficial for
other extended applications, such as face, action, or object
recognition, behavior analysis, and video retrieval.

A. Image Super-Resolution

Most SR methods in the literature were mainly designed
for image SR. The goal of image SR is to recover a
high-resolution (HR) image from one or multiple LR input
images, which is essentially an ill-posed inverse problem [1].
There are mainly two categories of approaches for image
SR: (i) traditional approaches and (ii) exemplar/learning-based
approaches. In the traditional approaches, one sub-category
is reconstruction-based methods, where a set of LR images
of the same scene are aligned with sub-pixel accuracy to
generate a HR image [2]. The main disadvantage of such kind
of approaches is that they require multiple input LR images
with accurate image registration. The other sub-category of
the traditional approaches is frame interpolation [3], which
usually generate over-smoothing images with ringing and
jagged artifacts. Furthermore, it has also been shown that
the limitation on magnification factor achieved by traditional
approaches is not easy to break [4].

The exemplar/learning-based methods [5]–[14] hallucinate
the high frequency details of a LR image based on the
co-occurrence prior between LR and HR image patches in
a training set, which has proven to provide much finer details
compared to traditional approaches. More specifically, for a
LR input, exemplar-based methods [5]–[8] search for similar
image patches from a pre-collected training LR image dataset
or the same image itself based on self-examples, and use their
corresponding HR versions to produce the final SR output.
Nevertheless, the HR details hallucinated by such kind of
approaches may not provide the true HR details. Hence, the
performance of this approach relies highly on the similarity
between the training set and test set or the self-similarity in
the image itself.

Moreover, learning-based SR approaches [9]–[14] focus
on modeling the relationship between different resolutions
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of images. For example, Yang et al. [9] proposed to apply
sparse coding techniques to learn a compact representation
for HR/LR patch pairs for SR based on pre-collected HR/LR
image pairs (SC-SR). Then, a coupled dictionary training
approach was proposed in [10] for SR based on patch-wise
sparse recovery, where the learned couple dictionaries relate
the HR/LR image patch spaces via sparse representations.
In [11], a sparse representation based framework was proposed
for image deblurring and SR based on adaptive sparse domain
selection and adaptive regularization, where two adaptive
regularization terms are introduced. In addition, Ren et al. [12]
proposed to utilize context-aware sparsity prior to enhance
the performance of sparsity-based restoration approach for
image denoising and SR. In addition, self-learning frameworks
based on self-similarity of an image were introduced for SR
in [13] and [14].

B. Video Super-Resolution

Image SR techniques can be extended to video SR by
incorporating temporal information. Most video SR methods
rely mainly on motion estimation for interpolating LR frames
between two key-frames (usually assumed to be of high
resolution) in a video [15]–[17]. In [15], a video SR method
based on key-frames and motion estimation was proposed.
In [16], an energy-based algorithm for motion-compensated
video SR was proposed for up-scaling a standard definition
video to high-definition video via optical flow. In addition,
a video SR algorithm was proposed in [17] to interpolate
an arbitrary frame in a LR video from sparsely sampled HR
key-frames which are assumed to be always available for a
LR video input.

On the other hand, exemplar/learning-based techniques
have been proposed for video SR. In [17], in the case that
motion-compensated error is large, an input LR patch is
spatially upscaled using the dictionary learned from the
LR/HR key-frame pair. In [18], adaptive regularization and
learning-based SR were integrated for web video SR by
learning a set of LR/HR patch pairs. An exemplar-based video
SR based on the codebooks derived from key-frames was also
proposed in [19]. Moreover, the property of nonlocal-means
was adopted for video SR in [20], which upscales each input
LR patch by linearly fusing multiple similar LR patches
based on self-similarity with no explicit motion estimation.

C. Texture Image/Video Super-Resolution

A main challenging problem in video SR is SR for dynamic
textural information [21]–[23], [34] which was rarely investi-
gated in the literature. In [24] and [25], texture synthesis (TS)
techniques were proposed for image/video synthesis, but
not for SR. For image SR with texture synthesis,
a TS-based SR (TS-SR) scheme that upscales an image
via texture hallucination was proposed in [26]. This method
interprets a LR image as a tiling of distinct textures and
each of which is matched to an exemplar patch in a data-
base of relevant textures, extended from the exemplar-based
approach in [5]. Although TS-SR can reconstruct fine HR
textural details, the exemplar-based TS is time consuming,

making the SR of whole video via TS-SR computationally
very expensive. Furthermore, individually hallucinating the
HR textural details of successive video frames usually renders
the HR textural details in a time incoherent manner, which
leads to visually annoying artifacts. Although such temporal
incoherence artifacts can be mitigated by imposing temporal
smoothness constraints in the optimization formulation of
TS-SR, its significantly increased computational cost would
make this method impractical. Therefore how to use TS-SR
to hallucinate fine HR textural details of a LR input video
in a computationally efficient way while maintaining the
temporal coherence of hallucinated HR textures still remains
a challenging problem.

