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Abstract— Online image hashing aims to update hash functions
on-the-fly along with newly arriving data streams, which has
found broad applications in computer vision and beyond. To this
end, most existing methods update hash functions simply using
discrete labels or pairwise similarity to explore intra-class rela-
tionships, which, however, often deteriorates search performance
when facing a domain gap or semantic shift. One reason is
that they ignore the particular semantic relationships among
different classes, which should be taken into account in updating
hash functions. Besides, the common characteristics between
the label vectors (can be regarded as a sort of binary codes)
and to-be-learned binary hash codes have left unexploited. In
this paper, we present a novel online hashing method, termed
Similarity Preserving Linkage Hashing (SPLH), which not only
utilizes pairwise similarity to learn the intra-class relationships,
but also fully exploits a latent linkage space to capture the
inter-class relationships and the common characteristics between
label vectors and to-be-learned hash codes. Specifically, SPLH
first maps the independent discrete label vectors and binary
hash codes into a linkage space, through which the relative
semantic distance between data points can be assessed precisely.
As a result, the pairwise similarities within the newly arriving
data stream are exploited to learn the latent semantic space
to benefit binary code learning. To learn the model parameters
effectively, we further propose an alternating optimization algo-
rithm. Extensive experiments conducted on three widely-used
datasets demonstrate the superior performance of SPLH over
several state-of-the-art online hashing methods.

Index Terms—Image retrieval, online hashing, binary codes,
similarity preservation.

I. INTRODUCTION
APID and unstoppable exploration of visual data brings
significant challenges to traditional image hashing meth-
ods [1]-[20] that resort to learning fixed hash functions
without any model updating and adaptation. Recently, online
hashing has attracted ever-increasing research focus due to
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its high flexibility, which leverages newly arriving data to
update hash functions efficiently, while preserving essential
information carried in existing data streams. In principle,
online hashing merits in two-fold: (1) It preserves the advan-
tages of traditional hashing methods: the low storage cost and
efficiency of pairwise distance computation in the Hamming
space. (2) It can be trained efficiently for large-scale applica-
tions, as its hash functions can be updated instantly based on
newly arriving streaming data.

Essentially, online hashing distills the core information of
the newly arriving data stream while preserving the informa-
tion of the past ones. The works of online hashing can be
classified into supervised methods and unsupervised methods.
Among the supervised methods, representative works include,
just to name a few, Online Kernel Hashing (OKH) [21],
Adaptive Hashing (AdaptHash) [22], Online Supervised Hash-
ing (OSH) [23], Online Hashing with Mutual Information
(MIHash) [24], Hadamard Codebook based Online Hash-
ing (HCOH) [25], and Balanced Similarity for Online Dis-
crete Hashing (BSODH) [26]. For instance, OKH [21],
AdaptHash [22], MIHash [24], and BSODH [26] all uti-
lize label information to define the similarity (dissimilarity)
between two data samples. By contrast, HCOH [25] and
OSH [23], assign a pre-defined ECOC codebook learned from
discrete labels. Representative unsupervised online hashing
methods include SketchHash [27] and FROSH [28], etfc.
These unsupervised approaches consider the inherent statis-
tical properties among data, e.g., distribution and variance,
which are efficient but lack flexibility and adaptivity. Instead,
supervised online hashing typically yields better performance
by leveraging label information, which is studied in this paper.

Despite the exciting progress, the accuracy of existing
online hashing methods is still far from satisfactory. In par-
ticular, we identify two major issues that need to be further
tackled: (1) As shown in Fig. 1 (left side), existing supervised
methods simply resort to discrete labels or (intra-class) pair-
wise similarity in learning hash functions, while neglecting
the (inter-class) semantic relationships that are particularly
important when facing problems like a domain gap [29] and
semantic shift [30]. (2) A label vector can be by nature
regarded as a hashing code for each data sample. Hence, there
exists a correlation between label vectors and binary codes,
which is worth further exploration in learning hash functions.

For the first issue, semantic relationships were explored
in several non-online hashing methods [30], [31], which,
however, cannot be directly applied to online hashing since
input data arrive in a streaming manner, thereby making
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Fig. 1. Illustration of the difference between the proposed SPLH and existing
methods [21]-[26]. The existing methods (left side) simply consider discrete
labels or (intra-class) pairwise similarity in learning hash functions, while
neglecting the (inter-class) semantic relationships. For example, a dog is more
semantically related to a cat than that to a rabbit. By contrast, SPLH maps
the discrete label vectors into a latent linkage space to capture the inter-class
semantic relationships (right side), through which the semantic-related images
are closer in the Hamming space. (Best view with zooming in).

the inter-class relationship hard to capture. Besides, existing
methods neglect the similarity between different classes to
capture the inter-class relationships. For the second issue,
capturing the characteristics between label vectors and binary
codes remains an open problem. To the best of our knowledge,
the label coding methods [17], [32] map label vectors to
binary codes by LSH [33], and then use the transformed label
vectors as target codes to guide the learning of hash functions.
However, the straightforward usage of label vectors has not
been exploited.

To address the above problems, we argue that both the
inter- & intra-class relationships and the common char-
acteristics shared between label vectors and learned binary
codes are vital. In this paper, we propose a novel supervised
online hashing method, termed Similarity Preserving Linkage
Hashing (SPLH), to consider the above designs for supervised
online hashing. SPLH innovates in three-fold: First, as shown
in Fig.1 (right side), to capture the inter-class relationships
and the common characteristics between label vectors and
binary codes, we propose to map the discrete label vectors and
binary codes to a linkage space where the semantic distances
between data points can be assessed precisely. Second, unlike
the existing approaches that exploit the similarity between the
newly arriving streaming data and the set of past data [26],
SPLH uses a more practical way that exploits the relationships
among the new streaming data, since the fast-growing size
of accumulated past data makes it inefficient to exploit the
similarity based on the historic dataset. Lastly, we propose
an efficient alternating optimization algorithm to solve the
non-convex online learning of binary codes.

