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Abstract—State-of-the-art image super-resolution methods 

usually rely on search in a comprehensive dataset for 

appropriate high-resolution patch candidates to achieve good 

visual quality of reconstructed image. Exploiting different scales 

and orientations in images can effectively enrich a dataset. A 

large dataset, however, usually leads to high computational 

complexity and memory requirement, which makes the 

implementation impractical. This paper proposes a universal 

framework for enriching the dataset for search-based super-

resolution schemes with reasonable computation and memory 

cost. Toward this end, the proposed method first extracts 

important features with multiple scales and orientations of 

patches based on the SIFT (Scale-invariant feature transform) 

descriptors and then use the extracted features to search in the 

dataset for the best-match HR patch(es). Once the matched 

features of patches are found, the found HR patch will be aligned 

with LR patch using homography estimation. Experimental 

results demonstrate that the proposed method achieves 

significant subjective and objective improvement when 

integrated with several state-of-the-art image super-resolution 

methods without significantly increasing the cost. 

I. INTRODUCTION 

Image/video super-resolution (SR) has become an attractive 

technique in enhancing the resolution of  low-resolution (LR) 

images because it has many applications such as security in 
surveillance video, enhancement of aged photos and captured 

images from low-power devices. For example, a LR image 

can be taken from a mobile device. If we want to obtain the 

high-resolution (HR) image from LR image, the image super-

resolution can be used to solve such problem.  

In general, there are two kinds of the image super-

resolution techniques which are multi-frame and single-frame 

methods. The first-type methods need to obtain multiple input 

LR images and align these LR images to calculate the missing 

sub-pixel values within pixels. Since the multi-frame SR 

methods require accurate alignment, the scaling-up factor of 

the LR image has its limit practically. On the other hand, 

single-frame image SR schemes do not suffer from this 

problem. The single-frame based methods collect a 

candidate/training pool which may contain a large number of 

the LR and HR pairs. In the reconstruction stage, each LR 

patch is replaced with it corresponding HR patch(es) obtained 
from the candidate/training pool. Therefore, the performance 

of the single-frame SR methods heavily depends on the 

comprehensive of the candidate/training pool. This work 

focuses on enhancing the performance of single frame image 

SR.  

The most representative image SR methods include 
example-based super-resolution (ES) [2], sparse coding (SC) 

[4], nonlocal means filter (NLM) [5], and texture synthesis 

super-resolution (TSS) [6]. All of these methods require a 

comprehensive dataset as the training set to obtain good visual 

quality of the reconstructed image. For example, ES requires 

to collect a comprehensive training set containing HR patches 

and their LR counterparts and the relationship between LR 

and HR patches is modeled as Markov Random Fields (MRF). 

Similarly, TSS uses the texture synthesis technique to 

hallucinate the HR patch from training set. SC also collects a 

large number of training samples and learn a set of 

overcomplete bases. The super-resolved patches can be 

replaced with a linear combination of the overcomplete basis 

under an L1 norm constraint.  

The basic concept of NLM [5] is to exploit self-similarity 

in an image. Unlike ES, the pool of candidate patches is 

obtained from the input LR image itself. Similarly, once the 
candidate patches for the input LR patch are found, the LR 

patch is replaced with a linear combination of its 

corresponding HR candidate patches. Note that, when the 

candidate poll for NLM is not comprehensive enough, we may 

not find sufficiently similar candidate patches for an LR patch. 

As a result patches result in blurring effect due to dissimilar 

patches [4].  
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Fig. 1 Illustration of search-based SR methods in [2][4][6][7]. 

Most of the above state-of-the-art SR schemes can be 

represented as search-based schemes as illustrated in Fig. 1.  

The search-based schemes search for each LR input patch in 

the candidate/training pool a set of best-match HR patches. 

