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Automatic Single-Image-Based Rain Streaks
Removal via Image Decomposition

Li-Wei Kang, Member, IEEE, Chia-Wen Lin, Senior Member, IEEE, and Yu-Hsiang Fu

Abstract—Rain removal from a video is a challenging problem
and has been recently investigated extensively. Nevertheless, the
problem of rain removal from a single image was rarely studied in
the literature, where no temporal information among successive
images can be exploited, making the problem very challenging.
In this paper, we propose a single-image-based rain removal
framework via properly formulating rain removal as an image de-
composition problem based on morphological component analysis.
Instead of directly applying a conventional image decomposition
technique, the proposed method first decomposes an image into
the low- and high-frequency (HF) parts using a bilateral filter.
The HF part is then decomposed into a “rain component” and
a “nonrain component” by performing dictionary learning and
sparse coding. As a result, the rain component can be successfully
removed from the image while preserving most original image
details. Experimental results demonstrate the efficacy of the
proposed algorithm.

Index Terms—Dictionary learning, image decomposition, mor-
phological component analysis (MCA), rain removal, sparse
representation.

I. INTRODUCTION

D IFFERENT weather conditions such as rain, snow, haze,
or fog will cause complex visual effects of spatial or tem-

poral domains in images or videos [1]–[11]. Such effects may
significantly degrade the performances of outdoor vision sys-
tems relying on image/video feature extraction [12]–[17] or vi-
sual attention modeling [18], such as image registration [10],
event detection [9], object detection [15]–[17], tracking, and
recognition, scene analysis [18] and classification, image in-
dexing and retrieval [12], and image copy/near-duplicate detec-
tion. A comprehensive survey of detection approaches for out-
door environmental factors such as rain and snow to enhance
the accuracy of video-based automatic incident detection sys-
tems can be found in [9].

Removal of rain streaks has recently received much attention
[2]–[4], [6]. To the best of our knowledge, current approaches
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are all based on detecting and removing rain streaks in a
video. This paper is among the first to specifically address the
problem of removing rain streaks in a single image. Note that
rain removal in an image may also fall into the category of
the problem about image noise removal or image restoration.
Hence, in the following subsections, we first briefly review cur-
rent vision-based (video-based) rain removal approaches and
image noise removal, followed by presenting our motivations
of single-image-based rain streak removal and contribution of
the proposed method.

A. Vision-Based Rain Detection and Removal

A pioneering work on detecting and removing rain streaks in a
video was proposed in [2], where the authors developed a corre-
lation model capturing the dynamics of rain and a physics-based
motion blur model characterizing the photometry of rain. It was
subsequently shown in [3] that some camera parameters such
as exposure time and depth of field can be selected to mitigate
the effects of rain without altering the appearance of the scene.
Moreover, an improved video rain streak removal algorithm in-
corporating both temporal and chromatic properties was pro-
posed in [6]. The method proposed in [7] further utilizes the
shape characteristics of rain streak for identifying and removing
rain streaks from videos. Furthermore, a model of the shape and
appearance of a single rain or snow streak in the image space
was developed in [1] to detect rain or snow streaks. Then, the
amount of rain or snow in the video can be reduced or increased.
In [8], selection rules based on photometry and size are pro-
posed to select the potential rain streaks in a video, where a his-
togram of orientations of rain streaks, estimated with geometric
moments, is computed.

Moreover, some research works [10], [11] focus on raindrop
detection in images or videos (usually on car windshields) that
is different from the detection of rain streaks. A video-based
raindrop detection method for improving the accuracy of image
registration was proposed in [10], where a photometric raindrop
model was utilized to perform monocular raindrop detection in
video frames. In addition, a detection method for detecting rain-
drops on car windshields using geometric–photometric environ-
ment construction and intensity-based correlation was proposed
in [11], which can be applied to vision-based driver assistance
systems.

B. Image Noise Removal

Image noise removal or denoising problem is important and
challenging [19]. The major goal of image noise removal is to
design an algorithm that can remove unstructured or structured
noise from an image, which is acquired in the presence of an
additive noise. Numerous contributions for image denoising in
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the past 50 years addressed this problem from many and diverse
points of view. For example, spatial adaptive filters, stochastic
analysis, partial differential equations, transform-domain
methods, splines, approximation theory methods, and order
statistics are some of the directions explored to address this
problem [20]. Recently, the use of sparse and redundant rep-
resentations over learned dictionaries has become one specific
approach toward image denoising, which has been proven to
be effective and promising [20]. Based on the assumption that
image signals admit a sparse decomposition over a redundant
dictionary, by using the K-SVD dictionary training algorithm
[21], Elad and Aharon [20] obtained a dictionary describing the
image content effectively. They proposed two training options,
where one is using the corrupted image itself and the other one
is training on a set of high-quality images. They have shown
how such Bayesian treatment leads to a simple and effective
denoising algorithm, which achieves state-of-the-art image
denoising performance. Moreover, a similar idea has been
successfully extended to solve more general image restoration
problems such as removing nonhomogeneous noise or recov-
ering missing information (e.g., text removal and inpainting
[22], [23] and binary artifacts removal from video game im-
ages [24]). Although these dictionary-based image denoising
methods can be also used for removing rain streaks, they
usually cannot do a good job in rain removal, as will be shown
in Section V.