The rest of this paper is organized as follows: Sec.II surveys
important related works. In Sec.IIl, we elaborate the frame-
work of the proposed method. Sec.IV analyzes the model com-
plexity. The experimental results and analyses are provided in
Sec. V. And finally, we conclude this paper in Sec. VI.

II. RELATED WORKS

In this section, we briefly review two related topics: offline
hashing and online hashing.

A. Offline Hashing

Offline hashing updates hash functions in a batch manner
where a collection of training data is given in advance.
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To this end, data-independent Locality Sensitivity Hashing
(LSH) [33] and its variants [34]-[36] resort to preserving
the cosine similarities between samples by using random
Gaussian projections to map samples into binary features.
Usually, the similarities can be preserved for sufficiently
long codes. An alternative is the data-dependent methods.
For example, Spectral Hashing (SH) [1] learns hash func-
tions based on spectral graph partitioning: first learning the
eigenvectors from the Laplacian of a training dataset and
then binarizing low-dimensional real values. Anchor Graph
Hashing (AGH) [37] performs clustering on a training dataset
to reduce the storage space and computational complexity for
constructing the graph Laplacian. Besides, the similarity is
computed via k-nearest neighbor anchors which can preserve
the local structure in a low-dimensional subspace to a certain
extent. [Terative Quantization (ITQ) [4] learns an orthogonal
rotation matrix to refine the initial projection matrix learned
by PCA so as to minimize the quantization error of mapping
the data to the vertices of binary hypercube. Scalable Graph
Hashing (SGH) [38] approximates a graph through feature
transformation without explicitly computing the similarity
graph matrix, based on which a sequential learning method
is proposed to learn the hash functions in a bit-wise manner.
Ordinal Constraint Hashing (OCH) [39] learns rank-preserving
features with a graph-based approximation to embed the ordi-
nal relations. It reduces the size of ordinal graph while keeping
the ordinal relations through a small data set via clusters or
random samples. Liu et al. [40] proposed a self-improvement
hash learning framework where the different code sets are
obtained for the training data, and then two fusion strategies
are adopted to fuse these codes into a single set.

Most of the above hashing methods are originally
designed and experimented on hand-crafted features, their
poor representation power usually limits their practical
applications. Recently, more works have been focusing
on utilizing the power of deep convolutional neural net-
works (CNNs) [41]-[43] to boost hashing performance.
Xia et al. [44] proposed a two-step supervised hashing
method that learns deep CNN based hash functions with
pre-computed binary codes. To characterize the non-linear
relationship among samples, Lu er al. [45] proposed a deep
neural network to exploit multiple hierarchical non-linear
transformations to learn compact binary codes. Deep Cauchy
Hashing (DCH) [46] devised a pairwise cross-entropy loss
based on the Cauchy distribution for efficient Hamming space
retrieval. Yang et al. [47] distilled the relationship between
the initial noisy similarity signals and the semantic similarity
labels, based on which a Bayesian learning framework was
built to learn hash functions. To support fine-grained retrieval
applications, Deep Saliency Hashing (DSaH) [48] introduces
a saliency mechanism into hashing, which adopts an attention
network to mine discriminative regions.

B. Online Hashing

By contrast, online hashing updates hash functions in
a streaming manner by which the training data come
sequentially. Supervised online hashing makes use of label
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information to learn discriminative hash functions. Online
Kernel Hashing [21] is among the first of this kind, that
requires sample pairs to update hash functions via an
online passive-aggressive strategy [49]. Adaptive Hashing [22]
defines a hinge-like loss, which is approximated by a dif-
ferentiable Sigmoid function to update hash functions with
stochastic gradient descent (SGD). In [23], a general two-step
hashing scheme was introduced, which first assigns binary
Error Correcting Output Codes (ECOC) [50]-[52] to labeled
data, and then learns a set of hash functions to fit the binary
ECOC using Online Boosting. Fatih et al. [24] proposed
an Online Hashing with Mutual Information, which aims
at optimizing the mutual information between the neighbors
and non-neighbors given a query. Lin ef al. proposed a
Hadamard Codebook based Online Hashing (HCOH), where
a more discriminative Hadamard matrix [53] is used as the
ECOC codebook to guide the learning of hash functions
through linear regression [25] or classification [54]. Balanced
Similarity for Online Discrete Hashing (BSODH) [26] was
recently proposed to investigate the correlation between a
new data stream and the existing dataset via an inner-product
fashion. To address the data imbalance problem, BSODH
adopts two equilibrium factors to balance the similarity matrix
and enables the application of discrete optimization [9] to
online learning. Different from the above works that focus
on efficiently updating hash functions, Weng [55] proposed
updating the binary codes of a dataset by projecting them into
another binary space while fixing the hash functions.
Existing unsupervised online hashing schemes were mainly
based on the idea of “data sketch” [56], where a small size
of sketch data is leveraged to preserve the main property of
a large-scale dataset. To this end, Leng er al. [27] proposed
an Online Sketching Hashing (OSH), that employs an efficient
variant of Singular Value Decomposition (SVD) to learn hash
functions, with a PCA-based batch learning on the sketch to
learn hashing weights. A computationally efficient version of
OSH was proposed in [28], where the independent Subsam-
pled Randomized Hadamard Transform (SRHT) is applied on
different data chunks to make the sketch more compact yet
accurate, so as to accelerate the sketching process.
Nevertheless, unsupervised online hashing suffers low per-
formance due to the lack of label supervisions. Though great
progress has been made, [21]-[26], supervised online hash-
ing cannot well capture the label information. To explain,
the semantic relationships among different classes and the
common characteristics between label vectors and binary
codes have not been well explored yet, as discussed in Sec.I.