D. Contribution of Proposed Method

To address the above problem, we propose a video SR
framework via dynamic texture synthesis (DTS) to effectively
and efficiently enhance the resolution of a LR video with
dynamic textures while maintaining the temporal coherence
of the reconstructed HR details. The proposed method divides
the input LR video frames into key-frames and non-key-
frames. We first apply the texture-synthesis-based SR (TS-SR)
method to hallucinate the HR textural details of each key-
frame, followed by employing a low-complexity bi-directional
overlapped block motion compensation (BOBMC) method to
interpolate the HR details of the non-key-frames between
two successive key-frames. To solve the problem of temporal
incoherence, we propose an exemplar-based DTS method to
refine the HR details of the super-resolved video based on the
temporal dynamics of the input LR video.

As shown in Fig. 1, our scheme first divides the input
LR video frames into key-frames and non-key-frames, with
a fixed (or dynamic) interval length between two successive
key-frames. Each LR key-frame is upscaled using patch-
based TS-SR [26]. Then, individual non-key-frames between
two successive key-frames are first upscaled by bicubic
interpolation, followed by BOBMC [17] to further interpolate
their HR details from the two anchor key-frames. After all
frames are upscaled, the proposed DTS-SR is applied to refine
the HR details so as to maintain the temporal consistency
between neighboring frames in the HR video. Similar to [26],
we collect a set of exemplar textures in advance to form a
multi-scale textural image database for texture synthesis.

The main contribution of this paper is two-fold: (i) we
propose an efficient framework which can hallucinate visually
fine and pleasing HR textural details of a LR video in a cost-
efficient manner; and (ii) our novel DTS-based SR (DTS-SR)
method can well maintain the temporal coherence in the
hallucinated HR video by learning the texture dynamics
from the input LR video. This problem, to the best of our
knowledge, was not well studied before.

Compared with the preliminary conference version [35] of
this paper, besides the significantly more detailed descriptions
about the proposed method, this paper has been significantly
extended in the following aspects: (i) This paper provides
comprehensive and in-depth analyses and interpretations
about the experimental results to offer good insights about the
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Fig. 1. Block diagram of the proposed DTS-SR framework. The key-frames are first uniformly sampled from the LR input video with an interval of K frames.
These LR key-frames are upscaled using TS-SR [26]. Bicubic interpolation followed by BOBMC [19] are then used to upscale and reconstruct the HR details
of individual non-key-frames in between two successive key-frames. Finally, these upscaled HR frames are rendered using the proposed DTS-SR to maintain
the temporal coherence.

proposed method. (ii) We have provided subjective evaluation
results in terms of “visual quality,” “temporal coherency,”
and “details reconstruction” based on subjective paired
comparisons. (iii) We have added a run-time complexity
comparison of various methods.

The rest of this paper is organized as follows. Sec. II
presents the proposed hybrid TS/BOMC video SR scheme.
Sec. III describes the proposed DTS-based refinement scheme
for maintaining the temporal coherence of reconstructed
HR video. In Sec. IV, experimental results are demonstrated.
Finally, Sec. V concludes this paper.

II. HYBRID TEXTURE-SYNTHESIS/
INTERPOLATION-BASED VIDEO

SUPER-RESOLUTION

A. Texture-Synthesis-Based SR for Key-Frames

Based on [26], each input LR key-frame can be divided into
different segments according to texture descriptors and then
each segment can be classified into an exemplar texture from
the pre-collected multi-scale textural image database. For each
segment in a LR key-frame I LR

t , where t denotes the frame
index, the best matched patch zLR

p,t (p denotes the patch index)
for each patch xLR

p,t in I LR
t is searched in the exemplar texture

set T by

zLR
p,t = arg min

z∈T
d
(
xLR

p,t , z
)
, (1)

where d denotes the distance between two textural patches,
P1 and P2, defined by [26]

d (P1, P2) =
∣
∣
∣∣

P1 − μ1

σ1
− P2 − μ2

σ2

∣
∣
∣∣, (2)

where the symbols, μi and σi , respectively, denote the mean
and standard deviation of the pixel values in each patch Pi ,
i = 1, 2.

