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 

Abstract—Rain removal from a video is a challenging problem 

and has been recently investigated extensively. Nevertheless, the 

problem of rain removal from a single image was rarely studied in 

the literature, where no temporal information among successive 

images can be exploited, making the problem very challenging. In 

this paper, we propose a single-image-based rain removal 

framework via properly formulating rain removal as an image 

decomposition problem based on morphological component 

analysis (MCA). Instead of directly applying conventional image 

decomposition technique, we first decompose an image into the 

low-frequency and high-frequency parts using a bilateral filter. 

The high-frequency part is then decomposed into “rain 

component” and “non-rain component” by performing dictionary 

learning and sparse coding. As a result, the rain component can be 

successfully removed from the image while preserving most 

original image details. Experimental results demonstrate the 

efficacy of the proposed algorithm. 

 
Index Terms—Rain removal, sparse representation, dictionary 

learning, image decomposition, morphological component 

analysis (MCA). 

 

I. INTRODUCTION 

IFFERENT weather conditions such as rain, snow, haze, 

or fog will cause complex visual effects of spatial or 

temporal domains in images or videos [1][10]. Such effects 

may significantly degrade the performances of outdoor vision 

systems relying on image/video feature extraction [11]–[16] or 

visual attention model [17], such as image registration [9], 

event detection [8], object detection [14]–[16], tracking, and 

recognition, scene analysis [17] and classification, image 

indexing and retrieval [11], and image copy/near-duplicate 

detection. A comprehensive survey of detection approaches for 

outdoor environmental factors, such as rain and snow, to 

enhance the accuracy of video-based automatic incident 

detection systems can be found in [8]. 

A. Vision-based Rain Removal 

Removal of rain streaks has recently received much attention. 
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A pioneering work on detecting and removing rain streaks in a 

video was proposed in [2], where the authors developed a 

correlation model capturing the dynamics of rain and a 

physics-based motion blur model characterizing the 

photometry of rain. It was subsequently shown in [3] that some 

camera parameters, such as exposure time and depth of field 

can be selected to mitigate the effects of rain without altering 

the appearance of the scene. Moreover, an improved video rain 

streak removal algorithm incorporating both temporal and 

chromatic properties was proposed in [6]. In addition, the 

utilization of shape characteristics of rain streak for identifying 

and removing rain streaks from videos was proposed in [7]. 

Furthermore, a model of the shape and appearance of a single 

rain or snow streak in the image space was developed in [1] to 

detect rain or snow streaks. Then, the amount of rain or snow in 

the video can be reduced or increased. 

Moreover, some research works [9], [10] focus on raindrop 

detection in images or videos (usually on car windshields) 

which is different from the detection of rain streaks. A 

video-based raindrop detection method for improving the 

accuracy of image registration was proposed in [9], where a 

photometric raindrop model was utilized to perform monocular 

raindrop detection in video frames. In addition, a detection 

method for detecting raindrops on car windshields using 

geometric-photometric environment construction and 

intensity-based correlation was proposed in [10], which can be 

applied to vision-based driver assistance systems. 

B. Motivations of Single-Image-Based Rain Streak Removal 

So far, the research works on rain streak removal found in the 

literature have been mainly focused on video-based approaches 

that exploit temporal correlation in multiple successive frames. 

Nevertheless, when only a single image is available, such as an 

image captured from a digital camera/camera-phone or 

downloaded from the Internet, a single-image based rain streak 

removal approach is required, which was rarely investigated 

before. In addition, some video rain removal approaches [3] 

based on adjusting camera parameters may not be suitable to 

consumer camcorders [6] and cannot be applied to existing 

acquired image/video data. Furthermore, for removing rain 

streaks from videos acquired from a moving camera, the 

performances of existing video-based approaches may be 

significantly degraded. The reason is that, since these 

video-based approaches usually perform rain streak detection, 

followed by interpolating the detected pixels affected by rain 

streaks in each frame, the non-stationary background due to 

camera motions and inaccurate motion estimation caused by 
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the interference of rain streaks would degrade the accuracy of 

video-based rain streak detection and pixel interpolation. Even 

though some camera motion estimation techniques can be 

applied first to compensate for the camera motions [6], its 

performance may also be degraded by rain streaks or large 

moving activity. Moreover, for the case of steady effects of rain, 

i.e., pixels may be affected by rain across multiple consecutive 

frames, it is hard to detect these pixels or find reliable 

information from neighboring frames to recover them [2]. 