C. Motivations of Single-Image-Based Rain Streak Removal

So far, the research works on rain streak removal found in the
literature have been mainly focused on video-based approaches
that exploit temporal correlation in multiple successive frames.
Nevertheless, when only a single image is available, such as an
image captured from a digital camera/camera phone or down-
loaded from the Internet, a single-image-based rain streak re-
moval approach is required, which was rarely investigated be-
fore. In addition, some video rain removal approaches [3] based
on adjusting camera parameters may not be suitable to con-
sumer camcorders [6] and cannot be applied to existing acquired
image/video data. Furthermore, for removing rain streaks from
videos acquired from a moving camera, the performances of ex-
isting video-based approaches may be significantly degraded.
The reason is that, since these video-based approaches usually
perform rain streak detection, followed by interpolating the de-
tected pixels affected by rain streaks in each frame, the nonsta-
tionary background due to camera motions and inaccurate mo-
tion estimation caused by the interference of rain streaks would
degrade the accuracy of video-based rain streak detection and
pixel interpolation. Although some camera motion estimation
techniques can be applied first to compensate for the camera mo-
tions [6], its performance may be also degraded by rain streaks
or large moving activity. Moreover, for the case of steady effects
of rain, i.e., pixels may be affected by rain across multiple con-
secutive frames, it is hard to detect these pixels or find reliable
information from neighboring frames to recover them [2].

Moreover, many image-based applications such as mobile
visual search [12], object detection/recognition, image regis-
tration, image stitching, and salient region detection heavily
rely on extraction of gradient-based features that are rotation

Fig. 1. Examples of interesting point detection: (a) original nonrain image;
(b) rain image of (a); (c) SIFT interesting point detection for (a) (169 points);
(d) SIFT interesting point detection for (b) (421 points); (e) SURF interesting
point detection for (a) (131 points); and (f) SURF interesting point detection for
(b) (173 points).

and scale invariant. Some widely used features (descriptors)
such as scale-invariant feature transform (SIFT) [13], speeded
up robust features (SURFs) [14], and histogram of oriented
gradients (HOGs) [15]–[17] are mainly based on computation
of image gradients. The performances of these gradient-based
feature extraction schemes, however, can be significantly de-
graded by rain streaks appearing in an image since the rain
streaks introduce additional time-varying gradients in similar
directions. For example, as illustrated in Fig. 1, the additional
unreliable interesting points caused by rain streaks degrade
the invariant properties of SIFT/SURF and lead to potentially
erroneous image matching in related applications. As an ex-
ample shown in Fig. 2, we applied the HOG-based pedestrian
detector released from [17] to the rain image shown in Fig. 2(a)
and its rain-removed version (obtained by the proposed method
presented in Section III) shown in Fig. 2(b). It can be found that
the detection accuracy for the rain-removed version is better. In
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Fig. 2. Applying the HOG-based pedestrian detector released from [17] to: (a)
original rain image (four pedestrians detected) and (b) rain-removed version
(obtained by the proposed method) of (a) (five pedestrians detected).

addition, visual attention models [18] compute a saliency map
topographically encoding for saliency at each location in the
visual input that simulates which elements of a visual scene are
likely to attract the attention of human observers. Nevertheless,
the performances of the model for related applications may be
also degraded if rain streaks directly interact with the interested
target in an image. Therefore, single-frame-based rain streak
removal is desirable.

D. Contribution of the Proposed Method

It should be noted that separating and removing rain streaks
from the nonrain part in a single frame is not a trivial work
as rain streaks are usually highly mixed with the nonrain part,
making the decomposition of the nonrain part very challenging.
In this paper, we propose a single-image-based rain streak
removal framework by formulating rain streak removal as an
image decomposition problem based on morphological com-
ponent analysis (MCA) [26]–[30]. In our method, an image
is first decomposed into the low-frequency (LF) and high-fre-
quency (HF) parts using a bilateral filter. The HF part is then
decomposed into “rain component” and “nonrain component”
by performing dictionary learning and sparse coding based on
MCA. The major contribution of this paper is threefold: 1)
to the best of our knowledge, our method is among the first
to achieve rain streak removal while preserving geometrical
details in a single frame, where no temporal or motion informa-
tion among successive images is required; 2) we propose the
first automatic MCA-based image decomposition framework
for rain steak removal; and 3) the learning of the dictionary for
decomposing rain steaks from an image is fully automatic and
self-contained, where no extra training samples are required in
the dictionary learning stage. In addition, the proposed method
also offers another option in dictionary learning by collecting
exemplar patches from a set of nonrain training images to learn
an extended dictionary to enrich the dictionary, as detailed in
Section III-C.

The rest of this paper is organized as follows. In Section II,
we briefly review the concepts of MCA-based image decom-
position, sparse coding, and dictionary learning techniques.
Section III presents the proposed single-image-based rain
streak removal framework. In Section IV, experimental results
are demonstrated. Finally, Section V concludes this paper.

TABLE I
NOTATION

II. MCA-BASED IMAGE DECOMPOSITION, SPARSE CODING,
AND DICTIONARY LEARNING

The key idea of MCA is to utilize the morphological diver-
sity of different features contained in the data to be decomposed
and to associate each morphological component to a dictionary
of atoms. Here, the conventional MCA-based image decomposi-
tion approaches [26]–[30], sparse coding [31], [32], and dictio-
nary learning [21], [33] techniques are briefly introduced. The
symbols used in this paper are listed in Table I.

