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Abstract— Recently, there has been a lot of attention on the
constructions of optical queues by using optical Switches and
fiber Delay Lines (SDL). In this paper, we consider the construc-
tions of optical queues with a limited number of recirculations
through the fibers in such SDL constructions. Such a limitation
on the number of recirculations comes from practical feasibility
considerations, such as crosstalk, power loss, amplified sponta-
neous emission (ASE) from the Erbium doped fiber amplifiers
(EDFA), and the pattern effect of the optical switches.

We first transform the design of the fiber delays in such SDL
constructions to an equivalent integer representation problem.
Specifically, given 1 ≤ k ≤ M , we seek for an M -sequence
d

M

1 = (d1, d2, . . . , dM ) of positive integers to maximize the
number of consecutive integers (starting from 0) that can
be represented by theC-transform relative to d

M

1 such that
there are at most k 1-entries in their C-transforms. Then we
give a class of greedy constructions so thatd1, d2, . . . , dM are
obtained recursively and the maximum number of representable
consecutive integers by usingd1, d2, . . . , di is larger than that
by using d1, d2, . . . , di−1 for all i. Furthermore, we obtain an
explicit recursive expression ford1, d2, . . . , dM given by a greedy
construction. Finally, we show that an optimal M -sequence (in
the sense of achieving the maximum number of representable
consecutive integers) can be given by a greedy construction. The
solution of such an integer representation problem can be applied
to the construction of optical 2-to-1 FIFO multiplexers with a
limited number of recirculations. We show that the complexity
of searching for an optimal construction can be greatly reduced
from exponential time to polynomial time by only considering the
greedy constructions instead of performing an exhaustive search.
Similar results can be obtained for linear compressors and linear
decompressors with a limited number of recirculations.

I. I NTRODUCTION

It is well recognized that one of the most critically sought
after technologies in all-optical packet switching is the con-
structions of optical queues for contention resolution among
packets competing for the same resources in the optical
domain. Recently, there has been a lot of attention in the
literature (see e.g., [1]–[25] and the references therein)on the
constructions of optical queues by using optical Switches and
fiber Delay Lines (SDL) to route the optical packets to the right
place at the right time so as to achieve exact emulations of
the optical queues. These SDL constructions of optical queues
include First-In First-Out (FIFO) multiplexers in [4]–[6]and

[11]–[16], buffered packet switches in [6]–[7], FIFO queues
in [17]–[19], Last-In First-Out (LIFO) queues in [19], priority
queues in [20]–[22], and linear compressors, non-overtaking
delay lines, and flexible delay lines in [23]–[24].

However, there are some important practical feasibility is-
sues of concern that need to be addressed in the SDL construc-
tions of optical queues. As pointed out in [26]–[28], crosstalk
due to power leakage from other optical links, power loss
experienced during recirculations through the optical switches
and the fiber delay lines, amplified spontaneous emission
(ASE) from the Erbium doped fiber amplifiers (EDFA) that
are used for boosting the signal power, and the pattern effect
of the optical switches, among others, lead to a limitation on
the number of times that an optical packet can be recirculated
through the optical switches and the fiber delay lines. If such
an issue is not taken into consideration during the design of
optical queues, then for an optical packet recirculated through
the optical switches and the fiber delay lines for a great number
of times, there is a good chance that it can not be reliably
recognized at the destined output port due to severe power
loss and/or serious noise accumulation even if it appears atthe
right place and at the right time. As such, SDL constructionsof
optical queues with a limited number of recirculations through
the fibers is a very important practical design issue.

For certain optical queues, including 2-to-1 FIFO multiplex-
ers, linear compressors, and linear decompressors, the delay
x of a packet is known upon its arrival and the routing
of the packet is according to theC-transform [13]C(x) =
(I1(x), I2(x), . . . , IM (x)) (a generalization of the well-known
binary representation) of the packet delayx with respect to
the M -sequencedM

1 = (d1, d2, . . . , dM ) of the delays of
the fibers in the queue. For these optical queues, there is a
prominentroute-onceproperty that says that an optical packet
can be routed through each fiberat most once. Specifically, if
Ii(x) = 1 for some1 ≤ i ≤ M , then the packet will be routed
through theith fiber with delaydi once; otherwise, the packet
will not be routed to theith fiber. For instance, ifIi(x) = 1
for all i = 1, 2, . . . , M , then the packet will be routed through
each of theM fibers once.

The problem arises if there is a limitation on the number
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k of recirculations through theM fibers due to the practical
feasibility considerations mentioned above. Ifk < M , then a
packet routed through more thank of the M fibers can not
be reliably recognized at the destined output port. As such,in
such situations the buffer size (for 2-to-1 FIFO multiplexers)
or the maximum delay (for linear compressors and linear
decompressors) is given by themaximum representable integer
B(dM

1 ; k) with respect tod
M
1 and k, namely, the largest

positive integer such that each of the nonnegative integers
not exceeding it has aC-transform (with respect todM

1 ) with
the number of 1-entries less than or equal tok. It follows
that the problem of constructing the delaysd1, d2, . . . , dM

for these optical queues with a limited numberk of recir-
culations through the fibers and with buffer size/maximum
delay B(dM

1 ; k) is equivalent to the integer representation
problem of constructing anM -sequencedM

1 with maximum
representable integerB(dM

1 ; k) with respect todM
1 andk.

Given 1 ≤ k ≤ M . Our first contribution in this paper is
to give a class of greedy constructions for theM -sequence
d

M
1 . An M -sequencedM

1 given by a greedy construction is
obtained recursively in a greedy manner so that the maximum
representable integer is increased when eachdi is added to the
already determinedd1, d2, . . . , di−1 for all i. Denote the set
of theM -sequences obtained by such greedy constructions as
GM,k. Then we also obtain an explicit recursive expression
for an M -sequencedM

1 ∈ GM,k and for the correspond-
ing maximum representable integerB(dM

1 ; k). Our second
contribution is to show that the largest possible maximum
representable integerB(M, k) = maxdM

1
∈AM

B(dM
1 ; k) that

can be achieved by anM -sequence inAM , whereAM is the
set of all M -sequences satisfying the condition in (A2) (in
Section II) is indeed achieved by anM -sequence inGM,k (it
is shown thatGM,k is a subset ofAM in Theorem 5), namely,
B(M, k) = maxdM

1
∈GM,k

B(dM
1 ; k). This implies that an

optimal construction (in the sense of maximizing the buffer
size) of an optical 2-to-1 multiplexer with a limited number
of recirculations could be given by a greedy construction. As
such, the complexity of searching for an optimal construction
is greatly reduced by only considering the greedy constructions
when compared to performing an exhaustive search (polyno-
mial time vs. exponential time). Similar results can be obtained
for optimal constructions of linear compressors and linear
decompressors with a limited number of recirculations, and
results along this line will be reported separately in the near
future.