Fig. 2. Texture synthesis results obtained by (a) Bicubic; (b) NLM-based
SR [20]; (c) SC-SR [9]; and (d) TS-SR [26] (employed in our method).

Then, the SR version xSR
p,t of xLR

p,t can be hallucinated based
on the HR version zHR

p,t of zLR
p,t from the database and the

texture synthesis by [26]

xTS
p,t =

(
zHR

p,t − μ
(
zHR

p,t

)) σ
(

MI
(
xLR

p,t

))

σ
(

MI
(
zHR

p,t
)) + μ

(
xLR

p,t

)
, (3)

where μ(x) and σ(x) respectively represent the mean and
standard deviation of patch x, and MI (x) denotes the
middle-frequency component of x.

Based on (3), the high-frequency components of the
reconstructed HR patch can be synthesized directly from the
textural image database, as exemplified in Fig. 2, which shows
that TS-SR [26] provides significantly finer details compared
to the other SR methods. Nevertheless, it is expected that
individually applying TS-SR to each LR frame will cause the
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Fig. 3. (a) The difference image between two neighboring SR frames
synthesized using TS-SR; and (b) the difference image between the two cor-
responding HR ground truths. Comparing (a) with (b), false motions due to
incoherent texture synthesis can be observed as indicated by the grey circles.

temporal incoherence artifacts in the reconstructed SR video.
For example, as illustrated in Fig. 3(a), the difference image
between two neighboring SR frames synthesized using TS-SR
shows much motion in textures. However, comparing Fig. 3(a)
with the difference image of the two corresponding HR
ground-truths [see Fig. 3(b)], we can observe that some
regions [e.g., those indicated by the gray circles in Fig. 3(a)]
actually are false motions due to incoherent texture synthesis
since they cannot find corresponding motions in the ground-
truth difference image in Fig. 3(b). Hence, in the proposed
method, we only apply TS-SR to upscale a set of LR key-
frames. Then, we apply BOBMC [17] to interpolate the HR
details of non-key-frames between two successive key-frames,
followed by the proposed DTS-SR to refine the HR details
so as to maintain the temporal coherence of the resulted HR
video, as described in Sec. II-B and Sec. III, respectively.

B. Bidirectional Interpolation for Non-Key-Frames

After upscaling the key-frames via TS-SR for an input
LR video, we apply BOBMC to interpolate the HR details
of non-key-frames between two successive key-frames.
Considering a pair of upscaled HR key-frames I TS

t and I TS
t+K

where K denotes the distance between the two successive
key-frames, each LR non-key-frame I LR

t+n in between them
is initially up-scaled to the desired HR size via bicubic
interpolation (denoted by I U

t+n), their HR details are then
reconstructed using BOBMC. To perform forward motion
estimation (ME) for each non-overlapped patch in I U

t+n with
respect to I TS

t , the patch together with its surrounding pixels
are extracted for overlapped block matching to estimate the
motion vector (MV) v = (vx , vy) by

v∗ = arg min
v∈�

SAD (v), (4)

where v∗ denotes the estimated best-match MV for this patch,
� denotes the search window, and SAD (sum of absolute
differences), which is the most commonly used metric for
block matching-based motion estimation due to its simplicity

Fig. 4. The weight matrices for 4 × 4 block-based BOBMC [17].

and promising performance [36], is defined as

SAD (v) =
∑

i, j

∣
∣I U

t+n

(
ox + i, oy + j

)

− I TS
t

(
ox + i + vx , oy + j + vy

) ∣∣, (5)

where
(
ox , oy

)
denotes the location of the current patch.

Similarly, backward ME between I U
t+n and I TS

t+K can be per-
formed by the same technique in the reverse motion direction.

After performing the bidirectional ME for I U
t+n with respect

to I TS
t and I TS

t+K , each patch in I U
t+n can be upscaled

using the motion-compensated blocks with the estimated MVs
(forward and/or backward MVs according to the SADs) and
the pre-specified weight matrices as

xBOBMC
p,t+n (i, j)

= W C (i, j) · xC
t+n (i, j) + W T (i, j) · xT

t+n (i, j)

+ W B (i, j) · xB
t+n (i, j) + W L (i, j) · xL

t+n (i, j)

+ W R (i, j) · xR
t+n (i, j), (6)

where xBOBMC
p,t+n denotes the p-th upscaled patch via BOBMC

in I U
t+n , xC

t+n (i, j), xT
t+n (i, j), xB

t+n (i, j), xL
t+n (i, j), and

xR
t+n (i, j) respectively represent the pixel values at (i, j)

in the motion compensated patches corresponding to the
MVs of the current patch, the top neighboring patch, bottom
neighboring patch, left neighboring patch, and righting
neighbor patch, respectively, and the weight matrices,
W C, W T, W B, W L, and W R, are shown in Fig. 4 [17]. Note
that the pixel values of overlapped regions are normalized by
their summed weight value.