A. MCA-Based Image Decomposition

Suppose that an image of pixels is a superposition of
layers (called morphological components), denoted by

, where denotes the th component, such as the geo-
metric or textural component of . To decompose the image
into , the MCA algorithms [26]–[30] iteratively mini-
mize the following energy function:

(1)
where denotes the sparse coefficients corresponding
to with respect to dictionary , is a regularization param-
eter, and is the energy defined according to the type of
(denoted by for a global dictionary or by for a local
dictionary). For a global dictionary , ,
energy function is defined as

(2)

where is a regularization parameter. Usually, to decompose an
image into its geometric and textural components, traditional
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basis functions such as wavelets or curvelets are used as the
dictionary for representing the geometric component, whereas
global discrete cosine transform (DCT) basis functions are used
as the dictionary for representing the textural component of the
image [26]–[30].

With respect to a local dictionary , ,
represents the sparse coefficients of patch ,

, extracted from . Each patch can be ex-
tracted centralized with a pixel of and overlapped with ad-
jacent patches. The energy function for the local dictionary
can be defined as

(3)

Usually, a local dictionary for representing the textural com-
ponent of an image is either composed of traditional basis func-
tions, such as local DCT [26]–[28], [30], or constructed from the
dictionary learning procedure [29] described in Section II-B.

The MCA algorithms solve (1) by iteratively performing for
each component the following two steps: 1) update of the
sparse coefficients, i.e., this step performs sparse coding to solve

or to minimize while fixing ; and 2)
update of the components, i.e., this step updates or
while fixing or .

More specifically, in the case of decomposing into two com-
ponents , , a key step of MCA is to properly select a
dictionary built by combining two subdictionaries , ,

and that can be either global or local dictionaries and
should be mutually incoherent, i.e., can provide sparse rep-
resentation for , but not for , and vice versa. To decompose
into geometric and textural components, global wavelet or
global curvelet is used as , whereas global DCT or local DCT
is used as in [26]–[28] and [30]. A comprehensive descrip-
tion of dictionary selections and related parameter settings for
different kinds of image decomposition can be found in Table
2 in [27]. On the other hand, in [29], a global wavelet/curvelet
basis is also used as , whereas is constructed through a
local dictionary learning process described below. Finally, to de-
compose an image into two components, both and are
required to sparsely represent each component individually, as
illustrated in Fig. 3, for the proposed single-image-based rain
streak removal. It should be noted that we do not directly apply
(1), (2), and (3) to solve the rain streak removal problem. The
major differences between the proposed framework and tradi-
tional MCA-based approaches are described in Section III-A.
More details about traditional MCA methods, such as param-
eter settings, can be found in [26]–[30].

B. Sparse Coding and Dictionary Learning

Sparse coding [31], [32] is a technique of finding a sparse
representation for a signal with a small number of nonzero or
significant coefficients corresponding to the atoms in a dictio-
nary [21], [33]. The pioneering work in sparse coding proposed
by Olshausen and Field [31] states that the receptive fields of
simple cells in mammalian primary visual cortex can be char-
acterized as being spatially localized, oriented, and bandpass. It

Fig. 3. (a) Block diagram of the proposed rain streak removal method.
(b) Illustration of the proposed method based on two learned local dictionaries.

was shown in [31] that a coding strategy that maximizes spar-
sity is sufficient to account for these three properties and that
a learning algorithm attempting to find sparse linear codes for
natural scenes will develop a complete family of localized, ori-
ented, and bandpass receptive fields.

As aforementioned, it is required to construct a dictionary
containing the local structures of textures for sparsely repre-

senting each patch extracted from the textural component
of image . In some applications, we may use a set of available
training exemplars (similar to the patches extracted from the
component we want to decompose) , ,
to learn a dictionary sparsifying by solving the following
optimization problem:

(4)

where denotes the sparse coefficients of with respect
to , and is a regularization parameter. Equation (4)
can be efficiently solved by performing a dictionary learning
algorithm, such as K-SVD [21] or online dictionary learning
[33] algorithms, where the sparse coding step is usually
achieved via orthogonal matching pursuit (OMP) [32]. Finally,
image decomposition is achieved by iteratively performing the
MCA algorithm to solve (while fixing ) described in
Section II-A and the dictionary learning algorithm to learn
(while fixing ) until convergence. The convergence of the
MCA image decomposition algorithms has been proven in [29].
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The proposed rain removal framework described in
Section III uses two local dictionaries learned from the training
patches extracted from the rain image itself to respectively
decompose a rain image into its rain component and geometric
(nonrain) component without using any global dictionary. The
main reasons include: 1) we do not assume or empirically
decide any type of global dictionary for representing either
of the rain and geometrical components in the rain image; 2)
because the geometric component is usually highly mixed with
rain streaks in some regions of the rain image, segmenting the
image into local patches would be easier to extract rain patches
that mainly contain rain streaks to facilitate self-learning of rain
atoms; and 3) since rain streaks in different local regions of an
image often exhibit different characteristics, local-patch-based
dictionary learning would usually learn rain atoms that better
represent rain streaks than a global dictionary does.

III. PROPOSED RAIN STREAK REMOVAL FRAMEWORK

Fig. 3 shows the proposed single-image-based rain streak re-
moval framework, in which rain streak removal is formulated
as an image decomposition problem. In our method, the input
rain image is first roughly decomposed into the LF and HF
parts using the bilateral filter [34], [35], where the most basic
information will be retained in the LF part whereas the rain
streaks and the other edge/texture information will be included
in the HF part of the image, as illustrated in Fig. 4(a) and (b).
Then, we perform the proposed MCA-based image decomposi-
tion to the HF part that can be further decomposed into the rain
component [see Fig. 4(c)] and the geometric (nonrain) compo-
nent [see Fig. 4(d)]. In the image decomposition step, a dictio-
nary learned from the training exemplars extracted from the HF
part of the image itself can be divided into two subdictionaries
by performing HOG [15] feature-based dictionary atom clus-
tering. Then, we perform sparse coding [32] based on the two
subdictionaries to achieve MCA-based image decomposition,
where the geometric component in the HF part can be obtained,
followed by integrating with the LF part of the image to ob-
tain the rain-removed version of this image, as illustrated in
Fig. 4(e) and (f). The detailed method shall be elaborated below.

