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Abstract— Recently, there has been a lot of attention on the
constructions of optical queues by using optical Switches and
fiber Delay Lines (SDL). In this paper, we consider the construc-
tions of optical queues with a limited number of recirculations
through the fibers in such SDL constructions. Such a limitation
on the number of recirculations comes from practical feasibility

considerations, such as crosstalk, power loss, amplified sponta-

neous emission (ASE) from the Erbium doped fiber amplifiers
(EDFA), and the pattern effect of the optical switches.

We first transform the design of the fiber delays in such SDL
constructions to an equivalent integer representation problem.
Specifically, given1 < k < M, we seek for an M-sequence
dM (di,d2,...,dy) Of positive integers to maximize the
number of consecutive integers (starting from 0) that can
be represented by theC-transform relative to d? such that
there are at most & 1-entries in their C-transforms. Then we
give a class of greedy constructions so thafy,ds,...,dy are
obtained recursively and the maximum number of representable
consecutive integers by usingli,ds,...,d; is larger than that
by using di,ds,...,d;—1 for all . Furthermore, we obtain an
explicit recursive expression fordy, ds, ..., dy given by a greedy
construction. Finally, we show that an optimal M-sequence (in

the sense of achieving the maximum number of representable

[11]-[16], buffered packet switches in [6]-[7], FIFO queues
in [17]-[19], Last-In First-Out (LIFO) queues in [19], priority
gueues in [20]-[22], and linear compressors, non-overtaking
delay lines, and flexible delay lines in [23]-[24].

However, there are some important practical feasibility is-
sues of concern that need to be addressed in the SDL construc-
tions of optical queues. As pointed out in [26]—[28], crosstalk
due to power leakage from other optical links, power loss
experienced during recirculations through the optical switches
and the fiber delay lines, amplified spontaneous emission
(ASE) from the Erbium doped fiber amplifiers (EDFA) that
are used for boosting the signal power, and the pattern effect
of the optical switches, among others, lead to a limitation on
the number of times that an optical packet can be recirculated
through the optical switches and the fiber delay lines. If such
an issue is not taken into consideration during the design of
optical queues, then for an optical packet recirculated through
the optical switches and the fiber delay lines for a great number
of times, there is a good chance that it can not be reliably

consecutive integers) can be given by a greedy construction. Thefecognized at the destined output port due to severe power

solution of such an integer representation problem can be applied
to the construction of optical 2-to-1 FIFO multiplexers with a
limited number of recirculations. We show that the complexity
of searching for an optimal construction can be greatly reduced
from exponential time to polynomial time by only considering the
greedy constructions instead of performing an exhaustive search.
Similar results can be obtained for linear compressors and linear
decompressors with a limited number of recirculations.

I. INTRODUCTION

loss and/or serious noise accumulation even if it appears at the
right place and at the right time. As such, SDL constructions of
optical queues with a limited number of recirculations through
the fibers is a very important practical design issue.

For certain optical queues, including 2-to-1 FIFO multiplex-
ers, linear compressors, and linear decompressors, the delay
x of a packet is known upon its arrival and the routing
of the packet is according to thé-transform [13]C(z) =
(I1(x), Iy(z), ..., Irp(2)) (a generalization of the well-known

It is well recognized that one of the most critically soughbinary representation) of the packet delaywith respect to

after technologies in all-optical packet switching is the conhe M-sequenced}!

(di,da,...,dy) of the delays of

structions of optical queues for contention resolution amorge fibers in the queue. For these optical queues, there is a
packets competing for the same resources in the optigabminentroute-onceproperty that says that an optical packet
domain. Recently, there has been a lot of attention in tlean be routed through each fibermost onceSpecifically, if
literature (see e.g., [1]-[25] and the references therein) on théx) = 1 for somel < i < M, then the packet will be routed
constructions of optical queues by using optical Switches attdough thei™ fiber with delayd; once; otherwise, the packet
fiber Delay Lines (SDL) to route the optical packets to the rightill not be routed to the™ fiber. For instance, ifl;(z) = 1
place at the right time so as to achieve exact emulationsfof all i = 1,2,..., M, then the packet will be routed through
the optical queues. These SDL constructions of optical quewesch of theM fibers once.

include First-In First-Out (FIFO) multiplexers in [4]-[6] and The problem arises if there is a limitation on the number



k of recirculations through thé/ fibers due to the practical Il. THE INTEGERREPRESENTATIONPROBLEM

feasibility considerations mentioned aboveklk M, then a e first review theC-transform in [13] for the unique
packet routed through more thanof the M fibers can not representation of nonnegative integers. Thzansform could

be reliably recognized at the destined output port. As such, g regarded as a generalization of the well-known binary

such situations the buffer size (for 2-to-1 FIFO multiplexerghpresentation for the unique representation of nonnegative
or the maximum delay (for linear compressors and linegiegers.