After applying TS-SR and BOBMC to upscale an input
LR video, the resulting HR video still suffers from the problem
of temporal inconsistency. We then apply the proposed
DTS-SR to solve the problem, as explained below.

III. DYNAMIC TEXTURE SYNTHESIS-BASED REFINEMENT

Although the hybrid TS-SR/BOBMC SR scheme can
generate fine HR details, it usually leads to significantly
different temporal texture dynamics from that of the original
HR video because the HR details of key-frames are separately
hallucinated making them temporally incoherent and those
of non-key-frames are interpolated from the temporally
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Fig. 5. Examples of low-dimensional trajectories projected from the ground-
truth HR textural patches (red), its downscaled LR patches (pink), the
HR patches upscaled from the LR patches via TS-SR + BOBMC (blue), and
the SR patches via the proposed DTS-SR method (green), respectively. The
three axes, PC-I, PC-II, and PC-III indicate the first, second, and third principal
components of a video patch projected using PCA.

incoherent key-frames. Such inconsistent texture dynamics
yield temporal incoherence artifacts in the SR video.
To verify this, we crop a dynamic-texture video patch from a
LR or HR video and project it to a low dimensional subspace
using principal component analysis (PCA). As a result, in
the subspace of the first few principal components, we can
visualize and compare the low-dimensional trajectories of
HR, LR, and SR dynamic-texture video patches over time.
For example, as illustrated in Fig. 5, the low-dimensional
trajectory of a ground-truth HR video patch in the subspace
of the first three principal components is similar to that of its
downscaled LR patch, but is significantly different from the
trajectory of the SR patch upscaled from the LR patch using
hybrid TS-SR/BOBMC. This motivates to learn the temporal
texture dynamics of the HR video from its LR version and
use the learnt texture dynamics to refine the HR details based
on dynamic texture synthesis so as to effectively mitigate the
temporal incoherence artifacts.

Fig. 6 depicts the proposed DTS-based refinement scheme,
in which both the input LR frames and the reconstructed HR
frames obtained via hybrid TS-SR/BOBMC are used to derive
temporally coherent HR video frames. Our method is based on
the assumption that the content of a textural patch varies along
time and the transition between the textures can be modeled
as a linear or nonlinear system [21]–[23], [34]. For sake of
simplicity, we adopt the following linear model [22]:

xp,t+1 = Axp,t , (7)

where xp,t and xp,t+1 denote two patches at the same
position p of the two successive frames with indices t and t+1,
respectively, and A denotes the transition matrix of dynamic
texture for xp,t . Based on [22], dynamic textures can be
formulated as a linear autoregressive (AR) system as:

yp,t+1 = Ayp,t + N (0,�t ), (8)

where yp,t = CT xp,t , C is an orthogonal projection matrix
used to reduce the dimensionality of the dynamic textures
so that the dimensionality is smaller than or equal to the

number of frames to avoid the underdetermined problem, and
N (0,�t ) denotes the zero-mean normally distributed additive
noise that captures the uncertainty with covariance matrix �t .

Since the AR model in (8) is established for the low-
dimensional projected data yp,t , prior to estimating the model
parameters A and �t in (8), we need to estimate the projection
matrix C first. As shown in Fig. 6, the HR projection matrix
CHR is estimated from the SR frames obtained via hybrid
TS-SR/BOBMC by using principal component analysis (PCA)
as follows:

CHR = arg min
C

∥
∥xTS_BOBMC

p,t −CCT xTS_BOBMC
p,t

∥
∥2

(9)

s.t. rank (C) = d and CCT = I,

where xTS_BOBMC
p,t denotes a HR patch upscaled via hybrid

TS-SR/BOBMC and d is the number of principal components.
Based on our experiments exemplified in Fig. 5, since

the HR and LR versions of a video have similar temporal
texture dynamics, the transition matrix ALR for characterizing
the dynamic textures of a downscaled LR video is similar
to that of its HR version. Therefore, we can estimate ALR

based on the least squares approximation in (10) and use it to
approximate its HR counterpart AHR to maintain the temporal
coherence in the reconstructed SR frames.