A. Major Differences Between the Proposed Method and
Traditional MCA-Based Approaches

As mentioned in Section II, traditional MCA algorithms usu-
ally use a fixed global dictionary based on wavelets/curvelets
to represent the geometric component of an image. To repre-
sent the textural component of an image, either a fixed global
(global DCT) or a local (local DCT) dictionary is used. In addi-
tion, a learned dictionary may be also used to represent the tex-
tural component. Nevertheless, to decompose an image into the
geometric and textural components, the selection of dictionaries
and related parameter tuning seems to be heavily empirical, as
the examples shown in Table 2 in [27]. Based on our experience,
it is not easy to select a proper fixed dictionary to represent rain
streaks due to its variety.

Moreover, learning a dictionary for representing textural
component usually assumes that a set of exemplar patches for
the texture to be represented can be either known in advance or
extracted from an image to be decomposed itself. Nevertheless,

Fig. 4. Step-by-step results of the proposed rain streak removal process: (a) the
LF part of the rain image in Fig. 1(b) decomposed using the bilateral filter
�VIF � �����; (b) HF part; (c) rain component; and (d) geometric component.
Combining (d) and the LF part shown in (a) to obtain: (e) the rain-removed ver-
sion for the rain image shown in Fig. 1(b) �VIF � ����� � � ����	��; (f) the
rain-removed version for the rain image shown in Fig. 1(b) with � �VIF �
���
�.

in practice, it is usually not easy to select correct rain patches in
a single rain image automatically. It is also not easy to directly
extract pure rain patches for dictionary learning from a rain
image because rain streaks usually cover most regions in a
rain image. That is, the geometric and rain components are
usually largely mixed. Moreover, although a traditional fixed
global dictionary based on wavelets/curvelets can well sparsely
represent the geometric component of an image, using a learned
dictionary based on the exemplar patches extracted from the
component itself would be much better [38].

Therefore, rather than using a fixed dictionary, assuming prior
training exemplar patches available, or resorting to tuning pa-
rameters for the used dictionary, our method extracts a set of
selected patches from the HF part of a rain image itself to learn
a dictionary. Then, based on the features extracted from indi-
vidual atoms, we classify the atoms constituting the dictionary
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into two clusters to form two subdictionaries for representing
the geometric and rain components of the image. The dictio-
nary learning process in the proposed method is elaborated in
Section III-C.

Traditional MCA algorithms are all directly performed on an
image in the pixel domain. However, it is typically not easy to
directly decompose an image into its geometric and rain com-
ponents in the pixel domain because the geometric and rain
components are usually largely mixed in a rain image. This
makes the dictionary learning process difficult to clearly iden-
tify the “geometric (nonrain) atoms” and “rain atoms” from
the pixel-domain training patches with mixed components. This
may lead to removing too many image contents that belong to
the geometric component but are erroneously classified to the
rain component.

Therefore, we propose to first roughly decompose a rain
image into the LF and HF parts. Obviously, the most basic
information of the image is retained in the LF part, whereas
the rain component and the other edge/texture information are
mainly included in the HF part. The decomposition problem
can be therefore converted to decomposing the HF part into the
rain and other textural components. Such decomposition aids
in the dictionary learning process as it is easier to classify in
the HF part “rain atoms” and “nonrain atoms” into two clusters
based on some specific characteristics of rain streaks.

Furthermore, traditional MCA-based image decomposition
approaches are all achieved by iteratively performing the MCA
algorithm and the dictionary learning algorithm until conver-
gence. In contrast, the proposed method is noniterative except
for that the utilized dictionary learning, clustering, and sparse
coding tools are essentially iterative, as will be explained below.

B. Preprocessing and Problem Formulation

For an input rain image , in the preprocessing step, we
apply a bilateral filter [34] to roughly decompose into the
LF part and the HF part , i.e., . The
bilateral filter can smooth an image while preserving edges by
means of a nonlinear combination of nearby image values. In
this step, we adjust the strength of smoothness of the bilateral
filter to remove all of the rain streaks from , as an illustrative
example shown in Fig. 4(a) and (b). Then, our method learns
a dictionary based on the training exemplar patches
extracted from to further decompose , where can
be further divided into two subdictionaries, i.e., and

, for representing the geo-
metric and rain components of , respectively. As a result,
we formulate the problem of rain streak removal for image

as a sparse coding-based image decomposition problem as
follows:

s.t. (5)

where represents the th patch extracted from ,
. are the sparse coefficients of

with respect to , , and denotes the
sparsity or maximum number of nonzero coefficients of .
Since minimization is hard to optimize, one usually solves the

Fig. 5. Dictionary learned from the patches extracted from the HF part shown
in Fig. 4(b) via the online dictionary learning for sparse coding algorithm [33],
where each atom is of size 16 � 16.

-minimization problem, which, in most cases, gives compa-
rable results [36], [37]. Therefore, solving the -minimization
problem in (5) can be cast to solve the following -minimiza-
tion problem:

(6)

where denotes the solution minimizing (6), and is a
regularization parameter. To solve (5), we apply the efficient
OMP implementation provided in [33]. Each patch can be
reconstructed and used to recover either the geometric or rain
component of depending on the corresponding nonzero co-
efficients in , i.e., the used atoms from or .