This paper is organized as follows. In Section II, we describe
the transformation of the constructions of certain optical
queues into an equivalent integer representation problem in
detail. In Section III, we give a class of greedy constructions
for the M -sequencedM

1 in the equivalent integer representa-
tion problem, and obtain an explicit recursive expression for
such anM -sequencedM

1 and for the corresponding maximum
representable integerB(dM

1 ; k). In Section IV, we show that
an optimal construction can be given by a greedy construction.
Finally, we conclude this paper in Section V.

II. T HE INTEGERREPRESENTATIONPROBLEM

We first review theC-transform in [13] for the unique
representation of nonnegative integers. TheC-transform could
be regarded as a generalization of the well-known binary
representation for the unique representation of nonnegative
integers.

Definition 1 (C-Transform) [13] Given an M -sequence
d

M
1 = (d1, d2, . . . , dM ) of positive integers. TheC-transform

of a nonnegative integerx with respect todM
1 is defined as

theM -sequenceC(x) = (I1(x), I2(x), . . . , IM (x)), where the
entries IM (x), IM−1(x), . . . , I1(x), in that order, are given
recursively by

Ii(x) =

{

1, if x −
∑M

j=i+1 Ij(x)dj ≥ di,

0, otherwise.
(1)

Theorem 2 [13] Given anM -sequencedM
1 of positive inte-

gers. TheC-transformC(x) of x with respect todM
1 is the

unique representation ofx for all x = 0, 1, . . . ,
∑M

i=1 di, i.e.,

x =

M
∑

i=1

Ii(x)di, for all x = 0, 1, . . . ,

M
∑

i=1

di, (2)

if and only if the following condition in (A1) holds:

(A1) d1 = 1 and 1 ≤ di+1 ≤
∑i

j=1 dj + 1 for i =
1, 2, . . . , M − 1.

In [13], it was shown that under a simple packet routing
policy, the feedback system in Figure 1 consisting of an(M +
2) × (M + 2) crossbar switch andM fiber delay lines with
delaysd1 ≤ d2 ≤ · · · ≤ dM can be operated as a 2-to-1 FIFO
multiplexer with buffer

∑M

i=1 di if and only if the following
condition in (A2) holds:

(A2) d1 = 1 anddi ≤ di+1 ≤ 2di for i = 1, 2, . . . , M−1.

We note that the condition in (A2) is stronger than the
condition in (A1) as it has been shown in [13] that if
d1, d2, . . . , dM satisfy the condition in (A2), then they also
satisfy the condition in (A1).
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Fig. 1. A 2-to-1 FIFO multiplexer with buffer
∑

M

i=1
di.
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Furthermore, it was shown in [24] that if the condition in

(A1) holds, then the construction in Figure 2 by a concate-
nation ofM scaled optical memory cells with scaling factors
d1, d2, . . . , dM (theith scaled optical memory cell with scaling
factor di in Figure 2 is built by a2 × 2 crossbar switch and
a fiber delay line with delaydi for i = 1, 2, . . . , M ) can be
operated as a self-routing linear compressor with maximum
delay

∑M

i=1 di.

d
M-1

d
2

d
1 dM

Fig. 2. A construction of a linear compressor with maximum delay
∑

M

i=1
di

by a concatenation ofM scaled optical memory cells with scaling factors
d1, d2, . . . , dM .

Regarding the self-routing policy for the above two queues,
suppose that the delay of a packet arriving at timet is 0 ≤
x ≤

∑M

i=1 di and the expression ofx by the C-transform of
x is

x = di1 + di2 + · · · + dik
, (3)

where1 ≤ i1 < i2 < · · · < ik ≤ M , then the packet is routed
to the fiber with delaydi1 at time t, to the fiber with delay
di2 at timet + di1 , . . ., and to the fiber with delaydik

at time
t +

∑k−1
ℓ=1 diℓ

.
The problem arises if there is a limitation on the numberk

of recirculations through theM fibers in order to ensure that a
packet can be reliably recognized at the destined output port.
In such situations, the buffer size (for 2-to-1 FIFO multiplex-
ers) or the maximum delay (for linear compressors and linear
decompressors) is given by the largest positive integer such
that each of the nonnegative integers not exceeding it has a
C-transform with the number of 1-entries less than or equal to
k as a packet with delay one more than this largest positive
integer will be routed through more thank fibers and hence
can not be reliably recognized at the destined output port. We
call such a largest positive integer the maximum representable
integer with respect todM

1 andk, which is formally defined
below.

Definition 3 (Maximum Representable Integer) Given an
M -sequencedM

1 of positive integers and a positive integer
k. The maximum representable integerB(dM

1 ; k) with respect
to d

M
1 and k is defined as the largest positive integer such

that each of the nonnegative integers not exceeding it has a
C-transform with the number of 1-entries less than or equal
to k, i.e.,

B(dM
1 ; k) = max

{

y :
M
∑

i=1

Ii(x) ≤ k, x = 0, 1, . . . , y

}

. (4)

For obvious reasons, we also defineB(dM
1 ; k) = 0 if M = 0

or k = 0.

Note that from Theorem 2 we haveB(dM
1 ; k) =

B(dM
1 ; M) =

∑M

ℓ=1 dℓ for k ≥ M if d
M
1 satisfies the

condition in (A1).
As we are most interested in the constructions of these

optical queues with as large buffer size/maximum delay as
possible, the optimal constructions (in the sense of maximizing
the buffer size/maximum delay) of these optical queues with
a limited number of recirculations through the fibers is equiv-
alent to the integer representation problem of constructing
an M -sequence that achieves the largest possible maximum
representable integer.

In this paper, we focus on a class of greedy constructions
of the M -sequencedM

1 in Section III, and show that an
M -sequence achieving the largest possible maximum repre-
sentable integerB(dM

1 ; k) over all dM
1 ∈ AM , whereAM

is the set of allM -sequences satisfying the condition in
(A2), could be given by a greedy construction in Section IV.
The results in this paper can therefore be applied to the
optimal constructions of 2-to-1 FIFO multiplexers with a
limited number of recirculations through the fibers. We note
that similar results can be obtained if the maximization of
the maximum representable integerB(dM

1 ; k) is over allM -
sequences satisfying the condition in (A1), and the resultscan
be applied to the optimal constructions of linear compressors
and linear decompressors with a limited number of recircula-
tions through the fibers.