Moreover, many image-based applications such as mobile 

visual search [11], object detection/recognition, image 

registration, image stitching, and salient region detection 

heavily rely on extraction of gradient-based features that are 

rotation- and scale-invariant. Some widely-used features 

(descriptors) such as SIFT (scale-invariant feature transform) 

[12], SURF (speeded up robust features) [13], and HOG 

(histogram of oriented gradients) [14]–[16] are mainly based on 

computation of image gradients. The performances of these 

gradient-based feature extraction schemes, however, can be 

significantly degraded by rain streaks appearing in an image 

since the rain streaks introduce additional time-varying 

gradients in similar directions. For example, as illustrated in Fig. 

1, the additional unreliable interesting points caused by rain 

streaks degrade the invariant properties of SIFT/SURF and lead 

to potentially erroneous image matching in related applications. 

As an example shown in Fig. 2, we applied the HOG-based 

pedestrian detector released from [16] to the rain image shown 

in Fig. 2(a) and its rain-removed version (obtained by the 

proposed method presented in Sec. III) shown in Fig. 2(b), 

respectively. It can be found that the detection accuracy for the 

rain-removed version is better. In addition, visual attention 

models [17] compute a saliency map topographically encoding 

for saliency at each location in the visual input that simulates 

which elements of a visual scene are likely to attract the 

attention of human observers. Nevertheless, the performances 

of the model for related applications may also be degraded if 

rain streaks directly interact with the interested target in an 

image. Therefore, single-frame-based rain streak removal is 

desirable. 

C. Contribution of Proposed Method 

It should be noted that separating and removing rain streaks 

from the non-rain part in a single frame is not a trivial work as 

rain streaks are usually highly mixed with the non-rain part 

making the decomposition of non-rain part very challenging. In 

this paper, we propose a single-image-based rain streak 

removal framework  by formulating rain streak removal as an 

image decomposition problem based on MCA [19]–[23]. In our 

method, an image is first decomposed into the low-frequency 

and high-frequency parts using a bilateral filter. The 

high-frequency part is then decomposed into “rain component” 

and “non-rain component” by performing dictionary learning 

and sparse coding based on MCA. The major contribution of 

this paper is three-fold: (i) to the best of our knowledge, our 

method is among the first to achieve rain streak removal while 

preserving geometrical details in a single frame, where no 

temporal or motion information among successive images is 

required; (ii) we propose the first automatic MCA-based image 

decomposition framework for rain steak removal; and (iii) the 

learning of the dictionary for decomposing rain steaks from an 

image is fully automatic and self-contained, where no extra 

training samples are required in the dictionary learning stage. 

 
(a)                                                            (b) 

 
(c)                                                            (d) 

 
(e)                                                          (f) 

Fig. 1. Examples of interesting point detection: (a) the original non-rain image; 
(b) the rain image of (a); (c) SIFT interesting point detection for (a) (169 

points); (d) SIFT interesting point detection for (b) (421 points); (e) SURF 

interesting point detection for (a) (131 points); and (f) SURF interesting point 
detection for (b) (173 points). 

 
(a)                                                          (b) 

Fig. 2. Applying the HOG-based pedestrian detector released from [16] to: (a) 
the original rain image (4 pedestrians detected); and (b) the rain-removed 

version (obtained by the proposed method) of (a) (5 pedestrians detected). 
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The rest of this paper is organized as follows. In Sec. II, we 

briefly review the concepts of MCA-based image 

decomposition, sparse coding, and dictionary learning 

techniques. Sec. III presents the proposed single-image-based 

rain streak removal framework. In Sec. IV, experimental results 

are demonstrated. Finally, Sec. V concludes this paper. 

II. MCA-BASED IMAGE DECOMPOSITION, SPARSE CODING, 

AND DICTIONARY LEARNING 

The kea idea of MCA is to utilize the morphological 

diversity of different features contained in the data to be 

decomposed and to associate each morphological component to 

a dictionary of atoms. In this section, the conventional 

MCA-based image decomposition approaches [19]–[23], 

sparse coding [24], and dictionary learning [25], [26] 

techniques are briefly introduced. The symbols used in this 

paper are listed in TABLE I. 

A. MCA-based Image Decomposition 

  Suppose that an image I of N pixels is a superposition of   

layers (called morphological components), denoted by  

  ∑   
 
   , where    denotes the s-th component, such as the 

geometric or textural component of   . To decompose the image 

  into *  +   
 , the MCA algorithms [19]–[23] iteratively 

minimize the following energy function: 

 (*  +   
  *  +   

 )   
 

 
‖  ∑  
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where       denotes the sparse coefficients corresponding 

to    with respect to dictionary   ,   is a regularization 

parameter, and    is the energy defined according to the type of 

   (global or local). For a global dictionary     
       

  , the energy function    is defined as 

  (     )   
 

 
‖       ‖ 

    ‖  ‖                  ( ) 

where   is a regularization parameter. Usually, to decompose 

an image into its geometric and textural components, traditional 

basis functions, such as wavelets or curvelets, are used as the 

dictionary for representing the geometric component whereas 

global DCT (discrete cosine transform) basis functions are used 

as the dictionary for representing the textural component of the 

image [19]–[23]. 

