EE306001, Probability, Fall 2012

Quiz #5, Problems and Solutions

Prob. 1: Suppose that n independent trials, each of which results in any of the outcomes 0, 1, or 2, with respective probabilities p_0 , p_1 , and p_2 , $\sum_{i=0}^2 p_i = 1$, are performed.

- (a) Construct a probability space (S, \mathcal{F}, P) for this experiment. (You have to use formal representation of set when representing the sample space S, and specify your probability function clearly.)(4 pt)
- (b) According to your probability space, what is the probability that outcome 1 never occur?(3 pt)
- (c) According to your probability space, what is the probability that outcomes 1 and 2 both occur at least once?(3 pt)

Solution:

(a) Let

$$A = \{0, 1, 2\}$$

be the set of all possible outcomes of a single trial. The sample space of n trials is defined as

$$S = \underbrace{A \times A \times \cdots \times A}_{n} = A^{n}.$$

The σ -algebra is set to be

$$\mathcal{F}=2^S$$
.

Let the event

$$E_{ij} = \underbrace{A \times \cdots \times A}_{i-1} \times \{j\} \times \underbrace{A \times \cdots \times A}_{n-i}, \ \forall i, j \in \mathbb{Z}, 1 \le i \le n, 0 \le j \le 2.$$

According to the question, the probability function has to have

$$P(E_{i,j}) = p_j, \ \forall i, j \in \mathbb{Z}, 1 \le i \le n, 0 \le j \le 2.$$

Furthermore, $E_{1,j_1}, E_{2,j_2}, \ldots, E_{n,j_n}$ are independent events for any $J_1, j_2, \ldots, j_n \in A$, i.e.,

$$P(E_{1,j_1} \cap E_{2,j_2} \cap \ldots \cap E_{n,j_n}) = P(E_{1,j_1})P(E_{2,j_2}) \cdots P(E_{n,j_n}).$$

Therefore for any $\omega = (\omega_1, \omega_2, \dots, \omega_n) \in S$, we have

$$P(\{\omega\}) = P(\{(\omega_1, \omega_2, \dots, \omega_n)\})$$

$$= P(E_{1,\omega_1} \cap E_{2,\omega_2} \cap \dots \cap E_{n,\omega_n})$$

$$= P(E_{1,\omega_1})P(E_{2,\omega_2}) \cdots P(E_{n,\omega_n})$$

$$= p_{\omega_1} p_{\omega_2} \cdots p_{\omega_3}.$$

And, for any $E \in \mathcal{F}$,

$$P(E) = \sum_{\omega \in E} P(\{\omega\}).$$

(b) Let

 E_b = the event that outcome 1 never occur,

Then,

$$P(E_b) = P(\bigcap_{i=1}^{n} (E_{i0} \cup E_{E_{i2}}))$$

$$= \prod_{i=1}^{n} P(E_{i0} \cup E_{i2})$$

$$= (p_0 + p_2)^n.$$

(c) Let

 E_c =the event that both outcomes 1 and 2 occur at least once,

 E_1 =the event that outcomes 1 occurs at least once,

 E_2 =the event that outcomes 2 occurs at least once.

Then

$$P(E_c) = P(E_1 \cap E_2)$$

$$= 1 - P(E_1^c \cup E_2^c)$$

$$= 1 - (P(E_1^c) + P(E_2^c) - P(E_1^c \cap E_2^c)).$$

By (b), we have

$$P(E_1^c) = (p_0 + p_2)^n.$$

Similarly,

$$P(E_2^c) = (p_0 + p_1)^n.$$

Besides,

$$P(E_1^c \cap E_2^c) = P(\bigcap_{i=1}^n E_{i3}) = p_3^n.$$

Therefore,

$$P(E_c) = 1 - ((p_0 + p_2)^n + (p_0 + p_1)^n - p_3^n).$$

Prob. 2:

If E_1 and E_2 are conditionally independent given F, and $\mathcal{P}(E_1 \cap F) > 0$. Show that

$$\mathcal{P}_F(E_2|E_1) = \mathcal{P}_{E_1 \cap F}(E_2) = \mathcal{P}_F(E_2).$$

Solution.

$$\mathcal{P}_{F}(E_{2}|E_{1}) = \frac{\mathcal{P}_{F}(E_{1} \cap E_{2})}{\mathcal{P}_{F}(E_{1})}$$

$$= \left(\frac{\mathcal{P}(E_{1} \cap E_{2} \cap F)}{\mathcal{P}(F)}\right) / \left(\frac{\mathcal{P}(E_{1} \cap F)}{\mathcal{P}(F)}\right)$$

$$= \frac{\mathcal{P}(E_{2} \cap (E_{1} \cap F))}{\mathcal{P}(E_{1} \cap F)}$$

$$= \mathcal{P}_{E_{1} \cap F}(E_{2}).$$
And
$$\mathcal{P}_{F}(E_{2}|E_{1}) = \frac{\mathcal{P}_{F}(E_{1} \cap E_{2})}{\mathcal{P}_{F}(E_{1})}$$

$$= \frac{\mathcal{P}_{F}(E_{1}) \cdot \mathcal{P}_{F}(E_{2})}{\mathcal{P}_{F}(E_{1})}$$

$$= \mathcal{P}_{F}(E_{2}).$$

Prob. 3:

Prove or disprove with a counterexample:

- (1) If E and F are independent, then E and F are conditionally independent given every event $G \in \mathcal{F}$.
- (2) If there is an event $G \in \mathcal{F}$ such that E and F are conditionally independent given G, then E and F are independent.

Solution.

- (1) If we throw a fair dice twice. Let $S = \{(x_1, x_2) | x_i = 1, 2, 3, 4, 5, 6\}$ be the sample space, $\mathcal{F} = 2^S$, and $\mathcal{P}(E) = \frac{|E|}{|S|}$. Let $E = \{x_1 = 1\}$, $F = \{x_2 = 1\}$, and $G = \{x_1 + x_2 = 5\}$. Then $\mathcal{P}(E \cap F) = \mathcal{P}(E) \cdot \mathcal{P}(F) = \frac{1}{36}$ implies that E and F are independent. But $\mathcal{P}_G(E) = \mathcal{P}_G(F) = \frac{1}{4}$, $\mathcal{P}_G(E \cap F) = 0$, E and F aren't conditionally independent given G.
- (2) If we throw a fair dice twice. Let $S = \{(x_1, x_2) | x_i = 1, 2, 3, 4, 5, 6\}$ be the sample space, $\mathcal{F} = 2^S$, and $\mathcal{P}(E) = \frac{|E|}{|S|}$. Let $E = \{x_1 + x_2 = 2\}$, $F = \{x_2 = 1\}$, and $G = \{x_1 + x_2 = 5\}$. Then $\mathcal{P}_G(E \cap F) = \mathcal{P}_G((1, 1)) = 0 = \mathcal{P}_G(E) = \mathcal{P}_G(E) \cdot \mathcal{P}_G(F)$, E and F are conditionally independent given G. But $\mathcal{P}(E \cap F) = \frac{1}{36}$, $\mathcal{P}(E) = \frac{1}{36}$, $\mathcal{P}(F) = \frac{1}{6}$. $\mathcal{P}(E \cap F) \neq \mathcal{P}(E) \cdot \mathcal{P}(F)$ implies that E and F are not independent.

Notation.

- (1) For two events E and F, denote $\mathcal{P}_F(E) \triangleq \mathcal{P}(E|F)$.
- (2) For three events E_1 , E_2 , and F, we say E_1 and E_2 are conditionally independent given F if $\mathcal{P}_F(E_1 \cap E_2) = \mathcal{P}_F(E_1) \cdot \mathcal{P}_F(E_2)$.