III. A C LASS OFGREEDY CONSTRUCTIONS

Suppose that1 ≤ k ≤ M . In this section, we give a class
of greedy constructions of theM -sequencedM

1 , and obtain an
explicit recursive expression fordM

1 and for the corresponding
maximum representable integerB(dM

1 ; k).
Consider the case withM = 6 andk = 2. A direct construc-

tion of d1, d2, d3, d4, d5, d6 is to divide the construction into
two parts, the construction ofd1, d2, d3 and the construction
of d4, d5, d6, so that there is at most one nonzero entry in
{I1(x), I2(x), I3(x)} and there is at most one nonzero entry
in {I4(x), I5(x), I6(x)} for as many consecutive nonnegative
integersx as possible. For example, we can choosed1 =
1, d2 = 2, d3 = 3 and achieveB(d3

1; 1) = 3. Then we can
choosed4 = B(d3

1; 1) + 1 = 4, d5 = 2(B(d3
1; 1) + 1) =

8, d6 = 3(B(d3
1; 1) + 1) = 12. For 4 ≤ i ≤ 6, it is

easy to see that forx = di, di + 1, . . . , di + B(d3
1; 1), there

is at most one nonzero entry in{I1(x), I2(x), I3(x)} and
there is exactly one nonzero entry in{I4(x), I5(x), I6(x)}
(specifically,Ii(x) = 1). It follows that such a construction
guarantees thatB(d6

1; 2) ≥ d6 + B(d3
1; 1) = 15. Indeed, from

Table I we see thatB(d6
1; 2) = 16, which is larger than 15.

A better construction, called a greedy construction in this
paper, can be described as follows. We still divide the construc-
tion into two parts as in the direct construction above. For the
construction ofd1, d2, d3, eachdi is constructed recursively
by usingd1, d2, . . . , di−1 that have already been determined
so thatB(di

1; 1) is at least one more thanB(di−1
1 ; 1), and this

is possible by choosingdi = B(di−1
1 ; 1) + 1 for i = 1, 2, 3.



4x I1(x) I2(x) I3(x) I4(x) I5(x) I6(x)
0 0 0 0 0 0 0
1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 1 0 0 1 0 0
6 0 1 0 1 0 0
7 0 0 1 1 0 0
8 0 0 0 0 1 0
9 1 0 0 0 1 0
10 0 1 0 0 1 0
11 0 0 1 0 1 0
12 0 0 0 0 0 1
13 1 0 0 0 0 1
14 0 1 0 0 0 1
15 0 0 1 0 0 1
16 0 0 0 1 0 1

TABLE I

THE C-TRANSFORM OFx WITH RESPECT TOd6

1
= (1, 2, 3, 4, 8, 12) FOR

x = 0, 1, 2, . . . , 16.

As such,d1 = B(d0
1; 1)+1 = 1, d2 = B(d1

1; 1)+1 = 2, d3 =
B(d2

1; 1)+1 = 3. As for the construction ofd4, d5, d6, eachdi

is also constructed recursively by usingd1, d2, . . . , di−1 that
have already been determined, but nowB(di

1; 2) is required to
be at least one more thanB(di−1

1 ; 2). Again, this is possible
by choosingdi = B(di−1

1 ; 2) + 1 for i = 4, 5, 6. It follows
that d4 = B(d3

1; 2) + 1 = 6, d5 = B(d4
1; 2) + 1 = 10, d6 =

B(d5
1; 2)+1 = 14. From Table II, we see thatB(d6

1; 2) = 17,
which is larger than 16 in the direct construction above.

x I1(x) I2(x) I3(x) I4(x) I5(x) I6(x)
0 0 0 0 0 0 0
1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 1 0 1 0 0 0
5 0 1 1 0 0 0
6 0 0 0 1 0 0
7 1 0 0 1 0 0
8 0 1 0 1 0 0
9 0 0 1 1 0 0
10 0 0 0 0 1 0
11 1 0 0 0 1 0
12 0 1 0 0 1 0
13 0 0 1 0 1 0
14 0 0 0 0 0 1
15 1 0 0 0 0 1
16 0 1 0 0 0 1
17 0 0 1 0 0 1

TABLE II

THE C-TRANSFORM OFx WITH RESPECT TOd6

1
= (1, 2, 3, 6, 10, 14) FOR

x = 0, 1, 2, . . . , 17.

We can now describe our greedy constructions in a general
setting. ForM ≥ 1 and 1 ≤ k ≤ M , let n1, n2, . . . , nk be
positive integers such that

∑k

i=1 ni = M , and let s0 = 0

and si =
∑i

ℓ=1 nℓ for i = 1, 2, . . . , k. Define a sequence of

positive integersd1, d2, . . . , dM recursively as follows:

dsi+j = B(dsi+j−1
1 ; i + 1) + 1, (5)

where0 ≤ i ≤ k−1, 1 ≤ j ≤ ni+1. In other words, we divide
the construction intok parts. For the(i + 1)th part, where
0 ≤ i ≤ k − 1, dsi+j is constructed recursively by using
d1, d2, . . . , dsi+j−1 according to (5) forj = 1, 2, . . . , ni+1.
We denoteGM,k as the set of allM -sequencesdM

1 given by
(5) by using sequences of positive integersn1, n2, . . . , nk such
that

∑k

i=1 ni = M .
After d1, d2, . . . , dsi+j have been determined, the integers

0, 1, . . . , B(dsi+j−1
1 ; i + 1) are representable by using at

most i + 1 of the integersd1, d2, . . . , dsi+j−1 according to
the C-transform (note thatdsi+j > B(dsi+j−1

1 ; i + 1) and
hence dsi+j is not used in their representations). As we
define dsi+j = B(dsi+j−1

1 ; i + 1) + 1 in (5), the integer
B(dsi+j−1

1 ; i + 1) + 1 is representable by usingdsi+j . If
we choosedsi+j > B(dsi+j−1

1 ; i + 1) + 1, then the integer
B(dsi+j−1

1 ; i+1)+1 is not representable by using at mosti+1
of the integersd1, d2, . . . , dsi+j according to theC-transform,
and such a choice ofdsi+j will have no use in increasing
the maximum representable integer. This is why we define
dsi+j = B(dsi+j−1

1 ; i + 1) + 1 in (5). Furthermore, asdsi+j

is used in the representation of the integers not less thandsi+j

and the integers0, 1, . . . , B(dsi+j−1
1 ; i) are representable by

using at mosti of the integersd1, d2, . . . , dsi+j−1, it is clear
that the integersdsi+j , dsi+j + 1, . . . , dsi+j + B(dsi+j−1

1 ; i)
are representable by using at mosti + 1 of the integers
d1, d2, . . . , dsi+j . As such, our construction guarantees that
B(dsi+j

1 ; i+1) ≥ dsi+j +B(dsi+j−1
1 ; i). Indeed, in Lemma 7

below, we show thatB(dsi+j
1 ; i+1) = dsi+j +B(dsi+j−1

1 ; i),
i.e., the maximum representable integer is increased by
B(dsi+j

1 ; i + 1) − B(dsi+j−1
1 ; i + 1) = B(dsi+j−1

1 ; i) + 1.
We call such a construction agreedy construction. Intu-

itively, it is expected that such greedy constructions possess
certain optimal properties. Indeed, in Theorem 9 (in Sec-
tion IV) we will show that every optimal construction (in the
sense of achieving the largest possible maximum representable
integer) is a greedy construction.