Consequently, the LR patch is replaced with the HR patch 



obtained from the matched HR patches (e.g., a linear 

combination of the matched HR patches). These search-based 

SR methods usually rely on search in a comprehensive dataset 

for appropriate high-resolution patch candidates to achieve 

good visual quality of reconstructed image. Exploiting 

different scales and orientations in images can effectively 

enrich a dataset. A large dataset, however, usually leads to 

high computational complexity and memory requirement, 

which makes the implementation impractical. For example, 
Glasner el al.’s work [7] exploits the multi-scale similarity in 

an image to improve the visual quality of SR. However, if the 

level of the multi-scale factor is too high, the computational 

cost will also become very high as well.  
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Fig. 2 An example of objective quality comparison among different sizes of 

training set under (a) PSNR and (b) SSIM metrics. 

Fig. 2 shows that a large number of training samples will 

result in better visual quality of the reconstructed image using 

example-based super-resolution [2]. However, such a large 

dataset results in that the implementation is very difficult due 

to very high computational cost and memory requirement. 
Therefore, we introduce the feature extraction process to 

greatly reduce the number of the training samples so that the 

visual quality of the reconstructed image will be improved 

with a reasonable cost. The time complexity comparison 

among different numbers of training samples is depicted in 

Fig. 3. As illustrated, the time complexity increases when the 

number of the training samples increases. Although the time 

complexity in Fig. 3 is O(n) (or linear time), the time 

complexity will suddenly increase because the memory 

requirement of the training samples is greater than the limits 

of the capacity of physical memory, making the 

implementation infeasible. 
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Fig. 3 Time complexity comparison among different number of training 

samples using example-based super-resolution [2]. 

This paper proposes a universal framework for enriching 

the dataset for search-based super-resolution schemes with 

reasonable computation and memory cost. Toward this end, 

the proposed method first extracts important features with 
multiple scales and orientations of patches based on the SIFT 

(Scale-invariant feature transform) descriptors and then use 

the extracted features to search in the dataset for the best-

match HR patch(es). Once the matched features of patches are 

found, the found HR patch will be aligned with LR patch 

using homography estimation. The method proposed  in [12] 

also adopts SIFT to solve the registration problem among LR 

image sequences. Such conventional multi-frame SR method 

provides limited performance. However, the proposed method 

can be integrated with different search-based SR algorithms, 

which effectively extends the search-space to improve the 

quality of the reconstructed image with a reasonable time-

complexity.  

The rest of this paper is organized as follows. Section II 

presents the proposed general framework of the affine-

transform-based patch representation (APR). In Section III, 

we present the improved image super-resolution methods 
using the proposed APR framework. Experimental results of 

the proposed scheme are demonstrated in Section IV. Finally, 

Section V concludes this paper. 

II. IMAGE SUPER-RESOLUTION VIA AFFINE TRANSFORM 
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Fig. 4 The flowchart of the proposed APR framework. 



As shown in Fig. 4, the proposed APR method is composed 

of four major steps. In the training stage, the SIFT feature 

vectors with various scales and orientations are calculated and 

stored for the training images. In the super-resolution stage, 

the first step is to calculate the SIFT feature vector of each 

patch of the input LR image and find the best match in the 

training set. Second, the homography matrix between the 

matched pair is established. Then, the matched HR patch is 

aligned using the calculated homography matrix. Finally, the 
best match of each input patch is obtained from the aligned 

patches of the training set in the spatial domain. 

The feature extraction step extracts scale- and orientation-

invariant features based on the SIFT descriptors. Let the ith 

SIFT feature vector be denoted as
1 128

i


f , and the patch of 

an image as p. Finding the most similar patch L
T

j
p  in the 

training set for input LR patch L
I

j
p can be formulated as the 

following maximum likelihood (ML) problem: 
*
= arg max ( | )L L L

TL

j

T T I

j j i
p

p

p p p                        (1) 

In general, search-based approaches are used to solve the 

above problem [2], [5], [7]. However, to achieve good visual 

quality of a super-resolved image, a large-size training set is 

usually required, thereby leading to high computational 

complexity as shown in Fig. 3. To reduce computation while 

maintaining comparable visual quality, we propose to convert 

this problem to a feature matching problem by extracting the 

SIFT features of training set and input LR image so that it is 

possible to find good candidate patches  under different scales 

and orientations without performing full-search in the spatial 

domain. Besides, the feature extraction and matching is only 

performed for visually important patches, whereas the 

remaining unimportant patches can be super-resolved using a 
baseline method without sacrificing the visual quality of the 

reconstructed image. 