With respect to a local dictionary     
          , 

  
      represents the sparse coefficients of patch   

  

              extracted from   . Each patch   
  can be 

extracted centralized with a pixel of    and overlapped with 

adjacent patches. The energy function    for the local 

dictionary can be defined as 

  (     )   ∑(
 

 
‖  

      
 ‖ 
    ‖  

 ‖ )

 

   

     ( ) 

Usually, a local dictionary for representing the textural 

component of an image is either composed of traditional basis 

functions, such as local DCT [19]-[21], [23], or constructed 

from the dictionary learning procedure [22] described in Sec. 

II-B. 

The MCA algorithms solve (1) by iteratively performing for 

each component    
the following two steps: (i) update of the 

sparse coefficients: this step performs sparse coding to solve     

or *  
 +   
  to minimize   (     )  while fixing   ; and (ii) 

update of the components: this step updates    or *  
 +   
  while 

fixing    or *  
 +   
 . 

More specifically, in the case of decomposing   into two 

components         , a key step of MCA is to properly 

select a dictionary built by combining two sub-dictionaries 

        ,    and    can be either global or local 

dictionaries and should be mutually incoherent, that is,    can 

provide sparse representation for   , but not for   , and vice 

versa. To decompose   into geometric (  ) and textural (  ) 

components, global wavelet or global curvelet is used as   , 

whereas global DCT or local DCT is used as    in [19]-[21], 

[23]. A comprehensive description of dictionary selections and 

related parameter settings for different kinds of image 

decomposition can be found in Table 2 of [20]. On the other 

hand, in [22], a global wavelet/curvelet basis is also used as   , 

whereas    is constructed through a local dictionary learning 

process described below.
 

B. Sparse Coding and Dictionary Learning 

Sparse coding [24] is the technique of finding a sparse 

representation for a signal with a small number of nonzero or 

significant coefficients corresponding to the atoms in a 

dictionary [25], [26]. As mentioned previously, it is required to 

construct a dictionary    containing the local structures of 

textures for sparsely representing each patch   
  extracted from 

the textural component    of image  . In some applications, we 

TABLE I  

NOTATION 

Symbols Meanings 

I Input rain image 

          Rain-removed version of I 

  Number of pixels in I 

  Number of layers (or morphological components) in I 

   The s-th component decomposed from I 

  
  The k-th image patch extracted from    

     
  Sparse coefficients of    and   

  

   Dictionary for sparsely representing    
    Regularization parameters 

      Numbers of elements of    and   
  

      The k-th patch training exemplar and its sparse coefficients 

        Low-frequency and high-frequency parts of I 

   
     

  Geometric component and rain component of     

    Dictionary learned from the training exemplars extracted 

from     

            Sub-dictionaries divided from for sparsely representing    
  

and    
  

    Extended global dictionary 

   
  The k-th patch extracted from     

   
  Sparse coefficients of    

  

 ̃  
  Reconstructed sparse coefficients of    

  

 ̃    
   ̃    

  
Sparse coefficients in  ̃  

  corresponding to       and 

      

 ̃    
   ̃    

  The k-th reconstructed geometric patch and rain patch 

 (     ) Mutual coherence between dictionaries    and     
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may use a set of available training exemplars (similar to the 

patches extracted from the component we want to decompose)  

                to learn a dictionary    sparsifying    

by solving the following optimization problem: 

   
    

           
 ∑ (

 

 
‖      

 ‖ 
    ‖  ‖ )

 

   

     ( ) 

where    denotes the sparse coefficients of    with respect to 

   and   is a regularization parameter. Equation (4) can be 

efficiently solved by performing a dictionary learning 

algorithm, such as K-SVD [25] or online dictionary learning 

[26] algorithms, where the sparse coding step is usually 

achieved via OMP (orthogonal matching pursuit) [24]. Finally, 

the image decomposition is achieved by iteratively performing 

the MCA algorithm to solve    (while fixing   ) described in 

Sec. II-A and the dictionary learning algorithm to learn    
(while fixing   ) until convergence. The convergence of the 

MCA image decomposition algorithms has been proven in [22]. 

III. PROPOSED RAIN STREAK REMOVAL FRAMEWORK 

Fig. 3 shows the proposed single-image-based rain streak 

removal framework, in which rain streak removal is formulated 

as an image decomposition problem. In our method, the input 

rain image is first roughly decompose into the low-frequency 

(LF) part and the high-frequency (HF) part using the bilateral 

filter [27], [28], where the most basic information will be 

retained in the LF part while the rain streaks and the other 

edge/texture information will be included in the HF part of the 

image as illustrated in Figs. 4(a) and 4(b). Then, we perform the 

proposed MCA-based image decomposition to the HF part that 

can be further decomposed into the rain component [see Fig. 