C. Dictionary Learning and Partition

Dictionary Learning: In this step, we extract from a set
of overlapping patches as the training exemplars for learning
dictionary . We formulate the dictionary learning problem
as [21], [33]

(7)

where denotes the sparse coefficients of with respect to
, and is a regularization parameter. In this paper, we

apply an efficient online dictionary learning algorithm proposed
in [33] to solve (7) to obtain , as illustrated in Fig. 5.

Dictionary Partition and Identification: We find that the
atoms constituting can be roughly divided into two clus-
ters (subdictionaries) for representing the geometric and rain
components of . Intuitively, the most significant feature for
a rain atom can be extracted via “image gradient.” In the pro-
posed method, we utilize the HOG descriptor [15] to describe
each atom in . The HOG method [15] is briefly described
as follows.

The basic idea of HOG is that local object appearance and
shape can be usually well characterized by the distribution of
local intensity gradients or edge directions, without precisely
knowing the corresponding gradient or edge positions [15]. To
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Fig. 6. Dictionary partition for the dictionary shown in Fig. 5: (a) rain subdic-
tionary; and (b) geometric or nonrain subdictionary.

extract the HOG feature from an image, the image can be di-
vided into several small spatial regions or cells. For each cell,
a local 1-D histogram of gradient directions or edge orienta-
tions over the pixels of the cell can be accumulated. The com-
bined histogram entries of all cells form the HOG representation
of the image. In our implementation, the size of a local image
patch/dictionary atom is chosen to be 16 16, which leads to
reasonable computational cost in dictionary partition (involving
HOG feature extraction), as will be shown in Section IV.

After extracting the HOG feature for each atom in , we
then apply the -means algorithm to classify all of the atoms in

into two clusters and based on their HOG feature
descriptors. The following procedure is to identify which cluster
consists of rain atoms and which cluster consists of geometric
or nonrain atoms. First, we calculate the variance of gradient
direction for each atom , , in cluster as

, where denotes the number of atoms in , .
Then, we calculate the mean of for each cluster as

. Based on the fact that the edge directions of rain streaks
in an atom are usually consistent, i.e., the variance of gradient
direction for a rain atom should be small, we identify the cluster
with the smaller as rain subdictionary and the
other one as geometric (or nonrain) subdictionary , as
depicted in Fig. 6.

On the other hand, although the dictionary learning step in
the proposed method can be fully self-contained, where no extra
training samples are required, the decomposition performance
can be further improved by collecting a set of exemplar patches
from the HF parts of some training nonrain images to learn an
extended dictionary to enrich the dictionary. Fig. 7 illus-
trates an example of . Then, we integrate with
of each image to form the final geometric subdictionary of the
image.

Moreover, based on our experiences, it is hard to learn a rain
dictionary by collecting a set of real exemplar rain patches due
to the following reasons: 1) it is not easy to collect pure rain
patches extracted from natural rain images because rain streaks
are usually highly mixed with the nonrain part in an image; 2) it
is also not easy to learn a dictionary adapted to a wide range of
lighting and viewing conditions for rain streaks; and 3) although
a few photorealistic rendering techniques have been proposed
[5], it is still not easy to synthesize all possible real rain patches
for learning a representative rain dictionary adapted to a large

Fig. 7. Extended dictionary� learning: (a) the HF parts of the eight training
nonrain images; and (b) learned extended dictionary.

variety of rain streaks. Hence, we proposed a self-learning ap-
proach that learns the rain dictionary for a rain image based on a
set of exemplar patches extracted from the image itself, followed
by performing dictionary partition. The rain dictionary learned
from an image itself is more appropriate to sparsely represent
the rain component of the image.

Diversities of Two Subdictionaries: The MCA algorithms
distinguish between the morphological components by taking
advantage of the diversities of two dictionaries and ,
which can be measured by the mutual incoherence of them [28].
The mutual coherence between and can be
defined as

(8)

where and stand for the th and th atoms (rearranged
as a column vector) in and , respectively, and
denotes the inner product of and . When each atom is
normalized to have a unit norm, the range of is
[0, 1]. As a result, the mutual incoherence is .
The smaller the mutual coherence is, the larger the diversities
of the two subdictionaries will be and, thus, the better the de-
composition performance based on the two dictionaries will be.
The experimental evaluations of the mutual incoherence of rain
subdictionary and geometric subdictionary for
decomposing a rain image in the proposed method are presented
in Section IV.
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TABLE II
PROPOSED SINGLE-IMAGE-BASED RAIN STREAK REMOVAL ALGORITHM

D. Removal of Rain Streaks

Based on the two dictionaries and , we per-
form sparse coding by applying the OMP algorithm [32] for
each patch extracted from via minimization of (5) to
find its sparse coefficients . Different from traditional MCA
algorithms, where sparse coding and dictionary learning should
be iteratively performed, we perform sparse coding only once
for each patch with respect to .

Then, each reconstructed patch can be used to recover
either geometric component or rain component of
based on the sparse coefficients as follows. We set the
coefficients corresponding to in to zeros to ob-
tain , whereas the coefficients corresponding to
in to zeros to obtain . Therefore, each patch
can be re-expressed as either or

, which can be used to recover
or , respectively, by averaging the pixel values in overlap-
ping regions. Finally, the rain-removed version of the image
can be obtained via , as illustrated in
Fig. 4(e). In summary, the proposed single-image-based rain
streak removal method is summarized in Table II.