Note that forM = 1, we haved1 = ds0+1 = B(d0
1; 1)+1 =

1 as B(d0
1; 1) = 0 by definition. ForM ≥ 2 and k = M ,

we must haven1 = n2 = · · · = nM = 1 and s1 = 1, s2 =
2, . . . , sM = M . As it is easy to see thatB(1, 2, . . . , n; 1) = n

for all n ≥ 1, it follows from (5) that

d1 = ds0+1 = B(d0
1; 1) + 1 = 1,

d2 = ds1+1 = B(d1
1; 2) + 1 = d1 + 1 = 2,

d3 = ds2+1 = B(d2
1; 3) + 1 =

2
∑

ℓ=1

dℓ + 1 = 22,

...

dM = dsM−1+1 = B(dM−1
1 ; M) + 1

=

M−1
∑

ℓ=1

dℓ + 1 = 2M−1,
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whered1 = 1, d2 = 2, . . . , di = 2i−1 satisfy the condition
in (A2) for eachi = 1, 2, . . . , M − 1, and we have used the
fact thatB(di

1; i + 1) = B(di
1; i) =

∑i

ℓ=1 dℓ. As such, in the
following we only consider the nontrivial case withM ≥ 2
and 1 ≤ k ≤ M − 1. In such a nontrivial case, there must
exist some1 ≤ i ≤ k such thatni ≥ 2 as otherwise we
will have n1 = n2 = · · · = nk = 1 and

∑k

i=1 ni = k ≤

M − 1, contradicting to
∑k

i=1 ni = M . Furthermore, from
the following theorem, it suffices to consider only the case
with n1 ≥ 2.

Theorem 4 For M ≥ 2 and 2 ≤ k ≤ M − 1, let
n1, n2, . . . , nk be positive integers such thatn1 = 1 and
∑k

i=1 ni = M . Let i′ = min{2 ≤ i ≤ k : ni ≥ 2}
(note that i′ is well defined asn1 = 1 and hence there
must exist some2 ≤ i ≤ k such thatni ≥ 2), and let
m1 = 2, m2 = m3 = · · · = mi′−1 = 1, mi′ = ni′ − 1,
mi′+1 = ni′+1, mi′+2 = ni′+2, . . ., mk = nk. Suppose
that d1, d2, . . . , dM are generated byn1, n2, . . . , nk by using
(5), andh1, h2, . . . , hM are generated bym1, m2, . . . , mk by
using (5). Thendℓ = hℓ for all ℓ = 1, 2, . . . , M .

The proof of Theorem 4 is omitted due to the space limit
(for proof, see [29]).

In the following theorem, we derive an explicit recursive
expression for theM -sequencedM

1 given by (5) by using
positive integersn1, n2, . . . , nk with

∑k

i=1 ni = M , and for
the corresponding maximum representable integerB(dM

1 ; k).

Theorem 5 For M ≥ 2 and 1 ≤ k ≤ M − 1, let
n1, n2, . . . , nk be positive integers such thatn1 ≥ 2 and
∑k

i=1 ni = M , and let s0 = 0 and si =
∑i

ℓ=1 nℓ for
i = 1, 2, . . . , k. The M -sequencedM

1 given by (5) can be
expressed recursively as follows:

dj = j, 1 ≤ j ≤ s1, (6)

dsi+j = 2dsi
+ (j − 1)(ds1

+ ds2
+ · · · + dsi

+ 1),

1 ≤ i ≤ k − 1, 1 ≤ j ≤ ni+1. (7)

Furthermore, theM -sequencedM
1 satisfies the condition in

(A2), and we have

B(dj
1; 1) = j, 1 ≤ j ≤ s1, (8)

B(dsi+j
1 ; i + 1) = dsi+j + ds1

+ ds2
+ · · · + dsi

,

1 ≤ i ≤ k − 1, 1 ≤ j ≤ ni+1. (9)

Theorem 5 tells us that if theM -sequencedM
1 in Figure 1

is given by (5), then it satisfies the condition in (A2) and hence
the feedback system in Figure 1 can be operated as a 2-to-1
FIFO multiplexer with bufferB(dM

1 ; k) =
∑k

i=1 dsi
under

the constraint that each packet can be routed through at most
k of the M fibers by using the packet routing policy in [13].

We need the following three lemmas for the proof of
Theorem 5. Due to space limit, their proofs are omitted but
can be found in [29].

Lemma 6 Let d1, d2, . . . , dn be a sequence of positive in-
tegers satisfying the condition in (A2). Suppose thati ≥ 0
and ℓ′ = max{1 ≤ ℓ ≤ n : dℓ ≤ B(dn

1 ; i + 1)}, namely,
dℓ′ ≤ B(dn

1 ; i + 1) < dℓ′+1 if 1 ≤ ℓ′ ≤ n − 1, and
B(dn

1 ; i + 1) ≥ dn if ℓ′ = n. Then we have

B(dn
1 ; i + 1) = B(dn−1

1 ; i + 1) = · · · = B(dℓ′

1 ; i + 1)

= dℓ′ + B(dℓ′−1
1 ; i). (10)

We remark that the condition thatℓ′ = max{1 ≤ ℓ ≤ n :
dℓ ≤ B(dn

1 ; i+1)} is essential for the relationB(dn
1 ; i+1) =

dℓ′ + B(dℓ′−1
1 ; i) in Lemma 6 to hold. IfB(dn

1 ; i + 1) < dℓ′ ,
then obviously it is impossible thatB(dn

1 ; i + 1) = dℓ′ +

B(dℓ′−1
1 ; i). So at least we need the condition thatB(dn

1 ; i +
1) ≥ dℓ′ . Even if B(dn

1 ; i + 1) ≥ dℓ′ , it is not always true
thatB(dn

1 ; i+1) = dℓ′ +B(dℓ′−1
1 ; i) as can be seen from the

following counterexample: ford1 = 1, d2 = 2, d3 = 4, and
d4 = 8, we haveB(d4

1; 2) = 6 ≥ d2 and B(d1
1; 1) = 1, but

B(d4
1; 2) 6= d2+B(d1

1; 1); however, we haved3 ≤ B(d4
1; 2) <

d4 andB(d2
1; 1) = 2, and henceB(d4

1; 2) = d3 + B(d2
1; 1).