4(c)] and the geometric (non-rain) component [see Fig. 4(d)]. In 

the image decomposition step, a dictionary learned from the 

training exemplars extracted from the HF part of the image 

itself can be divided into two sub-dictionaries by performing 

HOG [14] feature-based dictionary atom clustering. Then, we 

perform sparse coding [24] based on the two sub-dictionaries to 

achieve MCA-based image decomposition, where the 

geometric component in the HF part can be obtained, followed 

by integrating with the LF part of the image to obtain the 

rain-removed version of this image as illustrated in Figs. 4(e) 

and 4(f). The detailed method shall be elaborated below. 

A. Major Differences between Proposed Method and 

Traditional MCA-based Approaches 

As mentioned in Sec. II, traditional MCA algorithms usually 

use a fixed global dictionary based on wavelets/curvelets to 

represent the geometric component of an image. To represent 

the textural component of an image, either a fixed global 

(global DCT) or local (local DCT) dictionary is used. In 

addition, a learned dictionary may also be used to represent the 

textural component. Nevertheless, to decompose an image into 

the geometric and textural components, the selection of 

dictionaries and related parameter tuning seems to be heavily 

empirical, as the examples shown in Table 2 of [20]. Based on 

 
(a)                                                          (b) 

 
(c)                                                            (d) 

 
(e)                                                           (f) 

Fig. 4. Step-by-step results of the proposed rain streak removal process: (a) the 
low-frequency (LF) part of the rain image in Fig. 1(b) decomposed using the 

bilateral filter; (b) the high-frequency (HF) part; (c) the rain component; and 

(d) geometric component. Combining (d) and the LF part shown in (a) to 
obtain: (e) the rain-removed version for the rain image shown in Fig. 1(b) (VIF 

= 0.50, μ = 0.6970); (f) the rain-removed version for the rain image shown in 

Fig. 1(b) with     (VIF = 0.52). 

 

Fig. 3. Block diagram of the proposed rain streak removal method. 
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our experience, it is not easy to select a proper fixed dictionary 

to represent rain streaks due to its variety. 

In addition, learning a dictionary for representing textural 

component usually assumes that a set of exemplar patches for 

the texture to be represented can be either known in advance or 

extracted from an image to be decomposed itself. Nevertheless, 

in practice, it is usually not easy to select correct rain patches in 

a single rain image automatically. It is also not easy to directly 

extract pure rain patches for dictionary learning from a rain 

image due to that rain streaks usually cover most regions in a 

rain image. That is, the geometric and rain components are 

usually largely mixed. Moreover, even though a traditional 

fixed global dictionary based on wavelets/curvelets can well 

sparsely represent the geometric component of an image, using 

a learned dictionary based on the exemplar patches extracted 

from the component itself would be much better [29]. 

Therefore, rather than using a fixed dictionary, assuming 

prior training exemplar patches available, or resorting to tuning 

parameters for the used dictionary, our method extracts a set of 

selected patches from the HF (high-frequency) part of a rain 

image itself to learn a dictionary. Then, based on the features 

extracted from individual atoms, we classify the atoms 

constituting the dictionary into two clusters to form two 

sub-dictionaries for representing the geometric and rain 

components of the image, respectively. The dictionary learning 

process in the proposed method is elaborated in Sec III-C. 

 Traditional MCA algorithms are all directly performed on 

the pixel domain of an image. However, it is typically not easy 

to directly decompose an image into its geometric and rain 

components in the pixel domain, because the geometric and 

rain components are usually largely mixed in a rain image, 

making the dictionary learning process difficult to clearly 

identify the “geometric (non-rain) atoms” and “rain atoms” 

from the training patches directly extracted from the pixel 

domain. This may lead to removing too many image contents 

that belong to the geometric component but are erroneously 

classified to the rain component. 

 Therefore, we propose to first roughly decompose a rain 

image into the low-frequency (LF) part and the HF part. 

Obviously, the most basic information of the image is retained 

in the LF part whereas the rain component and the other 

edge/texture information are mainly included in the HF part. 

The decomposition problem can be therefore converted to 

decomposing the HF part into the rain and other textural 

components. Such decomposition aids in the dictionary 

learning process as it is easier to classify in the HF part “rain 

atoms” and “non-rain atoms” into two clusters based on some 

specific characteristics of rain streaks. 