IV. EXPERIMENTS AND DISCUSSION

A. Performance Evaluation

Because we cannot find any other single-frame-based ap-
proach, to evaluate the performance of the proposed algorithm,
we first compare the proposed method with a low-pass filtering
method called the bilateral filter proposed in [34], which
has been extensively applied and investigated recently for
image processing such as image denoising [35]. In addition,

to demonstrate that existing image denoising methods cannot
well address the problem of single-image-based rain removal,
we also compare the proposed method with the state-of-the-art
image denoising method based on K-SVD dictionary learning
and sparse representation proposed in [20] with a released
source code available from [23] (denoted by “K-SVD-based
denoising”).

To the best of our knowledge, no standard still rain image
data set is currently available for benchmarking. Existing video-
based rain removal approaches [1]–[3], [6], [7] were all evalu-
ated by collecting a few video frames filmed by the authors or
extracted from existing movie files. Hence, we collected several
natural/synthetic rain images from the Internet and also from the
photorealistically rendered rain video frames (with ground-truth
images) provided in [5] for a few of them. For natural rain im-
ages, it is not easy to provide many quantitative analyses due
to the fact that the ground-truth images are usually unavailable.
In current video-based rain removal research [2], [3], [6], [7],
the performances were usually subjectively evaluated. On the
other hand, to evaluate the quality of a rain-removed image with
a ground-truth image, we used the visual information fidelity
(VIF) metric [39] in the range of [0, 1], which has been shown
to outperform peak signal-to-noise ratio metric. More test re-
sults can be found in our project website [42], where our test
image data set can be downloaded.

The synthesized rain images shown in Figs. 1(b) [40] and 8(b)
[41] were generated by adding rain streaks to Figs. 1(a) and 8(a),
respectively, using the Photoshop software [40], [41]. On the
other hand, the rendered rain images shown in Figs. 9–11 were
generated by a photorealistic rendering technique proposed in
[5], briefly described as follows. In [5], a rain streak appearance
model capturing the complex interactions between the lighting
direction, viewing direction, and oscillating shape of a raindrop
was proposed. This model is built upon a raindrop oscillation
model, which was developed in atmospheric sciences. The os-
cillation parameters were empirically decided by measuring rain
streak appearances under a wide range of lighting and viewing
conditions. Based on these parameters, rain streaks with varia-
tions in streak appearance with respect to lighting and viewing
directions were rendered. An efficient image-based rendering
algorithm was also proposed in [5] to add rain to an image or
video, which requires a coarse depth map of the scene, and the
locations and properties of the light sources. It should be noted
that the proposed method does not assume that any knowledge
about the rain streak appearance in a rain image can be available
in advance.

In addition, we also compare our method with a video-based
rain removal method based on adjusting camera parameters
proposed in [3] (denoted by “video-based camera see”), which
should outperform most of other video-based techniques
without adjusting cameras. We captured some single frames
from the videos released from [3] and compared our results
with the ones of [3] from the same videos. For each video
released in [3], the preceding frames are rain frames, followed
by succeeding rain-removed frames in the same scene. We pick
a single rain frame from the preceding frames for rain removal
and compared our results with the rain-removed one [3] of a
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Fig. 8. Rain removal results: (a) original nonrain image (ground-truth); (b) the
rain image of (a); (c) the rain-removed version of (b) via the bilateral filter
�VIF � �����; (d) the HF part of (b); (e) the rain subdictionary for (d); (f) the
geometric subdictionary for (d); (g) the rain component of (d); (h) the geometric
component of (d); (i) the rain-removed version of (b) via the proposed method
�VIF � ����� � � ���	�
�; (j) the rain-removed version of (b) via the pro-
posed method with � �VIF � �����.

similar frame from the succeeding frames in the same video
(no exactly the same frame is available for comparison).

Fig. 9. Rain removal results: (a) original nonrain image; (b) the rain image of
(a); the rain-removed versions of (b) via the (c) bilateral filter �VIF � �����;
(d) K-SVD-based denoising method [20] �VIF � �����; (e) proposed method
�VIF � ���	� � � ����	��; and (f) proposed method with� �VIF � ���
�.

The parameter settings of the proposed method are described
as follows. The implementation of the bilateral filter is pro-
vided by [43], where we set the spatial-domain and intensity-do-
main standard deviations to 6 and 0.2, respectively, to ensure
that most rain streaks in a rain image can be removed. In the
dictionary learning step, we used an efficient implementation
provided in [33] with the suggested regularization parameter
used in (7) set to 0.15, which is also suggested by the sparse
coding process performed in [24]. It should be noted that pa-
rameters ’s used in (2), (3), (4), (6), and (7) have the same
meaning, and hence, we used the same symbol for conve-
nience. In fact, only (7) is used in the proposed method. For
each test grayscale image of size ( in
our experiments), the patch size, number of training patches,
dictionary size, and the number of training iterations are set to

, , ,
and 100, respectively. We also used the efficient OMP imple-
mentation provided in [33] with the number of nonzero coeffi-
cients set to at most 10, as suggested in [33]. That is, in (5) is
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Fig. 10. Rain removal results: (a) original nonrain image; (b) the rain image of
(a); the rain-removed versions of (b) via the (c) bilateral filter �VIF � �����,
(d) K-SVD-based denoising method �VIF � �����, (e) proposed method
�VIF � ��	
� � � �������, and (f) proposed method with � �VIF � ��
��.

set to 10. The smaller the value of is, the sparser the solution
of (5) becomes, and vice versa. A smaller value of leads to
lower computational complexity but fewer atoms in the dictio-
nary, and vice versa. We evaluated several possible values of
and found that achieves the best tradeoff in most test
cases. The used HOG implementation is provided by [16] with
the dimension of each feature descriptor set to 81. The number
of iterations for -means clustering is 100.