III. PROPOSED METHOD
A. Problem Definition

We denote the set of training samples as X = [x1,...,X;,] €
R4*1 where each column is a d-dimensional feature vector
and n is the number of training samples. The goal of hashing is
to learn a set of binary hash codes B = [by, ..., b,] € Rkxn
where b; € {—1, +1}* and k(< d) is the code length. Under
the supervised setting, a class label set L = [I1,...,1,] €
{—1,4+1}*" is also given, where I; € {—1, 4+1}¢ is the label
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TABLE I
NOTATIONS AND THEIR MEANINGS

Notation Meaning
x X = [x1,...,%Xn] € RIX7™: Set of n training samples;
each column of X corresponds to one sample
xt X =[x}, ...,x},] € R¥X7¢: Set of n; training samples at
the ¢-th round; each column of X* corresponds to one sample
B B = [by,...,b,] € RFxn; Binary code matrix for X
B! Bf = [b?, ..., bf ] € RFX"¢; Binary code matrix for X*
L L =[,...,1,] € {0,+1}°%™: Label set for X
L? Li =11}, .. ,11] € {0, +1}°¥"¢: Label set for X?
W W = [w1, ..., wi] € R¥¥F: Projection matrix
for the learned hashing functions
Wt W = [wi, ..., wi] € R¥¥F: Projection matrix
updated at the ¢-th round
C? C? € R°X7: projection matrix for L?
Ut Ut € RFX"; Projection matrix for B?
Vi V% e R"¥™: Latent semantic space
k Number of hashing bits
c Total number of categories
d Dimension of features
T Dimension of latent semantic space
- lr Frobenius norm

vector of x; and c is the total number of categories. If x;
belongs to a category, the corresponding element in vector I;
is labeled with 1, and —1 otherwise. A common way to obtain
the binary values of X is to utilize a linear function followed
by a sign function as follows:

F(X) = sgn(W'X), (1)
where W = [w, ..., wi] € Rk is the projection matrix and
sgn(u) returns 1 if # > 0, and —1 otherwise.

In the online setting, dataset X cannot be available once
for all. Instead, at round ¢, the hash functions are updated
based on a new data chunk X' = [x’l,...,x,’“] e Rdxm
added to the dataset. Correspondingly, let B' = [b},...,b}] €
{—1,+1}" denote the learned binary codes for X/, L' =
[, .. 11 e {=1, 41} is the class label set, and W' is
the updated projection matrix, where n, is the size of data at
round 7. Similarly, the hash functions updated at round ¢ can
be rewritten as follows:

F'(X') = sgn(W)'X'), )

We summarize the notations used in this paper in Tablel,
which will be detailed in the following contexts.

B. Problem Formulation

The framework of SPLH is shown in Fig.2. Generally,
this framework contains two steps: building a latent link-
age space in Fig.2(c) and constructing similarity-preserving
hash codes in Fig.2(e). Specifically, the label vectors and
binary codes are mapped into a latent linkage space to
explore the semantic relationships among different classes,
and the common characteristics between the label vectors and
binary codes. Furthermore, constructing similarity-preserving
hash codes aims to exploit the relationships among the newly
arriving data streams.
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Fig. 2. Framework of the proposed SPLH. The top row shows the linkage
space learning. The label vectors (a) and to-be-learned binary codes (b) are
mapped into a latent linkage space where the semantic relationships among
different classes (inter-class relationships) and the common characteristics
between the label vectors and binary codes can be well preserved. The bottom
shows the similarity preservation. The similarity matrix (c) is constructed
according to the label matrix. The learned binary codes are used as a target
to guide the learning of hashing functions (d). Similarity preservation is
exploited among the newly arriving streaming data (intra-class relationship) by
preserving the inner product between hash function and the similarity matrix
(k is the code length).

1) Linkage Space Learning: Suppose there exists a to-
be-learned linkage space V! € R"™*" [30], [31] that preserves
the semantic relationships among different classes, and the
common characteristics shared between discrete label vectors
and to-be-learned binary codes, where r denotes the dimension
of the latent semantic space. To learn the linkage space,
we first map the discrete labels and binary codes into this
space, through which the semantic distances among data points
can be measured more accurately:

LB, C, U, V')

(Ct)TLt . (UI)TBt Hi‘

FIEL =V 0 -V

o (|C5+|U |5 st B e {—1, 41, (3)

where ¢ is a regularization parameter. C! € R and U’ €
R¥*" are two projection matrices, that map the discrete label
set L’ and binary codes B’, respectively, into the latent linkage
space. As a result, the relative semantic distances can be
preserved in the latent linkage space V’. Besides, the learning
of B’ can well capture the semantic relationships among
different classes, leading to more discriminative hashing codes.

To further encode the out-of-sample data points, we propose
learning the hash functions by minimizing the error between
the hash functions F'(X’) and the learned binary codes B’
through the Frobenius norm. As a result, Eq.(3) can be
rewritten as

£YB,C,U, VW
= ey — B,
@y = v B -V
+ [ X = B [G+o (| U]
s.t. B e {—1, 41}, )
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2) Similarity Preservation: Although Eq.(4) can learn the
inter-class semantic relationships and the common character-
istics between label vectors and binary codes, the pairwise
similarity between samples is not exploited. Essentially, if two
samples are similar in the original feature space, they should
share similar binary codes in the to-be-learned Hamming
space, and vice versa. This can be achieved by the prevailing
scheme of minimizing the inner product between hashing
codes and their corresponding similarity matrix [5], [9], [57],
which has proven to be effective in online learning [26]. Nev-
ertheless, [26] considers the asymmetric correlation between a
newly arriving data chunk and the past streaming data, which,
however, becomes computationally unaffordable when the size
of past streaming data grows rapidly.

Instead, we consider the symmetric relationship between
sample pairs in a newly arriving data chunk X’. To this end,
at round 7, we construct two data batches, S, € X' and
S% € X', as similar pairs (i.e., the i-th columns of S’ and
S’; are similar to each other), and D/, € X’ and D%, € X'
as dissimilar pairs (i.e., the i-th columns of DY and D
are dissimilar). The objective function for pairwise similarity
preservation is then defined as

S = 3 (F(80.)) F (00— 4]
+ 3| (F (@) T @) 4 ©

where (8%).i, (S%).i, (D)., (D%).; denote the i-th columns
of 8%, S%, D', and D'y, respectively.