 Furthermore, traditional MCA-based image decomposition 

approaches are all achieved by iteratively performing the MCA 

algorithm and the dictionary learning algorithm until 

convergence. In contrast, the proposed method is non-iterative 

except for that the utilized dictionary learning, clustering, and 

sparse coding tools are essentially iterative, as will be explained 

below. 

B. Preprocessing and Problem Formulation 

For an input rain image I, in the preprocessing step, we apply 

a bilateral filter [27] to roughly decompose I  into the LF part 

(    ) and HF part (    ), i.e.,          ,. The bilateral filter 

can smooth an image while preserving edges, by means of a 

nonlinear combination of nearby image values. In this step, we 

adjust the strength of smoothness of the bilateral filter to 

remove all of the rain streaks from I, as an illustrative example 

shown in Figs. 4(a) and 4(b). Then, our method learns a 

dictionary     based on the training exemplar patches 

extracted from     to further decompose     , where      can 

be further divided into two sub-dictionaries,       and       

(    [           ] ), for representing the geometric and 

rain components of    , respectively. As a result, we formulate 

the problem of rain streak removal for image I as a sparse 

coding-based image decomposition problem as follows: 

   
   
    

‖   
        

 ‖
 

 
     ‖   

 ‖
 
           ( ) 

where    
     represents the k-th patch extracted from 

   ,          .    
     are the sparse coefficients of    

  

with respect to      
       , and L denotes the sparsity 

or maximum number of nonzero coefficients of    
 . Each 

patch     
  can be reconstructed and used to recover either the 

geometric or rain component of     depending on the 

corresponding nonzero coefficients in    
 , i.e., the used atoms 

from        or      . 

C. Dictionary Learning and Partition 

1) Dictionary Learning: In this step, we extract from     a 

set of overlapping patches as the training exemplars    for 

learning dictionary     . We formulate the dictionary learning 

problem as [25], [26]  

   
     

         
 
 

 
∑(

 

 
‖       

 ‖ 
    ‖  ‖ )

 

   

     ( ) 

where    denotes the sparse coefficients of    with respect to 

    and   is a regularization parameter. In this work, we apply 

an efficient online dictionary learning algorithm proposed in 

[26] to solve (6) to obtain    , as illustrated in Fig. 5. 

2) Dictionary Partition and Identification: We find that the 

atoms constituting     can be roughly divided into two 

clusters (sub-dictionaries) for representing the geometric and 

rain components of    , respectively. Intuitively, the most 

significant feature for a rain atom can be extracted via “image 

gradient.” In the proposed method, we utilize the HOG 

descriptor [14] to describe each atom in     . We then apply 

the K-means algorithm to classify all of the atoms in      into 

two clusters     and     based on their HOG feature descriptors. 

The following procedure is to identify which cluster consisting 

of rain atoms and which cluster consisting of geometric or 

non-rain atoms. First, we calculate the variance of gradient 

direction for each atom                in cluster   , as 

    , where    denotes the number of atoms in           

Then, we calculate the mean of      for each cluster    as 
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    . Based on the fact that the edge directions of rain streaks 

in an atom are usually consistent, i.e., the variance of gradient 

direction for a rain atom should be small, we identify the cluster 

with the smaller      as rain sub-dictionary      , and the 

other one as geometric (or non-rain) sub-dictionary      , as 

depicted in Fig. 6. 

On the other hand, although the dictionary learning step in 

the proposed method can be fully self-contained, where no 

extra training samples are required, the decomposition 

performance can be further improved by collecting a set of 

exemplar patches from the HF parts of some training non-rain 

images to learn an extended global dictionary      to enrich the 

dictionary. Fig. 7 illustrates an example of    . Then, we 

integrate     with       of each image to form the final 

geometric sub-dictionary of the image. 

3) Diversities of Two Sub-dictionaries: The MCA 

algorithms distinguish between the morphological components 

by taking advantage of the diversities of two dictionaries    

and   , which can be measured by the mutual incoherence of 

them [21]. The mutual coherence  (     ) between   and    

can be defined as 

 (     )     
             

|〈       〉|                 ( ) 

where      and     stand for the i-th and j-th atoms (rearranged 

as a column vector) in   and   , respectively, and 〈       〉 

denotes the inner product of     and    . When each atom is 

normalized to have a unit l2-norm, the range of  (     ) is [0, 

1]. As a result, the mutual incoherence is     (     ). The 

smaller the mutual coherence is, the larger the diversities of the 

two sub-dictionaries will be, and thus the better the 

decomposition performance based on the two dictionaries will 

be. The experimental evaluations of the mutual incoherence of 

rain sub-dictionary       and geometric sub-dictionary       

for decomposing a rain image in the proposed method are 

presented in Sec. IV. 