We also evaluate the performance of the proposed method
with extended dictionary that is integrated with the respec-
tive geometric subdictionary for each test image. We collected
several training patches extracted from the HF parts of eight
widely used nonrain images, including Baboon, Barbara, F-16,
Goldhill, House, Lena, Man, and Pepper images. The patch size,
dictionary size, and number of training iterations are set to 16

16, 1024, and 200, respectively. The learning process is
offline performed only once. The eight training images and
are shown in Fig. 7.

Fig. 11. Rain removal results: (a) original rain image; and the rain-removed
versions of (a) via the (b) K-SVD-based denoising method, (c) proposed method
�� � ���	���, and (d) proposed method with � .

In addition, we compare our method with the K-SVD-based
image denoising method [20], in which only one dictionary is
used for the sparse coding stage, based on the assumption that
the standard deviation of noise, which is assumed to be Gaussian
distributed, can be known in advance. We set the parameters
used in the K-SVD method according to the suggestions in [20]
and [23], where the patch size, dictionary size, and the number
of training iterations are set to 8 8, 256, and 15, respectively.
In rain removal applications, the standard deviation value of the
rain noise is usually unknown. To estimate the standard devia-
tion of the rain noise, for a rendered rain image with a ground
truth, we direct calculate the deviation of each rain component
patch as an initial value, whereas for a natural rain image, we use
the rain component obtained from the proposed method to esti-
mate the initial value. We then manually tune the value around
the initial value to ensure that most of the rain streaks in the rain
image can be removed.

The rain removal results obtained from the bilateral filter [34],
the K-SVD method [20], and the proposed method with and
without are shown in Figs. 9–13, where the test images in
Figs. 9–11 are rendered rain images provided in [5]. The VIF
results for the test images are summarized in Table III. The sim-
ulation results demonstrate that, although the bilateral filter and
the K-SVD-based denoising filter [20] can remove most rain
streaks, they both simultaneously remove much image detail
as well. The proposed methods successfully remove most rain
streaks while preserving most nonrain image details in these
test cases, thereby improving the subjective visual quality sig-
nificantly. It can be observed that the K-SVD usually cannot
do a good job in rain streaks removal due to the following two
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Fig. 12. Rain removal results: (a) original rain image; and the rain-removed
versions of (a) via the (b) K-SVD-based denoising method, (c) proposed method
�� � �������, and (d) proposed method with � .

TABLE III
PERFORMANCE (IN VIF VALUE) COMPARISONS AMONG THE BILATERAL

FILTER [34], THE K-SVD-BASED DENOISING METHOD [20], THE PROPOSED

METHOD, AND THE PROPOSED METHOD WITH �

reasons. First, the dictionary learned from nonrain natural im-
ages usually contains atoms that can represent rain steaks suf-
ficiently well as rain streaks have similar content with many of
nonrain image details. As a result, the rain part would not be
neglected by the dictionary when the sparsity constraint is im-
posed since there will be quite a few nonzero coefficients cor-
responding to these rainlike atoms, particularly when the non-
rain component is highly mixed with the rain streaks. Zeroing
out smaller nonzero coefficients will remove both the rain part
and the details of the nonrain part, thereby resulting in a seri-
ously blurred de-rained image, as can be observed from the test
results. The second reason is that the K-SVD scheme assumes
that some knowledge about the noise statistics is known in ad-
vance (e.g., the standard deviation of the noise for denoising
[20], [23] or even the additional information about the location
of the noise for overlay text removal or inpainting [23], [24]) so
that the reconstruction error can be well bounded. However, the
assumption is not valid for rain streaks removal applications,

Fig. 13. Rain removal results: (a) original rain image; and the rain-removed
versions of (a) via the (b) bilateral, (c) proposed method, and (e) proposed
method with � .

as it is difficult to obtain or estimate the information in such
applications.

In contrast, considering that rain streaks are usually coherent
in an image and still significantly differ from the geometrical
component in most parts of the image, our method addresses
the aforementioned problems by using two separate dictio-
naries that learns the rain atoms and nonrain atoms from the
input image itself for sparsely representing the rain and non-
rain components of the image. Our approach further makes
use of the fact that the input image contains the rain patches
that are the best for training the rain atoms and the gradient
features of rain patches in an image has similar statistics in
terms of gradient magnitude and directions (e.g., the HOG
features).

Moreover, the results obtained from the “video-based camera
see” method [3] and proposed methods are compared in Fig. 14
(more results can be found in [42]). The simulation results
demonstrate that, when rain streaks are obviously visible in a
single frame, the proposed method achieves comparable visual
quality with existing video-based methods without the need of
using temporal information of successive frames and adjusting
camera parameters.