Lemma 7 For M ≥ 2 and1 ≤ k ≤ M−1, let n1, n2, . . . , nk

be positive integers such thatn1 ≥ 2 and
∑k

i=1 ni = M , and
let s0 = 0 and si =

∑i

ℓ=1 nℓ for i = 1, 2, . . . , k. Suppose
that for some1 ≤ i ≤ k − 1 and 0 ≤ j ≤ ni+1, the sequence
d1, d2, . . . , dsi+j is given by (6) and (7). Then the sequence
d1, d2, . . . , dsi+j satisfies the condition in (A2), and we have

B(dsi+j
1 ; i + 1) = dsi+j + B(dsi+j−1

1 ; i). (11)

Lemma 8 For M ≥ 2 and1 ≤ k ≤ M−1, let n1, n2, . . . , nk

be positive integers such thatn1 ≥ 2 and
∑k

i=1 ni = M , and
let s0 = 0 andsi =

∑i

ℓ=1 nℓ for i = 1, 2, . . . , k. Suppose that
for some1 ≤ i ≤ k − 1 and 0 ≤ j ≤ ni+1 − 1, the sequence
d1, d2, . . . , dsi+j is given by (6) and (7), and suppose that

B(dsi

1 ; i) = ds1
+ ds2

+ · · · + dsi
. (12)

Then we have

B(dsi+j
1 ; i) = B(dsi

1 ; i). (13)

Proof. (Proof of Theorem 5) Clearly, it follows from (5) that

d1 = ds0+1 = B(d0
1; 1) + 1 = 0 + 1 = 1,

d2 = ds0+2 = B(d1
1; 1) + 1 = 1 + 1 = 2,

d3 = ds0+3 = B(d2
1; 1) + 1 = 2 + 1 = 3,

...

ds1
= ds0+s1

= B(ds1−1
1 ; 1) + 1 = (s1 − 1) + 1 = s1,

and

B(ds1

1 ; 1) = s1.

For eachj = 1, 2, . . . , s1, it is easy to see that the sequence
d1 = 1, d2 = 2, . . . , dj = j satisfies the condition in (A2).
Therefore, we have proved that (6) and (8) hold.

In the following, we show by induction that (7) and (9) hold,
and the sequenced1, d2, . . . , dsi+j satisfies the condition in
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(A2) for all 1 ≤ i ≤ k − 1 and1 ≤ j ≤ ni+1. From (5) with
i = 1 and j = 1, and from (11) withi = 1 and j = 0, we
have

ds1+1 = B(ds1

1 ; 2) + 1

= ds1
+ B(ds1−1

1 ; 1) + 1

= ds1
+ (ds1

− 1) + 1

= 2ds1
,

whereB(ds1−1
1 ; 1) = s1 − 1 = ds1

− 1 follows from (8) and
(6). Therefore, (7) holds fori = 1 and j = 1. It then follows
from Lemma 7 that the sequenced1, d2, . . . , ds1+1 satisfies
the condition in (A2), and

B(ds1+1
1 ; 2) = ds1+1 + B(ds1

1 ; 1) = ds1+1 + ds1
,

where B(ds1

1 ; 1) = s1 = ds1
follows from (8) and (6). As

such, (9) also holds fori = 1 andj = 1.
Now assume as the induction hypothesis that (7) and (9)

hold up to some1 ≤ i ≤ k − 1 and 1 ≤ j ≤ ni+1, where
si + j < M , and the sequenced1, d2, . . . , dsi+j satisfies the
condition in (A2). We need to consider the following two
cases:

Case 1.1 ≤ j ≤ ni+1−1: In this case, we have2 ≤ j+1 ≤
ni+1. It follows from (5) and the induction hypothesis that

dsi+j+1 = B(dsi+j
1 ; i + 1) + 1

= dsi+j + ds1
+ ds2

+ · · · + dsi
+ 1

= 2dsi
+ (j − 1)(ds1

+ ds2
+ · · · + dsi

+ 1)

+ds1
+ ds2

+ · · · + dsi
+ 1

= 2dsi
+ j(ds1

+ ds2
+ · · · + dsi

+ 1).

We then have from Lemma 7 that the sequence
d1, d2, . . . , dsi+j+1 satisfies the condition in (A2), and

B(dsi+j+1
1 ; i + 1) = dsi+j+1 + B(dsi+j

1 ; i). (14)

As it is easy to see from the induction hypothesis that (12)
holds up toi, it follows from (14),1 ≤ i ≤ k − 1, 1 ≤ j ≤
ni+1 − 1, and Lemma 8 that

B(dsi+j+1
1 ; i + 1) = dsi+j+1 + B(dsi+j

1 ; i)

= dsi+j+1 + B(dsi

1 ; i)

= dsi+j+1 + ds1
+ ds2

+ · · · + dsi
.

Case 2.j = ni+1: Note that as we assume thatsi + j =
si+1 < M , we havei ≤ k − 2 in this case. In this case,
we havesi + j + 1 = si+1 + 1, and it follows from (5), the
induction hypothesis, and Lemma 7 that

dsi+1+1 = B(d
si+1

1 ; i + 2) + 1

= dsi+1
+ B(d

si+1−1
1 ; i + 1) + 1. (15)

If ni+1 = 1, thensi+1 − 1 = si. As such, we have from the
induction hypothesis, Lemma 7, and (5) that

B(d
si+1−1
1 ; i + 1) + 1 = B(dsi

1 ; i + 1) + 1

= dsi
+ B(dsi−1

1 ; i) + 1

= dsi
+ (dsi

− 1) + 1

= 2dsi
. (16)

As we also havedsi+1 = 2dsi
from the induction hypothesis,

it follows from (16) andsi+1 = si + 1 that

B(d
si+1−1
1 ; i + 1) + 1 = 2dsi

= dsi+1 = dsi+1
. (17)

On the other hand, ifni+1 ≥ 2, thenni+1 − 1 ≥ 1 and from
the induction hypothesis we have

B(d
si+1−1
1 ; i + 1) + 1

= B(d
si+ni+1−1
1 ; i + 1) + 1

= dsi+ni+1−1 + ds1
+ ds2

+ · · · + dsi
+ 1

= 2dsi
+ (ni+1 − 2)(ds1

+ ds2
+ · · · + dsi

+ 1)

+ds1
+ ds2

+ · · · + dsi
+ 1

= 2dsi
+ (ni+1 − 1)(ds1

+ ds2
+ · · · + dsi

+ 1).

