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Abstract—We propose a human object inpainting scheme that
divides the process into three steps: 1) human posture synthesis; 2)
graphical model construction; and 3) posture sequence estimation.
Human posture synthesis is used to enrich the number of postures
in the database, after which all the postures are used to build a
graphical model that can estimate the motion tendency of an ob-
ject. We also introduce two constraints to confine the motion con-
tinuity property. The first constraint limits the maximum search
distance if a trajectory in the graphical model is discontinuous,
and the second confines the search direction in order to maintain
the tendency of an object’s motion. We perform both forward and
backward predictions to derive local optimal solutions. Then, to
compute an overall best solution, we apply the Markov random
field model and take the potential trajectory with the maximum
total probability as the final result. The proposed posture sequence
estimation model can help identify a set of suitable postures from
the posture database to restore damaged/missing postures. It can
also make a reconstructed motion sequence look continuous.

Index Terms—Dimensionality reduction, isomap, manifold
learning, object completion, video inpainting.

I. INTRODUCTION

V IDEO inpainting is a popular research field in recent
years, owing to its powerful capability in video editing

and recovering. A number of algorithms for automatic video
inpainting have been proposed [1]–[8] in the past few years.
Conventional video inpainting methods can be roughly classi-
fied into two types: The first type is patch-based [1]–[4], and the
other type is template based [5], [6]. In [1], Patwardhan et al.
proposed a video inpainting technique that makes use of motion
information and image inpainting technique together. Motion
information is adopted to help find the most suitable patch. In
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[2], the space–time volume is sliced up into motion manifolds
to perform video completion. The proposed manifolds are
composed of 2-D patches (one for the spatial dimension and
the other for the temporal dimension). These patches cover the
entire trajectory of pixels, and the method in [2] applies the
approach of Sun et al. [27] to inpaint those missing regions.
However, these approaches would cause spatial or temporal
structure inconsistency artifacts. In [3], Wexler et al. adopted
a 3-D fix-sized patch as a unit for video inpainting. The value
of a missing pixel is estimated by a set of constituent patches,
and a multiscale solution is used to speed up the process. In [4],
Cheung et al. introduced a probabilistic patch model for video
inpainting. They use a video epitome method to compress an
original video by learning, after that the epitome is used to
synthesize data for the damaged areas of a video.

In the template-based video inpainting category, Cheung et
al. [5] proposed a technique to deal with the problem of missing
objects in videos captured by a stationary camera. All available
object templates are used to inpaint the foreground. Then, for
each missing object, a fixed-size sliding window that covers the
missing object and its neighboring templates is used to find the
most similar object template. Although the sliding window can
help find similar object templates, the inpainting result may be
unsatisfactory if the number of postures is insufficient. Further-
more, a good filling position is crucial for an object inpainting
process because an inappropriate position may cause visually
annoying artifacts. In [6], Jia et al. proposed a user-assisted
video layer segmentation technique that decomposes an input
video into color and illumination videos. A tensor voting tech-
nique is then used to address the pertinent spatio–temporal is-
sues in background and foreground. Image repairing is used for
background inpainting, and occluded objects are reconstructed
by synthesizing other available objects. However, a synthesized
object created under this approach does not have a real trajec-
tory; thus, the approach is only suitable for objects with periodic
motion.

Although an object can perform a broad variety of move-
ments, the set of typically performed movements is usually
located on a latent space that is low dimensional, particu-
larly when the period of object occlusion is not long, where the
missing part usually only contains a simple class of movements.
Therefore, motion priors can aid in relaxing the ill-posedness
of video inpainting by projecting the high-dimensional video
data to a low-dimensional manifold learned from training data
and then recovering the missing information in the low-dimen-
sional manifold. Ding et al. [8] proposed a nonlinear dimension
reduction-based video inpainting technique that utilizes local
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linear embedding [9] to transform data observed in frames
into embedded features in a low-dimensional manifold. Then,
the embedded features are organized to form a Hankel matrix,
and missing data can be determined by minimizing the rank of
the matrix. Finally, the radial basis function (RBF) is used for
inverse mapping. Again, the drawback of this method is that it
causes blurring and ghost image artifacts if the object’s motion
is not periodic.