However, the existence of sgn(x) function in Eq.(2) makes
Eq.(4) and Eq.(5) NP-hard. To address the complexity prob-
lem, we approximate the discrete sgn(x) function using the
continuous tanh(u), and modify Eq.(4) as follows:

L£Y(B,C, U, VI, W
— H (Ct)TLl‘ _ (UZ‘)TBt Hi
+ €L = V! [+ W) TB - V|
+ tanh (W) X) = B[54+ (|C [+ U )
s.t. Bf e (=1, 41}, (6)
Similarly, Eq.(5) is modified as
LhH(Wh

= || (tanh((WH)TS, ;) )" tanh (W)} ;) =k

+ > [ (tanh((WHTDY, ) )" tanh((W)TDY ) +k |5

)

3) Overall Objective Function: Combining Eq.(4) with
Eq.(5), we derive the final objective function as follows:
min L' =1L} + L), (8)
B/,C!, U, V! W/

where A1 and 1, are the parameters to control the importance
of £ and L}.
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C. Alternating Optimization

Apparently, the optimization problem in Eq.(8) is
non-convex with the matrices B/, C!, U’, V! and W/, which
is thus hard to solve. Fortunately, it is convex with respect to
any one of B’, C’, U’, V! and W' when the other variables
are fixed. Therefore, we propose an alternating optimization
algorithm to solve the sub-problems with respect to individual
variables, as elaborated below.

1) B’-step: To learn the binary code matrix B’ by fixing
the remaining variables, the sub-optimization of Eq.(8) can
be formulated as

rrllgltn” (Ct)TLt _ (UZ‘)TBZ‘ Hi‘—i_H (Ut)TBt _V! ||i‘
+ | B — tanh (W) X") |3
st Bl e (=1, 41} Q)

By expanding each term in Eq.(9), we have
min (€)1} —2tr (LH' €' (UH'B) + |0 B[
+ B =2 (VT W)Y + [V
+ B —2 tr(tanh((X)T W) B')+ | tanh(W) "X |3
st B e {—1, 1}, (10)
where tr(M) denotes the trace of matrix M.

By removing the irrelevant and constant terms, the objective
function in Eq.(10) can be rewritten as follows:

min | (U)"B/[[}—tr ((P)"B)

s.t. B e (=1, 41}, (11)

where P! = U'(C")"L! 4+ UV’ + tanh((W")7X").

The problem in Eq.(11), however, is NP-hard for directly
optimizing binary code matrix B’. Instead, it can be solved
by the method in [9] that updates one row of B’ while
fixing the others each time. Though suboptimal, it is efficient.
To elaborate, we first give the following two equations:

(U)B' = @) b} + (U)"B!
s.t. bl e (=1, 41},

B! e {—1, + 1)k (12)

where lN)i and @} are the i-th rows of B’ and U’, respectively.
B! is B’ excluding b!, and U} is U’ excluding @.
(P)'B' = (®)" b} + (P)" B, (13)

where P! is the i-th row of P’ and P! is P’ excluding P!.
Plugging Eq.(12) and Eq.(13) into Eq.(11), we have

min] )7 B2 + 09 B 22 (6B ) ")
B

— w ()" b}) — tr ()" BY)

s.t. bl e (=1, 41y, (14)

Note that ”(ﬁl{)Tf)ﬁ ”i = n | Hi which is a constant.
By removing the irrelevant and constant terms, Eq.(14) can
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Algorithm 1 Similarity-Preserving Latent Semantic Hashing
(SPLH)

Input: Training data set X with its label space L, the number
of hash bits k, the parameters A\, o, r and 7, the total
number of stream data batches T'.

Output: Binary codes B for X and hash weights W.

I: fort=1— T do

2:  Denote the newly coming data chunk as X¢;

3:  ift =1 then

4 Initialize C!, U!, V! and W' and B!;

50 else

6: fori=1—k do

7 Update B! by Eq. (16);

8 end for

9: Update C? by Eq. (17);

10: Update U? by Eq. (18);

11: Update V¢ by Eq. (19);

12: Update W by Eq. (20);

13:  end if

14: end for

15: Set W = Wt;

16: Compute B = sgn(W7X);

17: Return W and B.

be further abbreviated as
min tr (2(B)7 UL @})" b — (p})7b!)
B,

s.t. bl e (=1, 41}, (15)

Solving Eq.(15), the i-th row of B’ can be updated by
bit! = sgn(p) — 2} (") B'), (16)
Similarly, the updating formulas of C’, U’, V! and W’

. . t t t t
can be derived by setting g—g,, g—ﬁ,, g—\c,,, and g‘fv, to zero

individually. We then obtain Egs. (17)—(20), whose detailed
derivations are provided in Appendix.

CH' = U@ +o1) 'LY(B)TU + (V)T), (17)

where I represents the identity matrix.

Ut = 2B' B +o1) 'B(@HC + (VHT). (18)

Vt+l — %((CI)TLI + (UI)TBI) (19)
t+1 _ wit oL

W = W (20)

where # is the learning rate, and gvﬁvtf is shown in Eq. (24).

We summarize our proposed method in Algorithm 1.