= dsi+ni+1
= dsi+1

. (18)

By combining (15), (17), and (18), we have

dsi+1+1 = dsi+1
+ B(d

si+1−1
1 ; i + 1) + 1 = 2dsi+1

,

which is the desired result.
Again, we have from Lemma 7 that the sequence

d1, d2, . . . , dsi+1+1 satisfies the condition in (A2), and

B(d
si+1+1
1 ; i + 2) = dsi+1+1 + B(d

si+1

1 ; i + 1)

= dsi+1+1 + ds1
+ ds2

+ · · · + dsi
+ dsi+1

,

where B(d
si+1

1 ; i + 1) = ds1
+ ds2

+ · · · + dsi
+ dsi+1

follows from the induction hypothesis. We have completed
the induction and the theorem is proved.

IV. A N OPTIMAL CONSTRUCTION IS AGREEDY

CONSTRUCTION

For M ≥ 1 and1 ≤ k ≤ M , let B(M, k) be the the largest
possible maximum representable integerB(dM

1 ; k) over all
d

M
1 ∈ AM , i.e.,

B(M, k) = max
dM

1
∈AM

B(dM
1 ; k). (19)

We call the construction of anM -sequenced∗M
1 ∈ AM an

optimal construction ifB(M, k) = B(d∗M
1 ; k).

In the following, we will show that every optimal construc-
tion is a greedy construction. Note that forM = 1, the only
sequence satisfying the condition in (A2) isd1 = 1, which
is also the only sequence generated by (5) as we have shown
in Section III. As there is only one construction in this case,
the optimal construction is also the greedy construction. For
M ≥ 2 and k = M , it is easy to see that the optimal
construction is given byd∗1 = 1, d∗2 = 2, d∗3 = 22, . . .,
d∗M = 2M−1. In this case, we have shown in Section III that
d1 = 1, d2 = 2, d3 = 22, . . ., dM = 2M−1 is the only possible
sequence generated by (5), and it then follows that the optimal
construction is also the greedy construction. As such, in the
following theorem we only consider the nontrivial case with
M ≥ 2 and 1 ≤ k ≤ M − 1, and show that every optimal
construction is a greedy construction.
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Theorem 9 Let M ≥ 2 and 1 ≤ k ≤ M − 1. Suppose that
B(M, k) = B(d∗M

1 ; k) for somed
∗M
1 ∈ AM . Thend

∗M
1 ∈

GM,k. In other words, every optimal construction is a greedy
construction.

Theorem 5 implies that an optimal constructiond∗M
1 in

Figure 1 that achieves the maximum buffer size among
{B(dM

1 ; k) : d
M
1 ∈ AM} could be given by a greedy

construction, namely,d∗M
1 ∈ GM,k. From [15], we know

that the size ofAM grows at least with2M−1 (exponential
growth). Also, it is easy to see that the number ofk-sequences
(n1, n2, . . . , nk) with n1 ≥ 2, n2 ≥ 1, . . . , nk ≥ 1 and
∑k

i=1 ni = M is given by
(

M−2
k−1

)

. It follows that the size of
GM,k grows at most with(M−2)k−1 (polynomial growth). As
such, the complexity of searching for an optimal construction
can be greatly reduced from exponential time to polynomial
time by only considering the greedy constructions instead of
performing an exhaustive search.
Proof. (Proof of Theorem 9) We divide the proof into five
parts.

(i) First we show thatB(M, k) ≥ d∗M . Suppose on the con-
trary thatB(M, k) < d∗M . Clearly,B(M, k) = B(d∗M

1 ; k) ≥
1 = d∗1. Therefore, we haved∗1 ≤ B(d∗M

1 ; k) < d∗M and it
follows that there exists anℓ′, where1 ≤ ℓ′ ≤ M − 1, such
that d∗ℓ′ ≤ B(M, k) < d∗ℓ′+1.

Let hℓ = d∗ℓ for ℓ = 1, 2, . . . , ℓ′, andhℓ = B(M, k)+ ℓ− ℓ′

for ℓ = ℓ′ + 1, ℓ′ + 2, . . . , M . We claim thathM
1 ∈ AM .

Sinced
∗M
1 ∈ AM , we haved∗1 = 1 and d∗ℓ ≤ d∗ℓ+1 ≤ 2d∗ℓ

for ℓ = 1, 2, . . . , M − 1. As such, it follows fromhℓ = d∗ℓ
for ℓ = 1, 2, . . . , ℓ′ that h1 = 1 and hℓ ≤ hℓ+1 ≤ 2hℓ for
ℓ = 1, 2, . . . , ℓ′−1. Fromd∗ℓ′ ≤ B(M, k) < d∗ℓ′+1 andd∗ℓ′+1 ≤
2d∗ℓ′ , we have

hℓ′+1 = B(M, k) + 1 ≥ d∗ℓ′ + 1 > d∗ℓ′ = hℓ′ ,

hℓ′+1 = B(M, k) + 1 ≤ d∗ℓ′+1 ≤ 2d∗ℓ′ = 2hℓ′ .

This leads tohℓ′ ≤ hℓ′+1 ≤ 2hℓ′ . It is also easy to see from
hℓ = B(M, k) + ℓ − ℓ′ for ℓ = ℓ′ + 1, ℓ′ + 2, . . . , M that
hℓ+1 = hℓ + 1 for ℓ = ℓ′ + 1, ℓ′ + 2, . . . , M − 1, and hence
hℓ ≤ hℓ+1 ≤ 2hℓ for ℓ = ℓ′ + 1, ℓ′ + 2, . . . , M − 1.

From d∗ℓ′ ≤ B(M, k) = B(d∗M
1 ; k) < d∗ℓ′+1 for some1 ≤

ℓ′ ≤ M − 1, Lemma 6, andhℓ = d∗ℓ for ℓ = 1, 2, . . . , ℓ′, we
have

B(M, k) = B(d∗M
1 ; k) = B(d∗ℓ′

1 ; k) = B(hℓ′

1 ; k).

It follows that the integers0, 1, 2, . . . , B(M, k) are repre-
sentable with at mostk of the ℓ′ integersh1, h2, . . . , hℓ′ by
using theC-transform. AsB(M, k) < hℓ′+1 = B(M, k) + 1
andhℓ′+1 ≤ hℓ′+2 ≤ · · · ≤ hM , hℓ′+1, hℓ′+2, . . . , hM will not
be used in the representation of the integers0, 1, . . . , B(M, k)
by using theC-transform. As such, we haveB(hM

1 ; k) ≥
B(M, k). Furthermore, the integerx, whereB(M, k) + 1 ≤
x ≤ B(M, k) + M − ℓ′, is representable byhx−B(M,k)+ℓ′ =
(x − B(M, k) + ℓ′) + B(M, k) − ℓ′ = x as ℓ′ + 1 ≤
x−B(M, k)+ℓ′ ≤ M . Combining withB(hM

1 ; k) ≥ B(M, k)
leads toB(hM

1 ; k) ≥ B(M, k) + M − ℓ′ > B(M, k).