Motion prior models derived from training data have been
also successfully applied in applications of marker-free human
motion capture and analysis [10]–[12]. Generally, two main
classes of motion priors can be identified [12]. The first class
utilizes an explicit motion model to guide motion analysis and
tracking of body parts. For example, the method proposed in
[13] utilizes variable length Markov models (VLMMs) to char-
acterize both the short-term dynamics and long-term history
of video data. Similar to the approach in [8] and this paper,
the second class learns a low-dimensional posture manifold
and performs analysis and tracking in the low-dimensional
manifold [14], [15]. The inverse mapping from the low-dimen-
sional manifold to the high-dimensional full body configuration
can be accomplished via RBF or locally linear coordination
[16]. Although the basic components for dimensionality re-
duction and inverse mapping are similar, as motion analysis
is aimed at tracking of human motion, the key component of
object inpainting-recovering missing trajectories in the learned
low-dimensional manifold was usually not addressed in these
motion analysis works.

Our literature survey shows that most video inpainting algo-
rithms generate artifacts if the object to be inpainted is com-
pletely occluded or its motion is not periodic. To void gener-
ating such artifacts, a posture sequence estimation process of
good accuracy is required for object inpainting. To this end,
Xu et al. [17] proposed a method for animating animal mo-
tions. The model rearranges available animal templates to form
a new animal motion sequence by minimizing a predefined en-
ergy function. In this paper, rather than using an optimization
approach, which is time consuming, we propose a posture se-
quence estimation method that maintains the continuity of the
local motion of an object. The proposed framework consists
of three steps: 1) human posture synthesis; 2) graphical model
construction; and 3) posture sequence estimation. Human pos-
ture synthesis is used to enrich the number of postures in the
database, after which all the postures are used to build a graph-
ical model that can predict motion tendency. We also propose
two constraints to confine the motion continuity property. The
first constraint limits the maximum search distance if a trajec-
tory in a graphical model is discontinuous, and the second con-
fines the search direction in order to maintain the tendency of an
object’s motion. We perform both forward and backward pre-
diction to derive local optimal solutions. Finally, we apply the
Markov random field (MRF) model to compute an overall best
solution, and the potential trajectory with the maximum total
probability is taken as the final result. The proposed posture se-
quence estimation model can help identify a set of suitable pos-
tures from the posture database to restore damaged/missing pos-
tures. It can also make a reconstructed motion look continuous.
The advantage of this posture sequence estimation strategy is

Fig. 1. Projecting posture differences onto the �-axis.

that it can handle cases such as nonperiodic motion or complete
occlusion. These capabilities are powerful because conventional
model-based motion prediction methods [10], [18], [19] must
use a training process to achieve the same goal.

The remainder of this paper is organized as follows: In
Section II, we explain how to perform object inpainting based
on the proposed posture sequence estimation method. In
Section III, we discuss the results of experiments conducted
to evaluate the method. Section IV contains some concluding
remarks.

II. HUMAN OBJECT INPAINTING USING POSTURE

SEQUENCE ESTIMATION

Here, we explain how to perform human object inpainting
based on the proposed posture sequence estimation method. As
mentioned earlier, the method includes three steps: 1) human
posture synthesis; 2) graphical model construction; and 3) pos-
ture sequence estimation. We discuss the steps in detail in the
following sections.