D. Removal of Rain Streaks 

Based on the two dictionaries       and      , we perform 

sparse coding by applying the OMP (orthogonal matching 

pursuit) algorithm [24] for each patch    
  extracted from      

via minimization of (5) to find its sparse coefficients  ̃  
 . 

Different from traditional MCA algorithms, where the sparse 

coding and dictionary learning should be iteratively performed, 

we perform sparse coding only once for each patch    
  with 

respect to     [           ]. 

Then, each reconstructed patch    
  can be used to recover 

either geometric component    
  or rain component     

  of      

based on the sparse coefficients  ̃  
  as follows. We set the 

coefficients corresponding to       in  ̃  
  to zeros to obtain 

 ̃    
 , while the coefficients corresponding to        in  ̃  

  to 

zeros to obtain  ̃    
 . Therefore, each patch     

  can be 

re-expressed as either  ̃    
         ̃    

  or  ̃    
  

       ̃    
 , which can be used to recover    

  or    
 , 

respectively, by averaging the pixel values in overlapping 

regions. Finally, the rain-removed version of the image I  can 

be obtained via                   
 , as illustrated in Fig. 

4(e). In summary, the proposed single-image-based rain streak 

 

Fig. 5. Dictionary learned from the patches extracted from the HF part shown in 
Fig. 4(b) via the online dictionary learning for sparse coding algorithm [26], 

where each atom is of size 16×16. 

 

(a)                                                     (b) 

Fig. 6. Dictionary partition for the dictionary shown in Fig. 5: (a) rain 

sub-dictionary; and (b) geometric or non-rain sub-dictionary. 

TABLE II 
SINGLE-IMAGE-BASED RAIN STREAK REMOVAL ALGORITHM 

   
              

 
 

 
∑(

 

 
‖       

 ‖ 
    ‖  ‖ )

 

   

 

   
   
    

‖   
        

 ‖ 
      ‖   

 ‖    

Input: a rain image I. 

Output: the rain-removed version            of  . 

1. Apply the bilateral filter to obtain the LF part     and HF part    , such 

that          . 

2. Extract a set of image patches                , from    . Apply 

the online dictionary learning for sparse coding algorithm to solve  

to obtain the dictionary     consisting of the atoms that can sparsely 

represent             . 

3. Extract HOG feature descriptor for each atom in    . Apply K-means 

algorithm to classify all of the atoms into two clusters based on their 

HOG feature descriptors. 

4. Identify one of the two clusters as “rain sub-dictionary,”       and the 

other one as “geometric sub-dictionary,”      . 

5. Apply MCA by performing OMP to solve 

for each patch    
    , k = 1, 2, …, P,  in     with respect to 

    [           ] . 

6. Reconstruct each patch    
  to recover either geometric component    

  

or rain component    
  of     based on the corresponding sparse 

coefficients obtained from Step 5. 

7. Return the rain-removed version of I  via                  
 . 
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removal method is summarized in TABLE II. 

IV. EXPERIMENTS AND DISCUSSION 

A. Performance Evaluation 

Because we cannot find any other single-frame-based 

approach, to evaluate the performance of the proposed 

algorithm, we first compare the proposed method with a 

low-pass filtering method called the bilateral filter proposed in 

[27], which has been extensively applied and investigated 

recently for image processing, such as image denoising [28]. 

We collected several natural or synthesized rain images from 

the Internet with ground-truth images (non-rain versions) for a 

few of them. To evaluate the quality of a rain-removed image 

with a ground-truth, we used the visual information fidelity 

(VIF) metric [30] which has been shown to outperform PSNR 

(peak signal-to-noise ratio) metric. More test results can be 

found in our project website [31]. 

Besides, we also compare our method with a video-based 

rain removal method based on adjusting camera parameters 

proposed in [3] (denoted by “video-based camera see”), which 

should outperform most of other video-based techniques 

without adjusting cameras. We captured some single frames 

from the videos released from [3] and compared our results 

with the ones of [3] from the same videos. For each video 

released from [3], the preceding frames are rain frames, 

followed by succeeding rain-removed frames in the same 

scene. We pick a single rain frame from the preceding frames 

for rain removal and compared our results with the 

 
(a)                                                          (b) 

 
(c)                                                          (d) 

  
(e)                                                          (f) 

  
(g)                                                          (h) 

  
(i)                                                            (j) 

Fig. 8. Rain removal results: (a) the original non-rain image (ground-truth); (b) 
the rain image of (a); (c) the rain-removed version of (b) via the bilateral filter  

(VIF = 0.31); (d) the HF part of (b); (e) the rain sub-dictionary for (d); (f) the 

geometric sub-dictionary for (d); (g) the rain component of (d); (h) the geometric 
component of (d); (i) the rain-removed version of  (b) via the proposed method  

(VIF = 0.53, μ = 0.7618); and (j) the rain-removed version of  (b) via the 

proposed method with     (VIF = 0.57). 