IV. TIME COMPLEXITY

The time complexities of updating B’ in Eq.(16), C' in
Eq.(17), U" in Eq.(18), V" in Eq.(19), and W’ in Eq. (20) are
O2n;k), O + c*ny + nikr + nger), O3 + kK2n; + nikr +
nicr), O(nscr +n.kr) and O(n,zdz—i—n,dk), respectively. Since
¢, r, k are small values, the computational complexity of each
updating depends on the size of a new data chunk and the
dimension of features, which is scalable.
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TABLE 11
PARAMETER SETTINGS OF COMPARED METHODS ON THREE BENCHMARKS
Method Parameter Tuple CIFAR-10 Places205 MNIST
OKH (C,a) (0.001,0.3) (0.0001,0.7) (0.001,0.3)
SketchHash | (sketch_size, batch_size) (200, 50) (100, 50) (200, 50)
AdaptHash (a, A\, m) (0.9,0.01,0.1) (0.9,0.01,0.1) (0.8,0.01,0.2)
OSH n 0.1 0.1 0.1
MIHash (0, R, A) (0,1000, 10) (0, 5000, 10) (0, 1000, 10)
HCOH (ne,n) (1,0.2) (1,0.1) (1,0.2)
BSODH (X, 0,Ms,M4) (0.6,0.5,1.2,0.2) | (0.3,0.5,1.0,0.0) | (0.9,0.8,1.2,0.2)

V. EXPERIMENTS

To verify the performance of SPLH, we conduct image

PARAMETER CONFIGURATIONS OF THE PROPOSED

TABLE III

METHOD ON THREE BENCHMARKS

retrieval experiments on three widely-used datasets, including
CIFAR-10 [58], Places205 [59], and MNIST [60] to compare
SPLH with several state-of-the-art methods [21]-[27].

A. Datasets

1) CIFAR-10: CIFAR-10 consists of 60K images collected
from 10 classes, each containing 6K instances where each
instance is represented as a 4096-D CNN vector [41]. Similar
to [24]-[26], we randomly sample 59K instances to form a
retrieval set and the remaining 1K instances are used as a
test set. Besides, we randomly select 20K images from the
retrieval set as the training set to learn hash functions in a
streaming fashion.

2) Places205: Places205 [59] is a challenging large-scale
dataset containing 2.5 million images collected from 205 scene
categories. The features of each image are first extracted from
the AlexNet [61] and then reduced to a 128-D feature vector
by PCA. Following [25], 20 instances are randomly selected
from each category to construct the test set and the remaining
is used as the retrieval set. Lastly, a randomly sampled subset
of 100K images from the retrieval set is used to update the
hash functions in a streaming fashion.

3) MNIST: The MNIST dataset contains 70K handwritten
digit images from O to 9 [60], where each image is represented
by a 28 x 28 = 784-D normalized pixel vector. Following the
setting in [26], we construct the test set by randomly selecting
100 instances from each class and the rest forms the retrieval
set. Finally, a subset of 20K instances randomly sampled from
the retrieval set is used as the training set to learn the hash
functions in a streaming fashion.

B. Evaluation Metrics

Similar to the previous methods, we adopt the following
commonly used protocols to evaluate the performance: mean
Average Precision (denoted by mAP), Precision within a
Hamming ball of radius 2 centered at each query (denoted by
Precision@H?2), mAP vs. different sizes of training instances
curves and their corresponding areas under the mAP curves
(denoted by mAP-AUC), Precision of the top K retrieved
neighbors curves (denoted by Precision@K) and their cor-
responding areas under the Precision@K curves (denoted
by Precision@ K -AUC). For each metric, we also compute
the improvement gains between the best and second best as

best—second .
ocond— for comparison.

Parameter | CIFAR-10 | Places205 | MNIST
r 100 50 100
o 0.1 0.1 0.1
Al 0.1 0.1 0.1
A2 0.01 0.01 0.01
n¢ 100 1000 100
Notably, when reporting the mAP performance on

Places205, following the works in [24]-[26], we only compute
the top 1, 000 retrieved items (denoted by mAP@1,000 and
mAP@1,000-AUC) due to the high complexity of large scale
retrieval. The above metrics are evaluated with various hashing
code lengths: 8, 16, 32, 48, 64, and 128 bits.

C. Compared Methods and Settings

To verify the effectiveness of the proposed SPLH,
we compare our method with several state-of-the-art (STOA)
online hashing algorithms including Online Kernel Hashing
(OKH) [21], Online Sketching Hashing (SketchHash) [27],
Adaptive Hashing (AdaptHash) [22], Online Supervised Hash-
ing (OSH) [23], Online Hashing with Mutual Information
(MIHash) [24], Hadamard Codebook based Online Hash-
ing (HCOH) and Balanced Similarity for Online Discrete
Hashing (BSODH) [26]. The source codes of these meth-
ods are publicly available. Our model is implemented with
MATLAB. The experiments are conducted on a server with a
3.60GHz Intel Core 17 4790 CPU and 16G RAM. All exper-
imental results are averaged over three runs. As listed
in Table II, we adopt for all three benchmarks the configuration
parameters described in [25], [26], that have been carefully
validated for each method.

More detailed descriptions of these parameters for each
method can be found in [21]-[27]. As for SPLH, we list the
parameter configurations for the three benchmarks in Table III.
In Sec. V-E, we conduct ablation studies to analyze the best
choice of each individual hyper-parameter.

D. Results and Discussions

1) mAP(@1,000) Results:  TableIV  compares the
mAP(@1, 000) performances with various code lengths
on CIFAR-10. In addition, the mAP(@1, 000) results on
Places205 and MNIST with various code lengths are listed
in TableV and Table VI, respectively. The results in these
tables show that SPLH apparently outperforms the other
baseline methods in most cases. Specifically, on CIFAR-10,
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TABLE IV

COMPARISON OF mAP AND PRECISION @H2 ON CIFAR-10 WITH VARIOUS CODE LENGTHS OF 8, 16, 32, 48, 64, AND 128 BITS. THE BEST
RESULT IS HIGHLIGHTED IN BOLDFACE AND THE SECOND BEST IS UNDERLINED

Method ] . . mAP ' ' ' ] ] Pref:ision@H? ' .
8-bit 16-bit  32-bit  48-bit  64-bit  128-bit | 8-bit 16-bit  32-bit  48-bit  64-bit  128-bit
OKH 0.100 0.134 0.223 0252  0.268 0.350 0.100 0.175 0.100 0452 0.175 0.372
SketchHash | 0.248  0.301 0302  0.327 - - 0.256 0431 0.385  0.059 - -
AdaptHash | 0.116  0.138 0.216 0.297  0.305 0.293 0.114 0.254 0.185 0.093 0.166 0.164
OSH 0.123  0.126  0.129  0.131 0.127 0.125 0.120 0.123  0.137 0.117  0.083 0.038
MIHash 0.512  0.640 0.675 0.668  0.667 0.664 0.170  0.673  0.657 0.604  0.500 0.413
HCOH 0.536  0.698 0.688 0.707 0.724 0.734 0.333  0.723  0.731 0.694 0.633 0.471
BSODH 0.564 0.604 0.689 0.656 0.709 0.711 0.305 0.582  0.691 0.697  0.690 0.602
SPLH [ 0.635 0.699 0.723 0.745  0.755 0.758 [ 0.502 0.741  0.743  0.723  0.692 0.566
TABLE V