A. Human Posture Synthesis

The problem of an insufficient number of postures will affect
the visual quality of any video sequence generated by a pos-
ture-prediction-based approach. To solve the shortage-of-pos-
ture problem, we utilize our previous posture synthesis method
[7] that was mainly designed for generating synthetic human
postures to increase the number of postures. The human pos-
ture creation process combines the constituent parts of different
available postures to enrich the contents of a posture database.
Specifically, the first step performs appropriate segmentation of
the postures in the database. To improve the segmentation of a
posture, we need to know the amount and speed that each part of
the posture moves. For a part that significantly moves and faster,
more intermediate postures must be generated to interpolate the
gap caused by missing frames. Taking any two postures from the
posture database, we use a bounding rectangle to bind each pos-
ture; then, we align the two postures, as indicated by the middle
part in Fig. 1. Finally, we take the difference between the two
postures and project the difference onto the -axis, as shown on
the right-hand side of Fig. 1.

To detect which parts of a human body significantly move, it
is necessary to calculate the differences between a posture and
all the other postures in the database. All the posture differences
are projected onto the -axis such that the accumulated -axis
component will be like the distribution shown on the right-hand
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Fig. 2. Projecting all the differences between any two postures onto the �-axis
and calculating the cumulative amount.

Fig. 3. Constituent components of a posture are partitioned based on the local
variance. The dashed line that separates the postures into constituent compo-
nents can be determined based on the distribution of the local variance shown
on the left-hand side of the figure.

Fig. 4. New posture can be synthesized by combining different components
(e.g., the torso and the legs).

side of Fig. 2. Then, from the peaks and valleys of the pro-
jected distribution, it is possible to properly segment a posture,
as shown by the posture sequence in Fig. 3. From the segmented
parts derived from many postures, new postures can be synthe-
sized by combining constituent parts, as shown in Fig. 4.

Note, for the sake of simplicity, in Fig. 1, we assume that
the object moves along the direction parallel to the image plane
(i.e., the horizontal direction). If the object moves along another
direction, the posture difference should be projected to the axis
that is orthogonal to the direction of object movements (e.g., the

-axis for vertical movement). The proposed synthesis method
is of low complexity and can only synthesize object postures
that can be explicitly decomposed into two or more constituent
parts. For coping with sophisticated cases in body part local-
ization, one can refer to [20] and [21]. Moreover, the proposed
posture synthesis step is to offer more postures with a limited
set of configurations of body parts in the posture database to in-
crease the spatio–temporal continuity of a reconstructed trajec-
tory in the low-dimensional manifold, rather than synthesizing
arbitrary objects.

B. Graphical Model Construction

After creating synthetic postures, the posture database will
contain a lot of postures that can be used to build a graphical
model of an object’s motion, as shown in Fig. 5. The model

Fig. 5. Graphical model of an object’s motion in a low-dimensional manifold.
The blue points represent the feature points of the postures, and the red lines
connect two feature points whose corresponding postures appear in adjacent
frames. In this example, occlusion occurs between frames � � � and � � �;
hence, we try to find a motion path with � internal points that can be used to link
points � and � .

Fig. 6. Extracting the local context of a posture: (a) the object’s original pos-
ture; (b) the object’s silhouette described by a set of feature points; (c) using the
convex hull to extract critical reference points; and (d) a shape context mask on
a feature point.

provides a simple representation of an object’s motion. To ob-
tain such a model, all postures (both synthesized and existing
postures) must be projected onto a feature space. Then, we link
the postures that appear in adjacent frames in the constructed
feature space. After applying the above procedure, we can ob-
tain a graphical representation of the object’s motion. To model
the distribution of the postures in the feature space, we need to
know the distances between distinct postures. We use a shape
context descriptor that we developed in a previous work [22],
which is a modified version of the descriptor proposed in [23],
to compile a detailed description of each posture. The value of
the shape context is calculated along the silhouette of the pos-
ture. In the posture sequence estimation stage, the values of the
shape contexts will be used to compare the degree of similarity
between two distinct postures.