 
(a) 

 
(b) 

Fig. 7. Extended global dictionary (   ) learning learning: (a) the HF parts of 

the 8 training non-rain images; and (b) the learned extended global dictionary. 
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rain-removed one [3] of a similar frame from the succeeding 

frames in the same video (no exactly the same frame is 

available for comparison). 

The related parameter settings of the proposed method are 

described as follows. The implementation of the bilateral filter 

is provided by [32], where we set the spatial-domain and 

intensity-domain standard deviations to 6 and 0.2, respectively, 

to ensure that most rain streaks in a rain image can be removed. 

In the dictionary learning step, we used the efficient 

implementation provided by [26] with default regularization 

parameter ( ) set to 0.15. For each test gray-scale image of size 

      (= 256×256 in our experiments), the patch size, 

number of training patches, dictionary size, and the number of 

training iterations are set to        ,   (   √  

 )  (   √   ),       , and 100, respectively. We 

also used the efficient OMP implementation provided by [26] 

with a default number of nonzero coefficients set to at most 10 

(    ). The used HOG implementation is provided by [15] 

with the dimension of each feature descriptor set to 81. The 

number of iterations for K-means clustering is 100. 

 We also evaluate the performance of the proposed method 

with extended global dictionary     to be integrated with the 

respective geometric sub-dictionary for each test image. We 

collected several training patches extracted from the HF parts 

of eight widely-used non-rain images, including Baboon, 

Barbara, F-16, Goldhill, House, Lena, Man, and Pepper 

images. The patch size, dictionary size, and number of training 

iterations are set to 16×16, 1024, and 200, respectively. The 

    learning process is offline performed only once. The eight 

training images and     are shown in Fig. 7.  

The rain removal results obtained from the bilateral filter 

[27], the proposed method with two sub-dictionaries, and the 

proposed method with     are shown in Figs. 4 and 814, 

where the test images in Figs. 911 are rendered rain images 

provided in [5]. The simulation results demonstrate that 

although the bilateral filter can remove most rain streaks, it 

simultaneously removes much image detail as well. The 

 
(a)                                                           (b) 

 
(c)                                                            (d) 

  
(e) 

Fig. 9. Rain removal results: (a) the original non-rain image; (b) the rain image 

of (a); the rain-removed versions of (b) via the: (c) bilateral filter (VIF = 0.21); 

(d) proposed method (VIF = 0.36, μ = 0.7467); and (e) proposed method with 

    (VIF = 0.38). 

  
(a)                                                          (b) 

  
(c)                                                          (d) 

 
                               (e) 

Fig. 10.  Rain removal results: (a) the original non-rain image; (b) the rain 

image of (a); the rain-removed versions of (b) via the: (c) bilateral filter (VIF = 

0.09); (d) proposed method (VIF = 0.20, μ = 0.8081); and (e) proposed method 

with     (VIF = 0.20). 
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proposed method successfully removes most rain streaks while 

preserving most non-rain image details in most cases. 

Moreover, the results obtained from the “video-based camera 

see” method [3] and proposed methods are shown in Figs. 15 

and 16. The simulation results demonstrate that the 

performance of the proposed methods is comparable with the 

“video-based camera see” method when rain streaks are 

obviously visible in a single frame. 

It can be observed from Figs. 4 and 816 that, compared to 

the proposed methods without and with    , integrating     

with the respective geometric sub-dictionary for each test 

image leads to slightly better visual quality while significantly 

increasing the computational complexity (see the run-time 

analysis in Table III shown below) of sparse coding due to the 

much larger size of    . The reason why sparse coding with 

    usually achieves slightly better visual quality than that 

without     is that     provides more non-rain atoms for 

sparse coding to recover rain-removed version with more 

image details. Note, the values of mutual coherence (μ) 

between the two sub-dictionaries usually fall in the range of 

[0.6, 0.9], which is not very close to zero. The main reason is 

that the two sub-dictionaries used in the proposed method are 

generated from a single learned dictionary based on a single 

feature (HOG) based clustering. It is unavoidable that the two 

dictionaries may have few somewhat coherent atoms, which 

  
(a)                                                          (b) 

  
(c)                                                          (d) 

 
                               (e) 

Fig. 11.  Rain removal results: (a) the original non-rain image; (b) the rain image 

of (a); the rain-removed versions of (b) via the: (c) bilateral filter (VIF = 0.29); 

(d) proposed method (VIF = 0.56, μ = 0.7210); and (e) proposed method with 

    (VIF = 0.60). 

 

 
(a)                                                             (b) 

 
(c)                                                             (d) 

Fig. 12.  Rain removal results: (a) the original rain image; and the rain-removed 

versions of (a) via the: (b) bilateral filter; (c) proposed method (μ = 0.7099); 

and (d) proposed method with    . 