As a result, we have

B(M, k) = max
dM

1
∈AM

B(dM
1 ; k) ≥ B(hM

1 ; k) > B(M, k),

and we have reached a contradiction.
(ii) From B(M, k) = B(d∗M

1 ; k) ≥ d∗M in (i) and
Lemma 6, we haveB(d∗M

1 ; k) = d∗M + B(d∗M−1
1 ; k − 1).

Let sk = M , then we have

B(d∗sk

1 ; k) = d∗sk
+ B(d∗sk−1

1 ; k − 1). (20)

Let

sk−1 = max{1 ≤ ℓ ≤ sk − 1 : d∗ℓ ≤ B(d∗sk−1
1 ; k − 1)},

then it follows from Lemma 6 that

B(d∗sk−1
1 ; k − 1) = B(d∗sk−2

1 ; k − 1)
...

= B(d∗sk−1

1 ; k − 1)

= d∗sk−1
+ B(d∗sk−1−1

1 ; k − 2).

By repeating the above procedure fork − 1 times, we have

B(d∗si+1−1
1 ; i) = B(d∗si+1−2

1 ; i) = · · · = B(d∗si

1 ; i)

= d∗si
+ B(d∗si−1

1 ; i − 1), (21)

where

si = max{1 ≤ ℓ ≤ si+1 − 1 : d∗ℓ ≤ B(d∗si+1−1
1 ; i)}, (22)

for i = 1, 2, . . . , k−1. From (20) and (21), it is easy to deduce
by induction oni that

B(d∗si

1 ; i) = d∗s1
+ d∗s2

+ · · · + d∗si
, i = 1, 2, . . . , k. (23)

(iii) We claim that s1 ≥ 2. Suppose on the contrary that
s1 = 1. We will show by induction oni that si = i for all
i = 1, 2, . . . , k. As such, it follows fromk ≤ M − 1 that
sk = k 6= M , and we have reached a contradiction.

Assume thats1 = 1, s2 = 2, . . ., si = i for some1 ≤ i ≤
k − 1. Note thatsi+1 ≥ si + 1 = i + 1. Suppose thatsi+1 ≥
i + 2. Thensi+1 − 1 ≥ i + 1 andd∗i+1, d

∗
i+2, . . . , d

∗
si+1−1 will

not be used in the representation of an integer less thand∗i+1

by using theC-transform. Asd∗1 = 1 and d∗ℓ ≤ d∗ℓ+1 ≤ 2d∗ℓ
for ℓ = 1, 2, . . . , M − 1, we have

d∗i+1 ≤ 2d∗i = d∗i + d∗i

≤ d∗i + 2d∗i−1 = d∗i + d∗i−1 + d∗i−1

≤ d∗i + d∗i−1 + 2d∗i−2

...

≤ d∗i + d∗i−1 + · · · + d∗2 + 2d∗1

= B(d∗i
1; i) + 1,

where the equality follows from (23) ands1 = 1, s2 = 2, . . .,
si = i. This implies that the integers0, 1, . . . , d∗i+1 − 1 are
representable by using at mosti of the si+1 − 1 integers
d∗1, d

∗
2, . . . , d

∗
si+1−1 by using theC-transform. Furthermore,

d∗i+1 is clearly representable, implying thatB(d∗si+1−1
1 ; i) ≥
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d∗i+1. As a result, we have from (22) thatsi ≥ i + 1, contra-
dicting to the induction hypothesis thatsi = i. Therefore, we
must havesi+1 = i + 1, and the induction is completed.

(iv) Let s0 = 0 andni = si − si−1 for i = 1, 2, . . . , k, and
let d1, d2, . . . , dM be the sequence generated byn1, n2, . . . , nk

by using (5). In the following, we show by induction onℓ
that d∗ℓ ≤ dℓ for all ℓ = 1, 2, . . . , M , and d∗ℓ < dℓ for all
ℓ = ℓ′, ℓ′ + 1, . . . , M if d∗ℓ′ < dℓ′ for some2 ≤ ℓ′ ≤ M (note
that d∗1 = d1 = 1).

From the definition ofB(d∗s2−1
1 ; 1), it is not difficult to

see thatB(d∗s2−1
1 ; 1) = d∗ℓ′ , where

ℓ′ = max{2 ≤ ℓ ≤ s2 − 1 : d∗2 − d∗1 ≤ 1, d∗3 − d∗2 ≤ 1, . . . ,

d∗ℓ − d∗ℓ−1 ≤ 1}. (24)

In other words,ℓ′ is the largest index in{2, 3, . . . , s2 − 1}
such that the difference betweend∗ℓ andd∗ℓ−1 is at most one
for all ℓ = 2, 3, . . . , ℓ′. (Note thatℓ′ is well defined as we have
s2−1 ≥ s1 ≥ 2 from (iii) and d∗2−d∗1 ≤ 2d∗1−d∗1 = d∗1 = 1.)
If 2 ≤ ℓ′ ≤ s2 − 2, thend∗ℓ′+1 − d∗ℓ′ ≥ 2 and henced∗ℓ′+1 ≥

d∗ℓ′ + 2 = B(d∗s2−1
1 ; 1) + 2 > B(d∗s2−1

1 ; 1). On the other
hand, we haveB(d∗s2−1

1 ; 1) = d∗s2−1 if ℓ′ = s2 − 1. As such,
it follows from (22) thats1 = ℓ′. As d∗1 = 1 and the difference
betweend∗ℓ andd∗ℓ−1 is at most one forℓ = 2, 3, . . . , s1, we
then have fromdℓ = ℓ for ℓ = 1, 2, . . . , s1 in (6) that

d∗ℓ ≤ ℓ = dℓ, ℓ = 1, 2, . . . , s1. (25)

Furthermore, ifd∗ℓ′ < dℓ′ = ℓ′ for some2 ≤ ℓ′ ≤ s1, then

d∗ℓ ≤ d∗ℓ′ + (ℓ − ℓ′) < ℓ′ + (ℓ − ℓ′) = ℓ = dℓ, (26)

for all ℓ = ℓ′, ℓ′ + 1, . . . , s1.
We have proved in (25) and (26) thatd∗1 ≤ d1, d∗2 ≤ d2, . . .,

d∗s1
≤ ds1

, and d∗ℓ′ < dℓ′ , d∗ℓ′+1 < dℓ′+1, . . ., d∗s1
< ds1

if
d∗ℓ′ < dℓ′ for some2 ≤ ℓ′ ≤ s1. Now assume as the induction
hypothesis thatd∗1 ≤ d1, d∗2 ≤ d2, . . ., d∗ℓ ≤ dℓ for some
s1 ≤ ℓ ≤ M −1, andd∗ℓ′ < dℓ′ , d∗ℓ′+1 < dℓ′+1, . . ., d∗ℓ < dℓ if
d∗ℓ′ < dℓ′ for some2 ≤ ℓ′ ≤ ℓ. We then consider the following
two cases:

Case 1.ℓ = si, where1 ≤ i ≤ k − 1: As d
∗M
1 ∈ AM ,

we haved∗ℓ+1 ≤ 2d∗ℓ . In this case, we have from (7) that
dℓ+1 = dsi+1 = 2dsi

= 2dℓ. It then follows from the
induction hypothesis that

d∗ℓ+1 ≤ 2d∗ℓ ≤ 2dℓ = dℓ+1.