To calculate the value of a shape context, the silhouette of
a posture must be represented as a set of sampled points

, as shown in Fig. 6(b). A convex hull is used to
select some critical reference points among the sampled points
[see Fig. 6(c)]. Then, for each critical reference point ,
a corresponding local histogram of feature points in bins
in a circle of radius is computed in a log-polar space to rep-
resent the local shape context of [see Fig. 6(d)]. The cost of
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matching two sampled points that belong to different postures
is defined as follows:

(1)

where and denote the th bin of the two sampled
points and , respectively. The value of is empirically
set to be 60 for all sequences, and the value of is determined
by an algorithm described in [22]. The best match between two
different postures can be accomplished by minimizing the fol-
lowing total matching cost:

(2)

where is a permutation of . Because of the
one-to-one matching requirement, shape matching can be
considered as an assignment problem that can be solved by a
bipartite graph matching method. Therefore, the shape context
distance between shapes and can be computed as follows:

(3)
where and are the numbers of sample points on shapes

and , respectively.
By using the context descriptor proposed in [22], we can cal-

culate the degree of similarity between two distinct postures.
Then, based on the similarity scores of the postures, we cluster
all the postures in the database by using a nonlinear dimension
reduction method called isometric feature mapping (Isomap)
[24]. In our application, existing and synthesized postures are
regarded as input data points for Isomap, and the distance be-
tween two data points is equivalent to the degree of similarity
between two corresponding postures. We modify the Isomap al-
gorithm to fit our requirements as follows.

Step 1) Construct a neighborhood graph: If is one of the
-nearest neighbors (K-NN) of , define a graph
that connects data points and . The length of

the edge between and is used to measure the
degree of similarity between postures and .

Step 2) Compute the shortest paths: Find the shortest path
between each pair of feature points in . Matrix

contains all the shortest paths
between all pairs of data points in .

Step 3) Construct a -dimensional embedding: Find eigen-
vector of matrix (Operator is defined as

, where
, ,

, and ). Then,
to derive the final result, we apply classical multi-
dimensional scaling [25] to the matrix of graph dis-
tances .

A special feature of Isomap is that it can preserve the dis-
tances between data points in each local region during dimen-
sion reduction. We exploit this characteristic to preserve the sim-
ilarity information between postures in each local region of a

Fig. 7. Neighborhood constraint.

Fig. 8. Motion tendency constraint.

graphical model and utilize the information to check the motion
continuity property between adjacent postures.

C. Posture Sequence Estimation

Based on the graphical model of an object’s motion shown in
Fig. 5, we obtain suitable postures to replace damaged/missing
postures by finding an approximate path that links data points

and in a low-dimensional manifold. Intuitively, a motion
path can be reconstructed by taking the shortest path between
two nodes or by an optimization process [17], but these two ap-
proaches cannot guarantee the smoothness of a recovered mo-
tion. To resolve the problem, we propose using two constraints
to regulate the motion continuity property in the local region of
a graphical model. Specifically, we need a strategy to select a
certain number of data points that satisfy the continuous motion
constraint. The first constraint limits the search range to within
a reasonable neighborhood, as shown in Fig. 7. Therefore, we
need to define the search range of the complete trajectory of an
object’s motion. In the manifold domain, such trajectories are
comprised of a number of linked data points (see Fig. 5). To de-
termine the distance between any two consecutive data points
on a trajectory, we calculate the shape context difference be-
tween their corresponding postures. Then, the maximum dis-
tance among all the measured distances is taken as the search
range to satisfy the first constraint. Since the search range is cir-
cular, we calculate the radius as follows:

(4)

where represents the distance between and on an ob-
ject’s motion trajectory.

The second constraint is introduced to maintain the tendency
of an object’s motion in each local region. It can be realized
by checking the tendency of an object’s motion trajectory in a
graphical model. In a low-dimensional manifold, a motion tra-
jectory does not significantly change direction in a neighbor-
hood region. Based on this observation, a variance constraint
of motion tendency is designed to ensure that the variance of
motion tendency stays within a reasonable range (see Fig. 8). In
the manifold domain, the complete trajectory of an object’s mo-
tion is comprised of a number of linked segments, as shown by
the red lines in Fig. 5. For the segments indicated by the lines,
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Fig. 9. Some snapshots extracted from test sequence 1.