 
(a)                                                           (b) 

 
(c)                                                          (d) 

Fig. 13.  Rain removal results: (a) the original rain image; and the rain-removed 

versions of (a) via the: (b) bilateral filter; (c) proposed method (μ = 0.7593); 

and (d) proposed method with    . 
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will dominate the μ value. In the literature reporting μ values, 

minimization of the μ between a sensing matrix and a fixed 

dictionary for learning an optimal sensing matrix was 

mentioned in [33]. In [33], some t-averaged μ values 

(approaching μ when t grows) between two matrices were 

reported to be in a range of [0.4, 0.6], where one matrix is 

randomly initialized. Hence, based on the obtained rain 

removal results of our method and the comparison of the 

ranges of μ between our method and [33], the μ values of our 

method are usually small enough. 

 

The proposed method was implemented in MATLAB
®
 on a 

personal computer equipped with Intel
®
 Core™ i5-460M 

processor and 4 GB memory. The run-time of each key step, 

including the bilateral filtering, dictionary learning, dictionary 

partition, and spare coding (without and with    ), for each 

test image (Figs. 812) is listed in TABLE III. It can be found 

that the run-time of the dictionary learning step dominates the 

total run time, which may be further decreased for future work. 

B. Discussion 

 Besides collecting training exemplar patches from some 

training non-rain images for learning    ., we may extract 

TABLE III 

RUM-TIME (IN SECONDS) ANALYSIS OF KEY OPERATIONS IN THE PROPOSED 

METHOD 

 Bilateral 
filtering 

Dictionary 
learning 

Dictionary 
partition 

Sparse coding Total time 

w/o with w/o with 

Fig. 8 1.51 72.99 2.18 8.58 24.07 87.51 101.61 

Fig. 9 1.48 66.30 2.17 7.84 22.82 80.21 94.39 
Fig. 10 1.48 63.91 2.22 7.50 22.51 77.46 94.91 

Fig. 11 1.50 66.21 2.28 7.00 21.45 79.17 94.06 

Fig. 12 1.47 78.21 2.22 9.19 24.87 93.34 108.77 

 

 

 
(a)                                                             (b) 

 
(c)                                                            (d) 

Fig. 14.  Rain removal results: (a) the original rain image; and the rain-removed 

versions of (a) via the: (b) bilateral filter; (c) proposed method (μ = 0.6758); 

and (d) proposed method with a global dictionary. 

 
(a)                                                             (b) 

 
(c)                                                             (d) 

Fig. 15.  Rain removal results: (a) the original rain image; and the rain-removed 

versions of (a) via the: (b) video-based camera see method [3]; (c) proposed 

method (μ = 0.8740); and (d) proposed method with an extended global 

dictionary. 

  
(a)                                                           (b) 

  
(c)                                                          (d) 

Fig. 16.  Rain removal results: (a) the original rain image; and the rain-removed 

versions of (a) via the: (b) video-based camera see method [3]; (c) proposed 

method (μ = 0.8191); and (d) proposed method with    . 
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training patches from the same or neighboring camera(s) when 

extending the proposed method to video rain removal.  That is, 

we may extract exemplar patches from the neighboring 

rain-removed frames captured by intra/inter cameras in the 

same scene. Then, we can integrate the geometric 

sub-dictionary obtained from the HF part itself and the 

extended global dictionary learned from the pre-collected 

training patches to form the final geometric sub-dictionary. 

On the other hand, we currently use the K-means algorithm 

(a hard clustering algorithm) to divide a learned dictionary for 

the HF part of a rain image. Actually, we may use some soft 

clustering algorithm, such as the fuzzy C-means (FCM), i.e., 

soft K-means algorithm, to adaptively classify each atom to the 

cluster it is most suitable to. Moreover, it may be also beneficial 

to remove some unreliable atoms. Nevertheless, we have not 

decided any guideline to guarantee the performance induced by 

using FCM algorithm yet. 

V. CONCLUSION 

In this paper, we have proposed a single-image-based rain 

streak removal framework by formulating rain removal as an 

MCA-based image decomposition problem solved by 

performing sparse coding and dictionary learning algorithms. 

Our experimental results show that the proposed method can 

effectively remove rain steaks without significantly blurring the 

original image details. For future work, the performance may 

be further improved by enhancing the sparse coding, dictionary 

learning, and partition of dictionary steps. For example, when 

performing sparse coding, some locality constraint may be 

imposed to guarantee that similar patches should have similar 

spare codes/coefficients [34]. Moreover, the proposed method 

may be extended to remove rain streaks from videos or other 

kinds of repeated textures. 
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