On the other hand, using the original SIFT features would 

suppress the edge and corner pixels. Instead, we retain these 

feature points because the visually important regions in an 

image usually exist around the edge or corner pixels. 

After extracting the SIFT features, the solution to ML 

problem in (1) can be approximated by maximizing the 

likelihood between two feature vectors as follows: 
*
= arg max ( | )L L L

TL

j

T T I

j j i
p

f

f f f                         (2) 

However, since the matched feature vectors (  and L L
T I

j i
f f ) 

may be obtained from different scales and orientations, the 

corresponding patch pair (  and L L
T I

j i
p p ) may also be with 

different scales and orientations. One problem is how to 

determine these two parameters. Estimating the orientation 

and scale information directly from the SIFT features is 

usually not accurate enough, since the values of these 

parameters have been quantized prior to calculating SIFT 

features. To obtain an accurate estimate, a homography matrix 

can be established for estimating the two parameters for the 

patch pair. Toward this end, given a source patch ps, we can 

obtain an encoded patch by 

( ( ))
e s

s R p p d                             (3) 

where R represents a rotation function, s is a scaling function, 

d is the spatial translation. This process can be represented as 

an affine transformation of coordinates of patches defined 

below: 

1 2 1

3 4 2

e s s

e s s

x m x m y t

y m x m y t

  

  





                            (4) 

where m1, m2, m3, and m4 are the parameters for controlling 

the scaling ratio and rotation angle, (t1, t2) denotes the 

translation vector, and (xe, ye) and (xs, ys) indicate the 

coordinates of the encoded patch and source patch, 

respectively. As a result, there are six parameters to be 

determined. To estimate these parameters, we formulate (4) as 

the homography estimation problem [9] expressed by 
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31 32 33
0 0 1 1 1

e s s
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e

x m m t x h h h x

y m m t y h h h y

w h h h



         
         
         
                  

sc cH

   (5) 

where ce and cs denote the coordinates. This problem can be 

solved by linear least-squares approximation via rearranging 

(5) in a simple form as follows: 

1 0 0 0

0 0 0 1

s s e s e s e

s s e s e s e
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x y y x y y y


   
 

   
h Ah 0  

    (6) 

where  11 12 13 21 22 23 31 32 33

T

h h h h h h h h hh . 

The form cannot be directly solved by using conventional 

least-squares solution for Ah = b. Instead, such problem can 

be solved using singular-value decomposition (SVD). Let Ah 

= 0, we have 

            
 

1 1
( ) ( ) ( )

2 2

1
0 ( )

2

T T T
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f

f

 


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

h Ah Ah h A Ah

A A A A h A Ah
h

               (7) 

Consequently, the solution of h should be equivalent to the 

eigenvector of 
T

A A  that has an eigenvalue of zero. Then, the 
calculated h vector is converted to matrix form H. Once the 

homography matrix for an input patch is obtained, the matrix 

can be used to align the matched patch from the training set 

with the input patch. With this correspondence, the pixel 

values in the encoded patch can be determined using a bilinear 

function. Consequently, the encoded patch can be obtained 

using the following homography and warping functions: 
optaffine

se c H c                                     (8) 

and 

  affine
( )

e e s ewp c p c                         (9) 

where w is a bilinear interpolation function. 

For each feature, we can find the best-match patch and then 

align it to the input. To increase the matching accuracy, we 



perform fine search within a small search window centered 

around the matched LR patch in the training set as illustrated 

in Fig. 5. The size of search window S is empirically set to be 

two times larger than the size of input LR patch.  
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Fig. 5 Illustration of the fine-search process. 

Note, some patches may be too smooth to contain not have 

no feature due to weak edges or smoothness. For these regions, 

the naïve super-resolution method is used. It is reasonable 

because these regions contain unimportant information that 

we would not notice. In other words, the proposed APR 

method is only used on the important regions. 

III. APPLICATION TO SEARCH-BASED IMAGE SUPER-

RESOLUTION 

For search-based SR schemes, the visual quality of super-

resolved image increases when the number of the 

candidate/training samples increases. The proposed APR 

method effectively enriches the candidate/training pool by 

exploiting the multi-scale and multi-orientation self-similarity 

within an image. In this section, we shall show that the 

proposed APR method can be easily integrated with several 

state-of-the-art search-based SR algorithms to further improve 

the performance of these SR schemes.  