Fig. 10. (a)–(b) Some forward prediction steps, (c)–(d) some backward prediction steps, and (e) the combined results of a two-way prediction at time �.

we compute the change in direction between any two consecu-
tive segments based on the inner product of their corresponding
vectors. Among all the computed direction changes, the largest
direction change is taken as the maximum allowable angle for
direction change. This angle, which is the basis for executing
the second constraint, is calculated by

(5)

where represents the angle between vectors and
on an object’s motion trajectory.

The above constraints are designed to maintain the local con-
tinuity of an object’s motion. To maintain the global motion con-
tinuity, we propose a two-way (forward–backward) prediction
mechanism. We use three time instants, i.e., , , and ,
to explain how the proposed mechanism operates. In the forward
operation, we make a forward prediction on each data point at
time . The motion tendency constraint and the search range
constraint are applied to determine probable data points at

next time instant . Selected data points will be used to pre-
dict the candidate data points at time . We apply the same
strategy in the reverse direction and collect related information
from to and from to . Then, we combine the re-
sults from the bidirectional processing to obtain the final results
for time . To illustrate the two-way prediction process further,
we use a test sequence containing 245 frames. Some snapshots
extracted from test sequence 1 are shown in Fig. 9. The can-
didate points chosen at time instant 19 are indicated
by the blue dots in Fig. 10(a), and their corresponding postures
are shown on the left-hand side of the figure. Those candidate
points are used to perform forward prediction. The predicted
candidate points at time instant 20 are shown in Fig. 10(b). We
apply the same procedure in the reverse direction and generate
results from to [shown in Fig. 10(c) and (d)]. The
two sets of results are then combined to form the final results,
as shown in Fig. 10(e). Table I provides detailed information
about the aforementioned processes, including the distance and
angle information calculated during the forward and backward
prediction steps.
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TABLE I
DETAILED INFORMATION DERIVED DURING THE FORWARD–BACKWARD PREDICTION PROCESS

Fig. 11. Example of the MRF process.

Since the motion continuity constraint is only effective on
local regions, we use the MRF model to derive global motion
continuity. MRF provides a convenient and accurate way to
model context-dependent entities, such as image pixels and cor-
related features. The above modeling can be achieved by charac-
terizing the mutual influences that relate such entities. To predict
an object’s motion, instead of following the Markov assump-
tion, we assign one node of the Markov network to each time
state. Then, the constructed network can reflect statistical de-
pendences. Given a set of data points located at the intervening
nodes, every node of a Markov network is statistically indepen-
dent of other nodes in the network. Since our Markov network
does not contain loops, the aforementioned Markov assump-
tion results in simple “message-passing” rules for computing the

probability during inference. The data point estimated at node
is

(6)

where denotes the candidate point associated with node ,
is the self-probability of candidate point , and is

the message derived from node to node . can be
calculated as follows:

(7)

where is the previous message, which is used to gen-
erate by executing (7). includes the probability
information of all the candidate data points of node . The ini-
tial message is set as a column vector with the initial
probability of all the elements associated with node . Function

is defined as follows:

(8)
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Fig. 12. Experiments on test sequence 1: (a) partial sequence of test sequence 1 in which the red rectangle indicates missing frames; (b) frames reconstructed
by the approach in [8]; (c) frames reconstructed by the approach in [17]; (d) frames reconstructed by the proposed approach; and (e) the corresponding trajectory
information of predicted object motion generated by the three approaches.

where is the angle between vectors and and
and are the mean and standard deviation, respectively, of all

angles in a complete trajectory of an object’s motion.
To better explain how (6)–(8) find an optimal , we use the

three nodes shown in Fig. 11 as an example.