ALR ≈ YLR
2:N

(
YLR

1:N−1

)T(
YLR

1:N−1

(
YLR

1:N−1

)T)−1
, (10)

where matrix YLR
1:N = [

yLR
1 yLR

2 · · · yLR
N

]
represents the

projected data from the first frame to the N-th frame, and
yLR

t = (
CLR

)T xLR
t , where the LR projection matrix CLR is

estimated from the LR frames via PCA similar to (9).
By replacing AHR with ALR in the AR model in (8), the

projected low-dimensional data ySR
p,t can be rendered in a

temporally coherent way using dynamic texture synthesis as
follows:

ySR
p,t+1 ≈ ALRySR

p,t + N(0,�HR
t ), (11)

where ySR
p,t = (CHR)T x

TS_BOBMC
p,t

, and N(0,�HR
t ) is defined

in (8) which can be estimated from the projected data ySR
p,t [22].

Finally, each HR patch xSR
p,t can be reconstructed from the

projected low-dimensional version ySR
p,t using the projection

matrix as xSR
p,t = CHRySR

p,t . After each patch is processed using
the proposed DTS-based refinement scheme, the temporal
incoherence artifacts can be effectively mitigated.

To evaluate the performance of the proposed scheme, Fig. 5
shows the four projected trajectories of the ground-truth
HR patches, the downscaled LR patches, the SR patches via
hybrid TS-SR/BOBMC, and the SR patches via the proposed
DTS-SR method (i.e., hybrid TS-SR/BOBMC followed by
DTS-based refinement), respectively. We can observe from
Fig. 5 that the trajectory of the SR patches obtained via
DST-SR is much closer to the ground-truth trajectory
compared to that of the SR patches obtained via hybrid
TS-SR/BOBMC. As a result, the proposed DTS-SR method
can well address the temporal incoherence problem in
video SR which can also be observed from the SR videos
available in [28]. The whole proposed DTS-SR algorithm is
summarized in TABLE I.
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Fig. 6. Block diagram of proposed DTS-based refinement.

TABLE I

PROPOSED DTS-SR ALGORITHM

IV. EXPERIMENTAL RESULTS

A. Performance Evaluation of Super-Resolution

To evaluate the performance of the proposed video SR
method, we collected a training dataset of 52 HR textural
images. Five 57-frame 720×480 videos (videos #1– #4 and #6)
with fine and dynamic textures and three 57-frame 1280×720
videos (videos #5, #7– #8) with mixed textures and non-
textures, as shown in Fig. 7, are used as HR ground-truths in
our experiments. These videos are first downscaled by a factor
of three both horizontally and vertically as the LR test videos,
which are then upscaled back to their original resolution
using various SR schemes. The experimental settings are
described as follows. For each LR test video, the number
of non-key-frames between two successive key-frames is

Fig. 7. Example frames of the eight test videos with dynamic textures, where
the resolution of video #5, #7, and #8 is 1280 × 720, and the resolution of
the rest videos is 720 × 480.

set to K = 8. The patch sizes used in TS-SR and BOBMC are
both 16 × 16, and the patch size used in DTS-SR is 60 × 60.
We compare the performance of the proposed DTS-SR method
with that of the following approaches: (i) bicubic interpolation
(denoted by Bicubic) [3], (ii) SR via sparse coding (denoted
by SC-SR) [9], (iii) SR via non-local iterative back-projection
(denoted by NLIBP-SR) [6], (iv) SR via adaptive sparse
domain selection and adaptive regularization (denoted by
ASDS-SR) [11], (v) SR via texture hallucination (denoted
by TS-SR) [26], and (vi) video SR via BOBMC [17]. The
complete test results can be found in our project website [28].

1) Objective Quality Evaluation: To quantitatively evaluate
the performances of various SR schemes, we use the motion-
based video integrity evaluation (MOVIE) metric proposed
in [27] for video quality assessment. The MOVIE metric
is a full-reference quality assessment metric which utilizes
a general, spatio-spectrally localized multi-scale frame-
work for evaluating dynamic video fidelity that integrates
both spatial and temporal (and spatio-temporal) aspects of
distortion assessment. The smaller the MOVIE index of an
evaluated video is, the higher the visual quality of this
video will be. MOVIE has proven to be fairly consistent
with human subjective judgments. Since it takes into account
the temporal distortion, the MOVIE metric is much more
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Fig. 8. Video SR results: a) the original consecutive HR frames; and the SR results of the corresponding LR frames obtained by (b) the proposed method
(MOVIE = 0.183); (c) SC-SR [9] (MOVIE = 0.36); (d) ASDS-SR [11] (MOVIE = 0.24); (e) NLIBP-SR [6] (MOVIE = 0.29); and (f) Bicubic [3]
(MOVIE = 0.95).

suitable for evaluating the fidelity of an upscaled video with
dynamic textures compared to other spatial quality assessment
metrics which do not consider temporal information [e.g., the
peak signal-to-noise ratio (PSNR) metric and the structure
similarity (SSIM) metric, and their variants].