COMPARISON OF mAP @ 1,000 AND PRECISION @ H2 ON PLACES205 WITH VARIOUS CODE LENGTHS OF 8, 16, 32, 48, 64, AND 128 BITS.
THE BEST RESULT IS HIGHLIGHTED IN BOLDFACE AND THE SECOND BEST IS UNDERLINED

Method ] ] mAP@ 1 ,OOQ . . ] ] Precision. @H2 . . .
8-bit 16-bit  32-bit  48-bit  64-bit  128-bit | 8-bit 16-bit  32-bit  48-bit  64-bit  128-bit
OKH 0.018 0.033 0.122 0.048 0.114 0.258 0.007 0.010 0.026 0.017 0.217 0.075
SketchHash | 0.052 0.120 0.202  0.242 - - 0.017 0.066 0220 0.176 - -
AdaptHash | 0.028 0.097 0.195 0.223  0.222 0.229 0.009 0.051 0.012 0.185 0.021 0.022
OSH 0.018 0.021  0.022 0.032 0.043 0.164 0.007 0.009 0.012 0.023 0.030 0.059
MIHash 0.094 0.191 0.244 0.288  0.308 0.332 0.022 0.112 0.204 0.242  0.202 0.069
HCOH 0.049 0.173  0.259 0280 0.321 0.347 0.012  0.082 0.252 0.179 0.114 0.036
BSODH 0.035 0.174 0250 0.273  0.308 0.337 0.009 0.101 0241 0246 0.212 0.101
SPLH [ 0.096 0.191 0.266 0.298 0.320 0.350 [ 0.024 0.123  0.267 0.253  0.224 0.116
TABLE VI

COMPARISON OF mAP AND PRECISION@H2 ON MNIST WITH VARIOUS CODE LENGTHS OF 8, 16, 32, 48, 64, AND 128 BITS.
THE BEST RESULT IS HIGHLIGHTED IN BOLDFACE AND THE SECOND BEST IS UNDERLINED

Method ] . .mAP ' ' . ] .Precision.@}-l2 ' ' .
8-bit 16-bit  32-bit  48-bit  64-bit  128-bit | 8-bit 16-bit  32-bit  48-bit  64-bit  128-bit
OKH 0.100 0.155 0.224 0273 0.301 0.404 0.100 0.220 0457 0.724  0.522 0.124
SketchHash | 0.257 0312  0.348  0.369 - - 0.261 0.596 0.691  0.251 - -
AdaptHash | 0.138 0.207 0319 0318  0.292 0.208 0.153 0442 0.535 0.335 0.163 0.168
OSH 0.130 0.144 0.130 0.148 0.146 0.143 0.131 0.146  0.192  0.134  0.109 0.019
MIHash 0.664 0.741 0.744 0.780 0.713 0.681 0.487 0.803 0.814 0.739  0.720 0.471
HCOH 0.536 0.708 0.756  0.772  0.759 0.771 0.350 0.800 0.826 0.766  0.643 0.370
BSODH 0.593 0.700 0.747 0.743  0.766 0.760 0.308 0.709 0.826 0.804 0.814 0.643
SPLH [ 0.674 0.750 0.774 0.798  0.813 0.803 [ 0.501 0.820 0.856 0.829 0.814 0.685

SPLH achieves performance gains over the best baselines,
i.e., HCOH or BSODH, by 12.59%, 0.14%, 4.93%, 5.37%,
4.28% and 3.27% corresponding to the code lengths of 8, 16,
32, 48, 64, and 128 bits, respectively. On Places205, SPLH
performs the best, except the case of 64-bit code-length,
in which SPLH shows slightly poorer performance than
HCOH, but is still ranked second.

Concretely, SPLH obtains 2.13%, 9.77%, 2.70%, 3.47% and
0.86% gains over MIHash, HCOH and BSODH corresponding
to the code lengths of 8, 16, 32, 48, and 128 bits, respectively.
On MNIST, SPLH also outperforms the other methods in
all cases. The above results demonstrate that compared with
SOTA hashing methods, given a query, SPLH can more
accurately rank the relevant items in the top positions.

2) Precision@H2 Results: The Precision@H2 perfor-
mances evaluated on the three benchmarks are also shown
in Tables IV-VI, respectively. Similarly to the results of
mAP(AP@1, 000) performances, SPLH performs the best in
most cases except for the case of 128-bit on CIFAR-10.
For example, on CIFAR-10, compared with the SOTAs, i.e.,
HCOH or BSODH, 50.75%, 2.49%, 1.64%, 3.73% and 0.29%
gains are obtained for 8-bit, 16-bit, 32-bit, 48-bit, and 64-bit
cases, respectively. Similar performance improvements over

SOTAs can also be observed on the Places205 and MNIST
datasets. These results again demonstrate the efficacy of SPLH.

Tables IV-VI show an interesting observation that for
almost all methods, the Precision@H2 performance is
degraded with both low-precision (i.e., 8-bit) and high-
precision (i.e., 128-bit) hashing lengths. To explain,
a low-precision hash code encodes less semantic information.
By contrast, in high-precision code space, the number of
hash buckets with a Hamming ball of radius 2 grows rapidly,
making the search space too large to learn a code with good
precision performance.