It can be observed in Figs. 4 and Figs. 8.–14 that, as compared
to the proposed methods without and with extended dictionary

, incorporating the extended geometric dictionary leads to
better visual quality while increasing the computational com-
plexity (see the run-time analysis in Table IV shown below) of
sparse coding due to the much larger size of the extended dic-
tionary. The reason why sparse coding with an extended geo-
metric dictionary usually achieves better visual quality than that
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Fig. 14. Rain removal results: (a) original rain image; and the rain-removed
versions of (a) via the (b) video-based camera see method [3], (c) K-SVD-
based denoising method, (d) proposed method �� � �������, and (e) proposed
method with � .

without extended dictionary is that the extended dictionary pro-
vides more nonrain atoms for sparse coding to recover rain-re-
moved version with more image details. Note that incorporating

in rain removal is only an option, which leads to visual
quality improvement with increased complexity in most test
cases. In some rare cases, however, extended dictionary
may not improve the visual quality of some rain patches because
using can possibly derive inharmonious textures in a rain-
removed image. The main reason is that is a much richer
dictionary learned by several nonrain image patches and can be
used to speculatively recover some texture information behind
the rain streaks in the rain image while applying the MCA image
decomposition. Note that the values of mutual coherence be-
tween the two subdictionaries usually fall in the range of [0.6,
0.9], which is not very close to zero. The main reason is that
the two subdictionaries used in the proposed method are gen-
erated from a single learned dictionary based on a single-fea-
ture (HOG)-based clustering. It is unavoidable that the two dic-

TABLE IV
RUN TIME (IN SECONDS) AND MEMORY USAGE ANALYSIS OF KEY OPERATIONS

IN THE PROPOSED METHOD

tionaries may have few somewhat coherent atoms, which will
dominate the value. In the literature reporting values, min-
imization of the between a sensing matrix and a fixed dictio-
nary for learning an optimal sensing matrix was mentioned in
[44]. In [44], some -averaged values (approaching when

grows) between two matrices were reported to be in a range
of [0.4, 0.6], where one matrix is randomly initialized. Hence,
based on the obtained rain removal results of our method and the
comparison of the ranges of between our method and [44], the

values of our method are usually small enough.
The proposed method was implemented in MATLAB on a

personal computer equipped with Intel Core i5-460M processor
and 4-GB memory. The run time of each key step, including the
bilateral filtering, dictionary learning, dictionary partition, and
sparse coding (without and with ), for each test image (see
Figs. 8.–12) is listed in Table IV. It can be found that the run
time of the dictionary learning step dominates the total run time,
which may be further reduced for future work. In Table IV, we
also indicate the memory usage of our method, which is mainly
dominated by the memory used for the sparse coding dictionary.
In our method without extended dictionary, the self-learned dic-
tionary contains a total of 1024 atoms, where each atom con-
sumes 16 16 bytes, leading to a memory usage of 256 KB.
In addition, the extended dictionary consumes additional 1024
atoms, thereby requiring 512 KB in total if the extended dictio-
nary is utilized.

B. Discussion

There are some possible ways to further improve the visual
qualities of rain-removed images. In addition to collecting
training exemplar patches from some training nonrain images
for learning , we may extract training patches from the
same or neighboring camera(s) when extending the proposed
method to video rain removal. That is, we may extract exemplar
patches from the neighboring rain-removed frames captured by
intra/inter cameras in the same scene. Then, we can integrate
the geometric subdictionary obtained from the HF part itself
and the extended dictionary learned from the precollected
training patches to form the final geometric subdictionary.

Moreover, the shared-private factorization scheme proposed
in [45] may be used to further improve the performance of image
decomposition. In [45], to best leverage the information con-
tained in each view of an image represented by multiple views/
modalities, inspired by structured spare coding, the authors pro-
posed an approach to learning factorized representations of mul-
tiview data in which the information is correctly factorized into
components that are shared across several views and private
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to each view. The concept of shared-private factorization [45]
may be applied to further improve our work in two aspects.
First, a rain image can be segmented into several local regions
with different local characteristics, which can be viewed as the
multiple views. We may apply the multiview learning to learn
a latent space that can separate the information (rain atoms)
shared among several views from the information (unique non-
rain atoms) private to each view. Then, the two dictionaries for
rain removal can be accordingly identified. Second, rather than
learning two disjoint private dictionaries without any common
atoms for the rain and nonrain components, the two dictionaries
may share some common atoms (i.e., the shared dictionary).
Soft clustering (e.g., the fuzzy C-means) rather than hard clus-
tering, or shared-private factorization, can be used to obtain
better sparse representations.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a single-image-based rain
streak removal framework by formulating rain removal as an
MCA-based image decomposition problem solved by per-
forming sparse coding and dictionary learning algorithms. The
dictionary learning of the proposed method is fully automatic
and self-contained where no extra training samples are required
in the dictionary learning stage. We have also provided an
optional scheme to further enhance the performance of rain
removal by introducing an extended dictionary of nonrain atoms
learned from nonrain training images. Our experimental results
show that the proposed method achieves comparable perfor-
mance with state-of-the-art video-based rain removal algorithms
without the need of using temporal or motion information"" for
rain streak detection and filtering among successive frames.

For future work, the performance of our method may be fur-
ther improved in terms of computational complexity and visual
quality by enhancing the sparse coding, dictionary learning, and
dictionary partitioning processes. More specifically, since the
dictionary learning and sparse coding consume most of execu-
tion time, the input image can be segmented into several local
regions with different local characteristics such that the online
dictionary learning for individual regions can be performed in
parallel to accelerate the two processes by taking advantage of
current multicore processor technology. In addition, with the
localized learning and sparse coding, the number of patches
of each local region for dictionary learning and the number of
atoms for sparse coding will be significantly fewer than those
for the whole-image-based learning, thereby further reducing
the computational complexities of the two processes. Neverthe-
less, the impact of localized learning and sparse coding on rain
removal performance needs in-depth investigation. Moreover,
the dictionary learning process can be further improved to ob-
tain more accurate sparse representations by taking into account
the information shared in rain and nonrain components, and the
information shared in the rain components of different local re-
gions, as mentioned in Section IV.
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