Fig. 8 shows the SR results cropped from a set of five
successive upscaled frames for Video #2 using the proposed
method, SC-SR [9], ASDS-SR [11], NLIBP-SR [6], and
Bicubic [3] along with their respective MOVIE scores.
It shows the visual qualities of the HR frames obtained by the
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Fig. 9. Video SR results: (a) the original HR frame; and its SR results obtained by (b) Bicubic [3]; (c) NLIBP-SR [6]; (d) ASDS-SR [11]; (e) SC-SR [9];
(f) TS-SR [26]; and (g) the proposed method. The first, second, and third columns show the respective SR results, the difference between the frame in the first
column and its immediately next frame, and the difference between the frame in the first column and its next frame with a two-frame distance between them.

proposed method are significantly better than those obtained
by the four compared methods. More specifically, more high-
frequency components (i.e., textures) in the reconstructed
frames can be well reconstructed using our method, whereas

the other SR methods usually cannot provide sufficiently fine
details.

In addition, Fig. 9 shows the highlighted SR results and the
corresponding temporal consistency for the input LR video
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TABLE II

OBJECTIVE EVALUATION BY MOVIE FOR THE RECONSTRUCTED SR

VIDEOS OBTAINED USING THE BICUBIC [3], SC-SR [9],

NLIBP-SR [6], ASDS-SR [11], TS-SR [26],

BOBMC [17], AND THE PROPOSED METHOD

(SMALLER MOVIE VALUE INDICATES

HIGHER VISUAL QUALITY)

using Bicubic [3], NLIBP-SR [6], ASDS-SR [11], SC-SR [9],
TS-SR [26], and the proposed method. It can also be observed
from Fig. 9 that the visual qualities of the SR results obtained
by the proposed method are significantly better than those
obtained by the five methods used for comparisons. Moreover,
compared to the other methods, our method also achieves
better temporal coherence in the reconstructed SR video
as illustrated by the lower differences between neighboring
frames.

TABLE II compares the MOVIE indices between the HR
ground-truths of the eight test videos and the corresponding
SR results using Bicubic, SC-SR, NLIBP-SR, ASDS-SR,
TS-SR, BOBMC [17], and our method. To fairly compare our
method with BOBMC, we apply TS-SR to upscale each LR
key-frame, and then use BOBMC to upscale non-key-frames
because in [17], each HR key-frame was assumed to be already
available. TABLE II shows that the proposed method outper-
forms these compared methods in terms of MOVIE based
on the fact that our method can well maintain the temporal
consistency for consecutive upscaled video frames. More
experimental results are provided in our project website [28].

The proposed method was implemented without specific
code-level optimization in MATLAB 64-bit version with
Windows 8 operation system on a personal computer equipped
with Intel i7 processor and 16 GB memory. To evaluate the
computational complexity of the proposed algorithm, the
runtime of each compared method is listed in TABLE III,
which shows that the proposed method is significantly faster
than ASDS-SR and TS-SR and comparable with BOBMC.

2) Subjective Quality Evaluation: In order to subjectively
evaluate the performance of the proposed SR method, we
conduct a paired comparison-based subjective user study [29].
We invited 20 subjects to join the experiments, where each
subject was given two side-by-side SR videos obtained by
two different evaluated SR methods (in a random order) at
a time, and was asked to choose their preference from the
two SR videos in terms of visual quality, temporal coherence,
and details reconstruction, respectively.

The visual quality is based on subjective user preference.
Moreover, the temporal coherence is to evaluate the temporal

TABLE III

RUM-TIME (IN SECONDS) COMPARISONS AMONG THE

EVALUATED METHODS USED FOR COMPARISONS

AND THE PROPOSED METHOD

TABLE IV

SUBJECTIVE “VISUAL QUALITY” EVALUATION BY PAIRED COMPARISONS

(IN RELATIVE WINNING PERCENTAGE) FOR THE EIGHT RECONSTRUCTED

HR VIDEOS OBTAINED USING OUR METHOD, ASDS-SR [11],

NLIBP-SR [6], SC-SR [9], BICUBIC [3], AND TS-SR [26]

consistency between neighboring frames of the SR videos,
whereas the details restoration is to evaluate the performance
of the ability of the HR details recovery from LR videos.
The 20 subjects include 13 males and 7 females, whose
ages ranging from 21 to 31, without prior knowledge about
the evaluated SR methods. The device used to display these
SR videos was a full-HD 23-inch LCD display with color
temperature 4300K.