3) Influences of Training Data Size: Since SPLH aims
to address hash-based retrieval of streaming data, we also
show the performances at different updating stages of W’ and
justify the performance gain along with the update of W’.
Without loss of generality, we plot the curves of mAP vs.
different training data size on the three benchmarks in Fig. 3,
Fig.4, and Fig.5, respectively. On CIFAR-10 and MNIST,
the experimental results are performed with the training data
size ranges in {2K, 4K, ..., 20K}, whereas on Places205,
the training data size ranges in {5K, 10K, ..., 100K}.

As can be seen, in general, the mAP(@1,000) perfor-
mance for SPLH is better than the others with all different
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Fig. 6. AUC curves for Fig. 3, Fig.4 and Fig. 5 on three datasets with different
code lengths.

code lengths. To evaluate the robustness of the compared
methods, we further show the area under curve (AUC) of
the mAP(@1,000) vs. different training data sizes in Fig.6.
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Fig. 8. Precision@K curves with compared algorithms on Places205.

The results show that SPLH achieves the best AUC perfor-
mances in all cases. Quantitatively, for example, compared
with the best SOTA (i.e., HCOH), SPLH shows relative AUC
increases of 21.82%, 9.44%, 11.04%, 9.33%, 9.09%, and
8.58% corresponding to the code lengths of 8-bit, 16-bit,
32-bit, 48-bit, 64-bit and 128-bit, respectively, on CIFAR-10.
Similarly, general improvements of SPLH over SOTAs on
Places205 and MNIST can also be observed as well.

Besides the superior mAP(@1,000)-AUC performances,
we can also observe another good characteristic of SPLH: the
faster adaptivity in online learning compared with SOTAs.

More specifically, in the early training stage as shown
in Fig.3 (data size is 2K), Fig.4 (data size is 5K) and
Fig.5 (data size is 2K), SPLH achieves a high mAP(@1,000)
performance with various hash code-lengths. Therefore, SPLH
can be fast adapted to online learning, making it particularly
suitable for dealing with streaming data.

4) Precision@K Performances: The Precision@K per-
formances with various code-lengths on the three bench-
marks are illustrated in Fig.7, Fig.8, and Fig. 10, respec-
tively. Since for information retrieval, the values of
K < 100 are common choices as they are appropri-
ate to model a user’s behavior when investigating search
results, we sample the precision results with the value
of K falling in {1,5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.
Besides, the Precision@K-AUC results are illustrated
in Fig. 11.
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Fig. 11. AUC curves for Fig.7, Fig.8 and Fig. 10 on three datasets with
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Fig.7-10 show that the Precision@K curves for SPLH
are generally the best among the compared methods, but the
improvements over SOTAs on MNIST are less significant. To
explain, MNIST is a relatively simple dataset that can be easily
well handled by most of the compared methods (The precision
ranges in 80% ~ 95% with SOTAs.). Hence, it is hard to boost
the performance by a significant margin. Moreover, Fig. 11
also shows that SPLH achieves 5.33%, 1.46%, 2.25%, 2.25%,
0.52% and 3.90% AUC improvements over the best SOTA
with various hash code-lengths.

To sum up, the above experimental results and analyses
demonstrate the efficacy of SPLH. Moreover, we can observe
that latent linkage space based SPLH outperforms the other
supervised frameworks based on discrete labels or pairwise
similarity, which justifies the correctness and importance of
the proposed latent linkage space.

E. Ablation Study

In this section, we conduct the ablation studies on the
hyper-parameters used in our method, including the dimension
of latent semantic space r, the regularization parameter o,
the trade-off parameters 1; and A, and the batch size of
streaming data n,. To that effect, we conduct experiments with
various values of these hyper-parameters w.r.t mAP(@1,000)

in the case of 32-bit in Fig. 9 (Detailed parameter settings used
in this paper are listed in Table III.).

1) Influence of r: We first start with the analysis on the
dimension r of latent semantic space. As shown in Fig.9(a),
when r < 60, the mAP(@1,000) on CIFAR-10 and MNIST
increases with r. When r € [60, 120], the performance
becomes stable. When r > 120, the mAP(@1,000) gets
degraded. Similarly, the stable interval on Places205 falls
in [40, 100]. This well demonstrates our assumption on the
existence of the linkage space and such a linkage space exists
in a particular space dimension for each dataset. Based on
the above results, we set the value of r as 100, 50 and
100 for CIFAR-10, Places205 and MNIST, respectively, in our
experiments.

2) Influence of o: Fig.9(b) depicts the mAP(@1,000) per-
formance with various values of &, showing that SPLH is
insensitive to the values of ¢. To analyze, ¢ is used to
guarantee the reversibility of Eq.(17) and Eq.(18). Hence,
it does not affect the performance of SPLH significantly. In
our experiments, we set ¢ as 0.1 for all three benchmarks.

3) Influences of A1 and Ay: Ay controls the importance
of the loss term in Eq. (6) that is related to the latent
linkage space, whereas A, controls the importance of the
similarity-preserving loss in Eq. (7). Fig. 9(c) shows that
the value of 1; does affect the performance of SPLH. When
A1 = 0.1, SPLH achieves the best mAP(@1,000) performances
of 0.723, 0.266 and 0.774 on CIFAR-10, Places205 and
MNIST, respectively. However, when A1 = 0, i.e., overlooking
the linkage space, the performance of SPLH is significantly
degraded to 0.565, 0.136 and 0.605 on the three datasets,
respectively. We can observe from Fig.9(c) that, properly
applying the loss term of the linkage space in Eq.(6) can
significantly boost the performance by 27.96%, 95.59% and
27.93% on CIFAR-10, Places205 and MNIST, respectively,
verifying the effectiveness and correctness of learning the
latent linkage space.

Fig. 9(d) shows that when A, = 0.01, the mAP(@1,000)
performance reaches the best results of 0.723, 0.266 and 0.774
on CIFAR-10, Places205 and MNIST, respectively, and then
starts to decrease when A, further increases. When A, = 0,
i.e., overlooking the effectiveness of similarity-preserving loss,
the performance of SPLH also significantly decreases to 0.500,
0.136, and 0.597 on the three datasets, respectively. Thus,
exploring similarity-preservation is also important in learning
effective binary codes.