As mentioned previously, ES also adopts the search-and-
replacement strategy for super-resolution. Let “SIFT” 

represent the SIFT features with different scales and 

orientations and “L1-SIFT” denote the SIFT features with the 

first-level of scale. To integrate the proposed APR framework 

with ES method, the SIFT features of images in the training 

set and the L1-SIFT features of input LR image need to be 

extracted. Then, the best match between the SIFT and L1-

SIFT features can be obtained by finding 
*

2
arg min || ||L L L

T I T

j i jTL
j

 
f

f f f                       (10) 

where L
I

i
f  denotes the ith feature vector of input LR image IL 

and L
T

j
f denotes the  jth feature vector of the candidate pool.  

Once the best-match feature vector in the candidate pool is 

found, the surrounding patches L
I

i
s  and L

T

j
s  centered at L

I

i
f  and 

L
T

j
f  can be retrieved for estimating the corresponding 

homography matrix. Then, the histogram of the oriented 

gradients (HoG) is calculated for each pixel within a 3x3 

patch in the surrounding patches because the estimation of 

homography matrix requires four matched pairs to determine 

the parameters. After finding the four best-match pairs 

between the surrounding patches L
I

i
s  and L

T

j
s , the homography 

matrix can be calculated by 

  opt

2

arg min ( )L L L L
I I T T

i i j j
w 

H

H s c s Hc          (11) 

Note that the homography matrix is estimated with the 

patch size of 64 64  in the pixel domain. Once the found 

patch L
T

j
s  is rectified using the estimated homography 

matrix
opt

H , fine search is then performed within a small 

search window in the pixel domain to find the best-match 

patch L
T

j
p corresponding to the input LR patch L

I

i
p (see Fig. 5).  

Once the closest 16 patches  and 1,...,16L
T

j
j p  in the 

training set are found, the MRF is used to solve the spatial 

coherence problem and super-resolve the input LR patch L
I

i
p . 

Repeating the above process to super-resolve all of the 

patches which have features. For the patches without the 

features, the conventional ES method is used to super-resolve 

those LR patches. 
Similarly, the NLM-based SR schemes are also kind of 

search-based methods. The main difference between ES and 

NLM is that the training patches for NLM are obtained from 

the input image itself. Therefore, the L1-SIFT and SIFT 

features of images in LR image should be extracted 

simultaneously. For each input patch that can be extracted a 

SIFT feature vector, we find the corresponding best-match 

feature vectors that minimizes (10). Then, the homography 

matrix can be estimated using (11). The advantage is that the 
best-match patches can be found in an extended candidate 

pool with multiple scales and orientations, thereby improving 

the visual quality of the reconstructed image. For those 

patches that do not have significant SIFT features, the 

conventional NLM is used instead. After all patches are super-

resolved, a deblurring filter is utilized to obtain a sharper HR 

image.  

Although the concept of SC is different from ES, the sparse 

representation can also be represented as a search-based 

approach. In general, the solution is to predict the input patch 

from the linear combination of several candidate patches in 

the training set [8]. This would lead to the blurring effect in 

the reconstructed image when the number of the candidates 

increases. To resolve the problem, sparsity priors can be 

imposed to solve such problem, aiming to minimize the 

following cost function with an L1-norm constraint.  

To improve the performance of SC, the goal is to find a 
comprehensive training set to learn a more representative set 

of overcomplete bases. The proposed APR method can 

effectively enhance the comprehensiveness of the training set 

by scaling and rotating the patches in the original training set, 

while maintaining acceptable computational cost through 

feature-based matching. 

IV. EXPERIMENTAL RESULTS 

Our training set contains 26 HR natural images. The 

scaling-up factor is 3x3. The patch sizes are 3x3 for the ES, 

SC, and NLM schemes. The level of scale-space used for 



SIFT extraction is 5. More simulation results can be found in 

[13]. 