In our subjective experiments, we compare the proposed
method with Bicubic, SC-SR, NLIBP-SR, ASDS-SR,
and TS-SR for the eight test videos. Each SR method is
pairwise compared with the others by totally 5 (methods) ×
8 (test videos) × 20 (subjects) = 800 times, implying that
160 comparisons are made between every two methods for
the eight test videos. To quantify the subjective evaluation
results, we calculate the winning frequency matrix [wij ],
i, j = 1, 2, . . . , 6 proposed in [29], where the (i, j)-th
entry wij indicates the number of times that the i -th method
outperforms the j -th method determined by the subjects in the
paired comparisons. For each categorization of performance
evaluation (visual quality, temporal coherence, and details
reconstruction), as respectively shown in TABLES IV–VI, we
calculate the relative winning percentage wij

/
Nij , between

the i -th and j -th methods, where Nij = 160 is the number
of comparisons made between every two methods.

TABLES IV–VI show that the proposed method performs the
best subjectively in visual quality and details reconstruction,
and the second best in temporal coherence based on the
subjective quality evaluation criterion proposed in [29]. Note,
TABLE V shows that the Bicubic method outperforms the
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TABLE V

SUBJECTIVE “TEMPORAL COHERENCE” EVALUATION BY PAIRED

COMPARISONS (IN RELATIVE WINNING PERCENTAGE) FOR

THE EIGHT RECONSTRUCTED HR VIDEOS OBTAINED

USING OUR METHOD, ASDS-SR, NLIBP-SR,

SC-SR, BICUBIC, AND TS-SR

TABLE VI

SUBJECTIVE “DETAILS RECONSTRUCTION” EVALUATION BY PAIRED

COMPARISONS (IN RELATIVE WINNING PERCENTAGE) FOR THE

EIGHT RECONSTRUCTED HR VIDEOS OBTAINED

USING OUR METHOD, ASDS-SR, NLIBP-SR,

SC-SR, BICUBIC, AND TS-SR

others in temporal coherence, which is the only item in which
our method does not perform the best. The main reason is
that the bicubic method is simply based on interpolation,
where only the pixel values within the LR version of an
image itself are used for upscaling and the interpolation
scheme is temporally coherent, thereby resulting in better
temporal coherency while leading to poor performance in
both visual quality and details reconstruction. In contrast,
in our method, the missing HR details are reconstructed by
hallucination, which somehow unavoidably results in some
temporal inconsistency even if the proposed novel DTS
scheme has addressed this problem to some extent.

B. Analyses and Discussions

1) Selection of Dimensionality Reduction Techniques: As
shown in Sec. III, in our implementation, the orthogonal
projection matrix, generated via PCA, is used to project
each image patch into the subspaces. The feasibility of
using PCA for dimensionality reduction has been verified by
visualizing the trajectory of the dynamics for each patch as
illustrated in Fig. 5. To further verify the benefit coming from
PCA, we implement two additional popular dimensionality
reduction techniques, namely, the locality preserving
projection (LPP) [30] and the orthogonal LPP (OLPP) [31] on
top of our framework, as well as evaluate their performances
based on the MOVIE index. TABLE VII shows the MOVIE
values of the reconstructed HR videos obtained by the
three dimensionality reduction techniques implemented in our

TABLE VII

OBJECTIVE EVALUATION BY MOVIE INDEX FOR THE RECONSTRUCTED

HR VIDEOS OBTAINED USING PCA, LPP, AND OLPP FOR

DIMENSIONALITY REDUCTION BASED ON OUR

SR FRAMEWORK (A SMALLER MOVIE VALUE

INDICATES HIGHER VISUAL QUALITY)

SR framework for the four test videos. TABLE VII shows that
PCA outperforms or is comparable with LPP and OLPP tech-
niques in terms of objective visual quality as PCA achieves the
best energy compaction performance which is usually helpful
in preserving the dynamics in (8). Moreover, PCA consumes
lower or similar computational complexity compared to LPP
and OLPP. Hence, we employ PCA in our SR framework
considering both visual quality and computational complexity.