Initially, node receives two messages in the form of a
column vector with the initial probabilities of the elements
associated with nodes and . It then sends the two
messages, i.e., and , to nodes and ,
respectively. The messages contain the probability information
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TABLE II
COMPARISON OF THE GROUND-TRUTH POSTURES AND THE RECONSTRUCTED MISSING POSTURES (THE PARTS IN BLACK, RED, AND GRAY REPRESENT THE

GROUND-TRUTH POSTURES, THE RECONSTRUCTED POSTURES, AND THE PERFECTLY MATCHED PORTIONS, RESPECTIVELY)

of all the candidate data points associated with node . Before
the information is sent, it is reordered to form a column vector.
On receipt of the information, nodes and respond
by sending messages and , respectively, to node .
When each candidate point of node receives message ,
it finds a matching point in node as follows:

(9)

where is the new self-probability of candidate point ,
is the previous self-probability of candidate point , and

and are the probabilities propagated by
messages and , respectively. After normalizing the
probability value of each candidate point calculated by (9), we
obtain a new probability value for each candidate point. Then,
node sends the updated message with the new proba-
bility to node . Similarly, if node receives an updated
message from node , the probability values of all the can-
didate points of node are recomputed and sent to node .
Freeman et al. [28] showed that after, at most, one global it-
eration of (7) on each node of the network, (6) can derive the
desired optimal estimate of at node .

III. EXPERIMENTAL RESULTS

To test the effectiveness of the proposed posture sequence
estimation method, we performed experiments on eight se-
quences, wherein part of them were captured with a camcorder
and the remaining were grabbed from the Weizmann database
[29] and the Internet. In addition to test sequence 1 shown
in Fig. 9, we used sequences 2 and 3 to evaluate the pro-
posed method. In the experiments, we first removed several
consecutive frames to simulate a real-world situation where
objects in a number of consecutive frames were damaged due
to packet loss. Then, we applied the proposed posture sequence
estimation method to reconstruct the motion of each object. We
also compared the performance of our approach with that of
the approaches in [8] and [17]. For all the test sequences, the

Fig. 13. Experiments on test sequence 2: (a) some snapshots of the occluded
object in the test sequence; (b) frames reconstructed by the approach in [8]; (c)
frames reconstructed by the approach in [17]; (d) frames reconstructed by the
proposed approach; and (e) the inpainting result derived by our approach.
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Fig. 14. Experiments on test sequence 3: (a) partial sequence of the test sequence in which the red rectangle indicates the seven missing frames; (b) the frames
reconstructed by the approach in [8]; (c) the frames reconstructed by the approach in [17]; (d) the frames reconstructed by the proposed approach; and (e) the
corresponding trajectory information of predicted object motion generated by the compared approaches.

proposed method maintained the motion continuity of a recon-
structed motion and yielded better results than the compared

approaches. For subjective performance comparison, readers
can find more test sequences and the complete set of test results,
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TABLE III
COMPARISON OF THE GROUND-TRUTH POSTURES AND RECONSTRUCTED MISSING POSTURES (THE PARTS IN BLACK, RED, AND GRAY REPRESENT THE

GROUND-TRUTH POSTURES, THE RECONSTRUCTED POSTURES, AND THE PERFECTLY MATCHED PORTIONS, RESPECTIVELY)

including the original videos, the videos after object removal,
and the inpainted videos, from our project website [31].

In the first experiment, we removed ten of the 245 frames in
test sequence 1. Part of the sequence (28 frames) is shown in
Fig. 12(a). In the figure, the ten frames that we removed are
bounded by the red rectangle. Fig. 12(b)–(d) show the missing
sequence that was reconstructed by applying the approaches
in [8] and [17] and ours, respectively, and Fig. 12(e) shows
the corresponding trajectories reconstructed by the three ap-
proaches in the manifold space. Among the trajectories, the red,
blue, yellow, and green colors represent the ground-truth tra-
jectory, and the trajectories reconstructed by the approaches in
[8] and [17] and the proposed approach, respectively. We ob-
serve that the trajectory reconstructed by our approach main-
tains the best motion continuity, and it is also the smoothest of
the three trajectories. Because the proposed posture sequence
estimation method is more effective in recovering an object’s
motion and maintaining motion continuity simultaneously, we
conclude that it is more suitable for object inpainting than the
compared methods.