The proposed APR framework exploits the multi-scale and 

multi-orientation self-similarity of patches to enrich the 

candidate pool. As shown in Fig. 2, when the search pool is 

enriched, the performance of the search-based super-

resolution techniques will be improved.  

(a) (b) (c)

(d) (e) (f)  
Fig. 6 Comparison of visual quality of reconstructed images: (a) ground-

truth, (b) bicubic interpolation, (c) the method in [7] (SSIM: 0.72/MSE:179), 

(d) SC [4] (SSIM: 0.71/MSE:211), (e) ES [2] (SSIM: 0.72/MSE:198), and (f) 

ES + APR (SSIM: 0.76/MSE:161). 

Fig. 6 compare the visual qualities of super-resolved images 

using the proposed APR method on top of ES (APR + ES) 

with bicubic interpolation, Glasner et al.’s method [7], SC, 

and ES. As illustrated, the proposed APR framework 

significantly improves the subjective visual quality of the 

reconstructed image, especially on edge regions. Besides, the 

proposed method also introduces fewer noisy artifacts in the 

smoothing regions compared to the other methods. Table I 

shows the objective quality comparison among three baseline 

super-resolution schemes  and the proposed APR method on 

top of the baseline schemes for four test images. Our method 

significantly improves the objective quality of reconstructed 

images when it is integrated with the search-based SR 

methods. For these search-based SR methods, the quality of 

reconstructed image is dependent on the richness of 

candidate/training set.  By exploiting the multi-scale and 

multi-orientation self-similarity of an image, the improvement 
comes from the enriched candidate/training pool which 

usually makes it easier to find a better match for a patch to be 

super-revolved so that the artifacts in the reconstructed image 

can be reduced. According to our experiments, the proposed 

method leads to 1020% increase in execution time for 
different SR methods. 

TABLE I 

COMPARISON OF OBJECTIVE VISUAL QUALITIES OF RECONSTRUCTED IMAGES 

USING FOUR STATE-OF-THE-ART SR SCHEMES WITH & WITHOUT THE 

PROPOSED APR IMPROVEMENT 

Methods Image 1 Image 2 Image 3 Image 4 

ES [2] 21.3 dB/0.75 19.3 dB/0.71 23.2 dB/0.74 22.8 dB/0.73 

ES + APR 22.0 dB/0.79 20.0dB/0.72 23.5 dB/0.81 23.7 dB/0.79 

Gain 0.7 dB/0.04 0.7 dB/0.01 0.3 dB/0.07 0.9 dB/0.06 

NLM [5] 22.1 dB/0.73 19.9 dB/0.72 22.6 dB/0.71 23.3 dB/0.77 

NLM + APR 22.7 dB/0.74 20.8 dB/0.81 23.0 dB/0.76 24.1 dB/0.83 

Gain 0.6 dB/0.01 0.9 dB/0.09 0.4 dB/0.05 0.8 dB/0.06 

SC [4] 22.8 dB/0.75 19.2 dB/0.72 23.3 dB/0.76 21.9 dB/0.78 

SC + APR 23.7 dB/0.76 19.8 dB/0.75 23.8 dB/0.81 22.3 dB/0.82 

Gain 0.9 dB/0.01 0.6 dB/0.03 0.5 dB/0.05 0.4 dB/0.04 

Note, the performance of the proposed method relies on 

extracting gradient features for patch matching across 

different scales and orientations. Therefore, if an input LR 

image contains too few gradient features, the improvement 

with the proposed method would become marginal.  

V. CONCLUSION 

We have proposed an efficient APR framework to enrich 

the candidate/training pool of search-based SR schemes by 

exploiting the multi-scale and multi-orientation self similarity 

existing in an image. By exploiting the self-similarity of an 

image, our method significantly enriches the 
candidate/training pool, making it easier to find a better match 

for a patch to be super-revolved with the search-based SR 

schemes. One main contribution of the proposed method is to 

apply feature-based matching to significantly reduce the high 

computational cost for searching in a large candidate/training 

pool. Besides, the proposed APR framework can be easily 

integrated with state-of-the-art search-based SR algorithms. 

Experimental results demonstrate that the proposed method 

effectively improves the visual qualities of super-resolved 

images both subjectively and objectively. 
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