EE306001, Probability, Fall 2012 Quiz #4, Problems and Solutions

Prob. 1: Barbara and Dianne go target shooting. Suppose that each of Barbara's shots hits a wooden duck target with probability p_1 , while each shot of Dianne's hits it with probability p_2 . Suppose that they shoot simultaneously at the same target. If the wooden duck is knocked over (indicating that it was hit), what is the probability that

- (a) both shots hit the duck?
- (b) Barbara's shot hit the duck?

(You have to specify the sample space S, the σ -algebra \mathcal{F} , the probability function P and the independent assumptions you made.)

Solution: Let the sample space

```
S = \{(Barbara hit, Dianne hit) 
(Barbara hit, Dianne miss)
(Barbara miss, Dianne hit)
(Barbara miss, Dianne miss)\},
```

and the σ -algebra

$$\mathcal{F}=2^S$$

let $P: \mathcal{F} \to \mathbb{R}$ be the probability function. According to the question, we have

```
P(\{\text{Barbara hit}\})
=P(\{(\text{Barbara hit}, \text{Dianne hit}), (\text{Barbara hit}, \text{Dianne miss})\})
=p_1,
```

and

$$P(\{\text{Dianne hit}\})$$

= $P(\{(\text{Barbara hit}, \text{Dianne hit}), (\text{Barbara miss}, \text{Dianne hit})\})$
= p_2 ,

Further more, assume that the event of Barbara hit and the event of Dianne hit are independent. That is

```
P(\{\text{Barbara hit}\} \cap \{\text{Dianne hit}\}) = P(\{\text{Barbara hit}\})P(\{\text{Dianne hit}\}) = p_1p_2.
```

(a) $P(\{\text{both shots hit the duck}\})$ $=P(\{(\text{Barbara hit}, \text{Dianne hit})\})$ $=P(\{\text{Barbara hit}\} \cap \{\text{Dianne hit}\})$ $=p_1p_2.$

(b)

 $P(\{\text{Barbara's shot hit the duck}\}) = p_1.$

<u>Prob. 2:</u>

(a) Prove that if $E_1, E_2, ..., E_n$ are independent events, then

$$P(E_1 \cup E_2 \cup \dots \cup E_n) = 1 - \prod_{i=1}^n [1 - P(E_i)].$$

(b) Prove directly that

$$P(E|F) = P(E|FG)P(G|F) + P(E|FG^c)P(G^c|F).$$

Solution:

(a) Since $E_1, E_2, ..., E_n$ are independent events, we have

$$P(E_1^c \cap E_2^c \cap \dots \cap E_n^c) = \prod_{i=1}^n P(E_i^c).$$

Then,

$$P(E_1 \cup E_2 \cup \dots \cup E_n) = 1 - P((E_1 \cup E_2 \cup \dots \cup E_n)^c)$$

$$= 1 - P(E_1^c \cap E_2^c \cap \dots \cap E_n^c)$$

$$= 1 - \prod_{i=1}^n P(E_i^c)$$

$$= 1 - \prod_{i=1}^n [1 - P(E_i)].$$

(b)

$$\begin{split} P(E|F) = & \frac{P(EF)}{P(F)} \\ = & \frac{P((EFG) \cup (EFG^c))}{P(F)} \\ = & \frac{P(EFG)}{P(F)} + \frac{P(EFG^c)}{P(F)}, \\ & (\text{since } EFG \text{ and } EFG^c \text{ are mutually exclusive,}) \\ = & \frac{P(EFG)}{P(FG)} \frac{P(FG)}{P(F)} + \frac{P(EFG^c)}{P(FG^c)} \frac{P(FG^c)}{P(F)} \\ = & P(E|FG)P(G|F) + P(E|FG^c)P(G^c|F). \end{split}$$

Prob. 3:

Let E, F be events with $\mathcal{P}(E) \cdot \mathcal{P}(F) > 0$.

- (a) State the definition of "mutually exclusive" and "(statistically) independent".
- (b) Prove or disprove with counterexample: E and F are independent if they are mutually exclusive.
- (c) Prove or disprove with counterexample: E and F are mutually exclusive if they are independent.

Solution.

- (a) Mutually exclusive: $\mathcal{P}(E \cap F) = 0$, Independent: $\mathcal{P}(E \cap F) = \mathcal{P}(E) \cdot \mathcal{P}(F)$.
- (b) Let S be the sample space of flipping a coin. $S = \{H, T\}$ where H means "head" and T means "tail". $\mathcal{F} = 2^S$. Let $E = \{H\}$ and $F = \{T\}$, then $E \cap F = \{\phi\}$, $\mathcal{P}(E) = \mathcal{P}(F) = \frac{1}{2}$ and $\mathcal{P}(E \cap F) = 0 \neq \frac{1}{4} = \mathcal{P}(E) \cdot \mathcal{P}(F)$. It's an example that E and F are mutually exclusive but not independent.
- (c) Let S be the sample space of flipping two coins. $S = \{(H, H), (H, T), (T, H), (T, T)\}$. $\mathcal{F} = 2^S$. Let $E = \{\text{The first coin is H}\}$ and $F = \{\text{The second coin is T}\}$, then $E \cap F = \{(H, T)\}$ and $\mathcal{P}(E) \cdot \mathcal{P}(F) = \mathcal{P}(E \cap F) = \frac{1}{4} \neq 0$. It's an example that E and F are independent but not mutually exclusive.