Table II details the results of the ground truth and the three
compared methods. The top row shows the sequence of missing
ground-truth postures, and the second, third, and fourth rows
show the missing frames reconstructed by the methods in [8]
and [17] and our method, respectively. The black parts of
the figures are the ground-truth postures, the gray parts are
perfectly matched portions, and the red parts belong to recon-
structed postures. We observe that the frames reconstructed by
our method are consistently better than those derived by the
compared methods.

In the second experiment, we used test sequence 2, which
contained 100 frames. In the sequence, two people are walking
toward each other, and one person occludes the other in about
20 frames [some of the frames are shown in Fig. 13(a)].
Fig. 13(b)–(d) show the parts of the frames reconstructed by the

methods in [8] and [17] and our approach, respectively. From
the reconstructed frames, it is apparent that our approach was
the most effective in recovering the occluded frames. Using the
recovered sequence generated, our approach yielded the best
inpainting results among the three compared approaches, as
shown in Fig. 13(e).

In the third experiment, we used a video sequence (test se-
quence 3) from the Weizmann database [29] to evaluate our
method. We removed seven of the 55 frames in the sequence.
Fig. 14(a) shows part of the sequence (21 frames). The seven
frames bounded by the red rectangle were the ones removed be-
fore the experiment. Fig. 14(b)–(d) show the missing frames re-
constructed by the three approaches, respectively, and Fig. 14(e)
shows the trajectories reconstructed by the three approaches in
the manifold space.

Table III details the results of the ground-truth method and
the three compared methods. The top row shows the sequence
of missing ground-truth postures. The second, third, and fourth
rows show the missing frames reconstructed by the two methods
in [8] and [17] and our method, respectively. The black parts
of the figures are the ground-truth postures, the gray parts are
perfectly matched portions, and the red portions belong to the
reconstructed postures. Note that the first frame reconstructed
by the method in [8] covers a broad area (the red area above
the head). Only this method may generate such results. In terms
of the accuracy of the reconstructed frames, our method re-
constructed the most accurate postures overall. However, the
method in [17] reconstructed the most accurate posture in the
last of the seven missing frames. The match rate was 94.3%
compared to that of the ground truth. In contrast, the accuracy of
the postures reconstructed by the method in [8] and our method
was 67.7% and 77.2%, respectively, compared to that of the
ground-truth posture.

As can be observed from the results shown in our demo page
[31], since the proposed method uses nonoccluded postures
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taken from the same video to completely replace the occluded
postures, rather than completing the missing parts of occluded
postures, it can avoid the blurring and deformation artifacts,
which may be produced by patch-based inpainting approaches.
In addition, since in our method the nonoccluded posture se-
quences for training the MRF models are taken from the same
video containing the to-be-inpainted posture sequence, they all
have the same frame rate. Therefore, no additional temporal
scaling or time warping is required for matching different
temporal scales. One shortage of our method is that, since it is
an object-based approach, inaccurate object segmentation may
lead to visually unpleasant artifacts.

IV. CONCLUSION

We have proposed a human object inpainting scheme that
divides the process into three steps: 1) human posture synthesis;
2) graphical model construction; and 3) posture sequence es-
timation. In addition, we have defined two constraints on the
motion continuity property. The first constraint sets a threshold
to limit the maximum search distance, and the second confines
the range of the search direction. With the two constraints, the
number of possible candidates between any two consecutive
postures can be significantly reduced. We then apply the MRF
model to perform global matching. The experiment results
demonstrate that the proposed approach outperforms two ex-
isting state-of-the-art approaches.
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