Furthermore, ifd∗ℓ′ < dℓ′ for some2 ≤ ℓ′ ≤ ℓ, then we have
d∗ℓ′ < dℓ′ , d∗ℓ′+1 < dℓ′+1, . . ., d∗ℓ < dℓ from the induction
hypothesis. As such, it follows that

d∗ℓ+1 ≤ 2d∗ℓ < 2dℓ = dℓ+1.

Case 2.ℓ = si + j, where1 ≤ i ≤ k − 1 and 1 ≤ j ≤
ni+1 − 1: Consider an integerx, where0 ≤ x ≤ d∗si+j+1 − 1.
As si + j + 1 ≤ si + ni+1 = si+1, we have from (23) that

x ≤ d∗si+j+1 − 1 ≤ d∗si+1
− 1

≤ d∗s1
+ d∗s2

+ · · · + d∗si+1

= B(d∗si+1

1 ; i + 1).

As such, all the integers0, 1, . . . , d∗si+j+1−1 are representable
by using at mosti + 1 of the si+1 integersd∗1, d

∗
2, . . . , d

∗
si+1

by using theC-transform.
We claim that

d∗si+j+1 − 1 ≤ d∗si+j + B(d∗si

1 ; i). (27)

If d∗si+j+1−1 < d∗si+j , then there is nothing to prove. On the
other hand, ifd∗si+j+1 − 1 ≥ d∗si+j , then consider an integer
x, where d∗si+j ≤ x ≤ d∗si+j+1 − 1. According to theC-
transform,d∗si+j+1, d

∗
si+j+2, . . . , d

∗
si+1

will not be used in the
representation ofx, but d∗si+j will be used. As a result, the
integerx−d∗si+j , where0 ≤ x−d∗si+j ≤ d∗si+j+1−d∗si+j −1,
is representable by using at mosti of the si + j − 1 integers
d∗1, d

∗
2, . . . , d

∗
si+j−1 by using theC-transform. This implies that

d∗si+j+1 − d∗si+j − 1 ≤ B(d∗si+j−1
1 ; i) = B(d∗si

1 ; i),

whereB(d∗si+j−1
1 ; i) = B(d∗si

1 ; i) follows from (21).
From (27), (23), and the induction hypothesis, we have

d∗si+j+1 ≤ d∗si+j + B(d∗si

1 ; i) + 1

= d∗si+j + d∗s1
+ d∗s2

+ · · · + d∗si
+ 1

≤ dsi+j + ds1
+ ds2

+ · · · + dsi
+ 1. (28)

As 1 ≤ j ≤ ni+1 − 1, we have2 ≤ j + 1 ≤ ni+1. It then
follows from (28) and (7) that

d∗ℓ+1 = d∗si+j+1

≤ dsi+j + ds1
+ ds2

+ · · · + dsi
+ 1

= 2dsi
+ (j − 1)(ds1

+ ds2
+ · · · + dsi

+ 1) + ds1

+ds2
+ · · · + dsi

+ 1

= 2dsi
+ j(ds1

+ ds2
+ · · · + dsi

+ 1)

= dsi+j+1 = dℓ+1.

Furthermore, ifd∗ℓ′ < dℓ′ for some2 ≤ ℓ′ ≤ ℓ, then we have
d∗ℓ′ < dℓ′ , d∗ℓ′+1 < dℓ′+1, . . ., d∗ℓ < dℓ from the induction
hypothesis. As such, the inequality in (28) becomes a strict
inequality and it then follows that

d∗ℓ+1 < dℓ+1.

(v) Finally, we show thatd∗ℓ = dℓ for all ℓ = 1, 2, . . . , M .
From (23) andd∗ℓ ≤ dℓ for all ℓ = 1, 2, . . . , M in (iv), we
have

B(M, k) = B(d∗sk

1 ; k) = d∗s1
+ d∗s2

+ · · · + d∗sk

≤ ds1
+ ds2

+ · · · + dsk
. (29)

From the definition ofB(M, k) in (19) and from Theorem 5,
we have

B(M, k) = max
hM

1
∈AM

B(hM
1 ; k)

≥ B(dM
1 ; k) = ds1

+ ds2
+ · · · + dsk

. (30)

As such, it follows from (29) and (30) thatB(M, k) = ds1
+

ds2
+ · · ·+dsk

andd∗si
= dsi

for all i = 1, 2, . . . , k. This leads
to d∗ℓ = dℓ for all ℓ = 1, 2, . . . , M . Otherwise, we must have
d∗ℓ′ < dℓ′ for some2 ≤ ℓ′ ≤ M , and it follows from the results
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in (iv) that d∗ℓ < dℓ for all ℓ = ℓ′, ℓ′ +1, . . . , M . In particular,
we haved∗sk

= d∗M < dM = dsk
, and a contradiction is

reached. This shows thatd∗M
1 = d

M
1 ∈ GM,k and we have

completed the proof that every optimal construction is a greedy
construction.

V. CONCLUSION

In this paper, we considered the constructions of optical
queues by using optical Switches and fiber Delay Lines (SDL)
with a limited number of recirculations through the fibers.
Such a limitation on the number of recirculations comes from
practical feasibility considerations, such as crosstalk,power
loss, amplified spontaneous emission (ASE) from the Erbium
doped fiber amplifiers (EDFA), and the pattern effect of the
optical switches.

We first transformed the design of the fiber delays in
such SDL constructions to an equivalent integer representation
problem. We then gave a class of greedy constructions for
the M -sequencedM

1 in the equivalent integer representation
problem, and obtained an explicit recursive expression forsuch
anM -sequencedM

1 and for the corresponding maximum rep-
resentable integerB(dM

1 ; k). Finally, we showed that an opti-
mal construction that achieves the largest possible maximum
representable integer can be given by a greedy construction.
The results can be applied to the constructions of optical 2-to-
1 FIFO multiplexers with a limited number of recirculations,
and we showed that the complexity of searching for an optimal
construction can be greatly reduced from exponential time to
polynomial time by only considering the greedy constructions
instead of performing an exhaustive search. Similar results can
be obtained for linear compressors and linear decompressors
with a limited number of recirculations.
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