2) Visual Quality Versus Computational Complexity: In our
SR framework, instead of performing TS-SR [26] to all video
frames, the HR details of non-key-frames are first recon-
structed using BOBMC [17] and then refined by he proposed
DTS-based scheme to maintain the temporal coherence. The
main concern about using BOBMC is to achieve good tradeoff
between visual quality and computational complexity. Even if
individually performing TS-SR to each frame (i.e., K = 0),
followed by performing the proposed DTS-SR can result in
good SR quality, the computational cost will be high. Hence,
in our SR framework, TS-SR is only performed on key-frames,
whereas BOBMC is performed on non-key-frames, which can
significantly reduce computation (see TABLE III).

Besides, to investigate the impact of DTS models on SR
performance, we also implement two state-of-the-art nonlinear
DTS models, High-order DTS (HO-DTS) [23] and high-
order-SVD-DTS (HOSVD-DTS) [34], to replace the linear
model in (8) used in the proposed DTS-SR. Fig. 10 illustrates
three reconstructed SR frames for Video #2 using linear DTS
method [22], HO-DTS, and HOSVD-DTS. The complexities
of the DTS methods in [23], [34] are significantly higher than
that of the linear model in [22], whereas the visual qualities of
the reconstructed HR videos using these three DTS are almost
visually indistinguishable due to the short distance between
two neighboring key-frames and small patch size used for SR
(see the demo videos provided in our project website [28]).
Therefore, in this work we choose the linear model for the
sake of its low complexity. But one can easily replace the
DTS model used in the proposed framework.

Note, the selection of the interval K of key-frames
will influence both the visual quality and computational
complexity. Fig. 11 compares the visual qualities of
reconstructed HR videos using our method with different
values of K for the eight test videos. Fig. 9 shows that,
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Fig. 10. The (a) ground truth frame and the synthesized frames using
(b) linear DTS model in [22], (c) HO-DTS model in [23], and
(d) HOSVD-DTS in [34].

Fig. 11. Objective visual qualities evaluated by MOVIE for the four
reconstructed SR Videos with different interval lengths between
two successive key-frames (KFs).

as K decreases, the MOVIE index will also decrease
(i.e., better visual quality is achieved), because more
frames (key-frames) will be upscaled by TS-SR, making
the motion estimate/compensation process more accurate
due to shorter distances between a non-key-frame and
its two neighboring anchor key-frames. Nevertheless, the
computational complexity will increase due to the increased
number of key-frames as depicted in Fig. 12. In contrast, the
MOVIE index increases with the value of K , leading to lower
visual quality but also lower computational complexity. As a
result, in our method, the parameter K can be adjusted to
achieve a good tradeoff between visual quality and complexity.

3) SR for a Video With Mixed Dynamic-Textures and
Non-Dynamic-Textures: Since the proposed DTS-SR scheme
is designed for synthesizing HR dynamic textures, it may
be inefficient for dealing with still-texture regions and may
not be as effective as other SR schemes for upscaling

Fig. 12. Run-time complexity (in seconds) comparison of the proposed
SR method for the four test videos with different interval lengths between
two successive key-frames (KFs).

non-textural regions. To address this problem, we can first
separate dynamic-texture regions, static-texture regions, and
non-textural regions using existing dynamic texture recog-
nition techniques (e.g., in [37] and [38]). After the region
classification, an adaptive SR manner can be used. For
dynamic texture regions, the proposed DTS-SR scheme can
do a good job, whereas for static-texture regions, the hybrid
TS-SR/BOBMC (i.e., skipping the DTS-based refinement step
in the proposed DTS-SR to reduce computational complexity)
can be used. For the remaining non-textural regions, we can
apply traditional interpolation or SR methods (e.g., SC-SR
and NLIBP-SR). In our experiments, we adopt NLIBP-SR to
upscale the non-textural regions. Finally, the three types of
regions are combined to obtain HR frames. Several of our
test videos (e.g., videos #1, #5–#8) are with mixed dynamic-
textures and non-dynamic-textures and the results can be found
in the project website [28].

V. CONCLUSION

In this paper, we proposed a video SR framework via
dynamic texture synthesis to effectively enhance the resolution
of a LR video while maintaining the temporal coherence of
the reconstructed HR video. The proposed method divides the
input LR video frames into key-frames and non-key-frames.
We first apply the texture synthesis-based SR method to
upscale each key-frame, followed by a low-complexity
bi-directional overlapped block motion compensation method
to reconstruct the HR details of each non-key-frame between
two successive anchor key-frames. To address the problem
of temporal incoherence artifacts, we have proposed a
self-learning-based DTS-based refinement scheme to render
the upscaled video based on the temporal dynamics learned
from the input LR video. Our experimental results demonstrate
that the proposed method outperforms the state-of-the-art
super-resolution methods in terms of visual quality of
reconstructed video both subjectively and objectively with
reasonable computational complexity.
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