To sum up, to obtain satisfactory online retrieval perfor-
mance, both the latent semantic space learning and similarity
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TABLE VII

TRAINING TIME ON THREE BENCHMARKS UNDER
32-BIT HASHING CODES

Method [ CIFAR-10 (s) | Places205 (s) | MNIST (s)
OKH 4.53 15.66 4.58
SketchHash 4.98 3.52 1.27
AdaptHash 20.73 14.49 6.26
OSH 93.45 56.68 24.07
MIHash 120.10 468.77 97.59
HCOH 12.34 10.54 4.01
BSODH 36.12 69.73 4.83
SPLH__ | 2801 | 1733 | 432

preservation matter. In the experiments, we set the value of
tuple (41, 42) as (0.1, 0.01).

4) Influence of n;: The experimental results w.r.¢ the batch
size of streaming data n, ranging in {100, 200, ..., 1500} are
illustrated in Fig.9(e). As we can see, on CIFAR-10 and
MNIST, the performance of SPLH decreases with n;, whereas
on Places205, the performance of SPLH increases until n;, &~
1K. In the experiments, we set n, as 100 for CIFAR-10 and
MNIST, and 1K for Places205. Such setting conforms with
online streaming data since n, < n in our experiments, when
n is the number of training samples (n = 20K for CIFAR-
10 and MNIST and n = 100K for Places205).

F. Training Efficiency

To further evaluate the training efficiency of SPLH, we con-
duct experiments given hashing bit » = 32. Similar observa-
tions below can be found with other code lengths. The time
consumption of each method is shown in Tab. VIIL.

Generally, OKH and SketchHash are the most efficient,
which however suffer poor mAP (mAP@1,000) as shown
in Fig. 3, Fig.4 and Fig.5. Besides, AdaptHash and HCOH are
also computationally more efficient than the proposed SPLH.
However, similar to OKH and SketchHash, AdaptHash shows
poor performance. And HCOH performs significantly worse
with low code lengths, e.g., 8-bit and 16-bit as shown in
Tab.IV, Tab.V and Tab.VI. Compared with state-of-the-art
methods, MIHash and BSODH, SPLH shows consistently
better efficiency. As analyzed in Sec.Il, MIHash has to
calculate the Hamming distance between the neighbors and
non-neighbors for each instance. As for BSODH, the discrete
optimization adopted in BSODH brings about more variables
and the convergence problem. Besides, it requires a large data
batch to update the hash functions at each round. It can be
observed that SPLH consumes more training time on CIFAR-
10 and Places205 than on MNIST. We argue that this is owing
to the high feature dimension of CIFAR-10 (4096-dim) and
large scale of Places205 (100, 000). Nevertheless, the proposed
SPLH can keep a good balance between the effectiveness and
efficiency, thereby making it scalable to applications of various
scales.

VI. CONCLUSION

In this work, we proposed a similarity-preserving linkage
hashing scheme for online image retrieval. Our method aims
to learn a latent linkage space where the relationships for

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

different semantic concepts are well captured while preserv-
ing the semantic similarity between neighboring data points.
To this end, our method first transforms independent discrete
labels and binary codes into a latent linkage space, through
which the relative semantic distances between data points
can be evaluated more precisely. Then, pairwise similarity is
used towards more robust binary codes to guide the learn-
ing of the latent linkage space. We have also derived an
iterative alternating optimization approach to efficiently solve
the proposed model. Extensive experimental results on three
widely-adopted datasets demonstrate the effectiveness of the
proposed approach.

APPENDIX

We show the detailed derivations of the updating formulas
in Egs. (17)—(20).

1) C’-step: Fixing B?, U’, V! and W', and setting the partial
derivative of Eq.(8) w.r.t. C' to zero, we have

oL' tq T t (Nt INT

8—(3’:(2L LY +O‘I)C —L ((B) U + (V) ):0.

(21)

Then, we can obtain the closed-form solution of C' as in
Eq. (17).
2) U'’-step: Fixing B?, C’, V' and W', and setting the partial
derivative of Eq.(8) w.r.t. U’ to zero, we have
!
2—5’ = (ZB’(B’)T + aI)flU’ - B’((LI)TC’ +V’T) =0.
(22)

Then, we can obtain the closed-form solution of U’ as in
Eq. (18).

3) V'-Step: Fixing B!, C’, U’ and W, and setting the partial
derivative of Eq.(8) w.r.t. V! to zero, we have

oL

— =2V — (CHTL! — (UHTB' = 0. 23

~ (€L - ) 23)
Then, we can obtain the closed-form solution of V’ as in

Eq. (19).
4) W'-Step: Fixing B’, C’, U’ and V’, and we obtain the
derivative of Eq.(8) w.nt. W' as

oL oL} /1212

=— =, (24)
oW! — W! wW!
where
oLt
= _Xf((B’ ~ tanh((W) X))
o (1 — tanh((W’)TX’)G)tanh((W’)TX’))), (25)
and
At
W = Sa(Ts O Ty + (T © Thp)
+ D, (T O T ) + D (T 0 Thp),  (26)
where
(Ty)ij = (87).4) (S0, ! 27)
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and
T, = (1 = tanh((S})” W') © tanh((S},)" W"))
O tanh((S)T W), (28)
T4, = (1 - tanh((S})7 W') © tanh((S})" W) )
O tanh((S")"W'), (29)
where
(Th)iy = (D))" (D)2 (30)
T}, = (1 - tanh (D) W') © tanh((D,)” W'))
O tanh((D)" W), (3D
and

T}, = (1 - tanh((D)" W) © tanh((D)" W)
Otanh((D'))"W'), (32)

where © denotes the Hadamard product.

Then, we update W' through online stochastic gradient
descent (OSGD) as in Eq. (20).

Consequently, the objective function £ can be minimized
by updating B’, C’, U’, V’, and W’ step-by-step. For round
t =1, CY, U', V!, and W! are initialized with matrices
containing normally distributed random numbers. As for B!,
we initialize it with sgn((W")7X!).
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