decompressors) is given by theaximum representable integer
B(d}"; k) with respect tod{’ and k, namely, the largest pefinition 1 (C-Transform) [13] Given an M-sequence

positive integer such that each of the nonnegative intege{s! — (4, d,,...,d,,) of positive integers. Thé-transform
not exceeding it has @-transform (with respect td}’) with ¢ 5 nonnegative integer with respect tod is defined as
the number of 1-entries less than or equalktolt follows  the r/-sequenc@(z) = (I1(z), I(2), . .., Ix(z)), where the
that the problem of constructing the delays. da,....dyv  entries I(z), In—1(2), ..., I1(z), in that order, are given

for these optical queues with a limited numberof recir- yecyrsively by
culations through the fibers and with buffer size/maximum

delay B(d}; k) is equivalent to the integer representation Ti(z) = {
problem of constructing ad/-sequencel} with maximum e
representable integd®(d}’; k) with respect tod}! and k.

1, ife— Y0 L(w)d; > di,

: 1)
0, otherwise
Theorem 2 [13] Given an M-sequencel}! of positive inte-

Given1 < k < M. Our first contribution in this paper is A -
of x with respect tod}/ is the

to give a class of greedy constructions for thé-sequence 9€'S- TheC-transformC(x)

dM. An M-sequencel} given by a greedy construction jsunique representation of for all z =0, 1,.. Yl di e,
obtained recursively in a greedy manner so that the maximum M M
representable integer is increased when efdt added to the T = Z I;(z)d;, forall z =0,1,..., Z d;, (2)
already determined,,ds,...,d;_, for all i. Denote the set i=1 i=1

of the M-sequences obtained by such greedy constructionsifgnd only if the following condition in (A1) holds:

Gum k- Then we also ngtam an explicit recursive expression Al) dy = Land1 < dioy < Zi d; +1fori =
for an M-sequenced{” € Gy and for the correspond- 1.9 M—1. J

ing maximum representable integé&(d?; k). Our second U

contribution is to show that the largest possible maximum In Table I, we give theC-transform ofz with respect to
representable integeB (M, k) = maxgmc 4, B(d{; k) that d$ = (1,2,3,5,6,8) for x = 0,1,2,...,25. It can be seen
can be achieved by al/-sequence ind,,, where A, is the from Table | that (2) holds in this case.

set of all M-sequences satisfying the condition in (A2) (in

Section Il) is indeed achieved by avi-sequence gy, 5 (it Ip [13], it was shown thaF un.der a simplt_e packet routing
is shown tha,, 4 is a subset ofd,; in Theorem 5), némely, policy, the feedback system in Figure 1 consisting of &h+

B(M,k) = maxqucg,, , B(dM;k). This implies that an 2) x (M + 2) crossbar switch and/ fiber delay lines with
optimal construction (in the sense of maximizing the bufféfelaysdi < dz < --- < dp can be operated as a 2-to-1 FIFO
size) of an optical 2-to-1 multiplexer with a limited numbefMultiplexer with buffer) ;- d; if and only if the following

of recirculations could be given by a greedy construction. A9ndition in (A2) holds:

such, the complexity of searching for an optimal construction (A2) di =1andd; < d;q <2d;fore=1,2,..., M —1.

is greatly reduced by only considering the greedy constructionde note that the condition in (A2) is stronger than the
when compared to performing an exhaustive search (polyremndition in (Al) as it has been shown in [13] that if
mial time vs. exponential time). Similar results can be obtaineld, ds, . .., dys satisfy the condition in (A2), then they also
for optimal constructions of linear compressors and lineaatisfy the condition in (AL).

decompressors with a limited number of recirculations, andFurthermore, it was shown in [24] that if the condition in
results along this line will be reported separately in the neél) holds, then the construction in Figure 2 by a concate-

future. nation of M scaled optical memory cells with scaling factors
. . . . dy,da, ..., dy (thei™ scaled optical memory cell with scaling
This paper is organized as follows. In Section II, we descnk?%,[or d; in Figure 2 is built by a2 x 2 crossbar switch and

the transformation of the constructions of certain optic%
queues into an equivalent integer representation problem0| erated as a self-routing linear compressor with maximum
detail. In Section Ill, we give a class of greedy constructio eIayZM -
for the M-sequencel} in the equivalent integer representa- Regarﬁhglthe self-routing policy for the above two queues
tion problem, and obtain an explicit recursive expression f%[xppose that the delay of a packet arriving at tifie 0 < ’
such anM -sequencel}! and for the corresponding maximum M . -

: . < > .—.d; and the expression af by the C-transform of
representable intege®(d}’; k). In Section IV, we show that i is Lz di P y
an optimal construction can be given by a greedy construction.

Finally, we conclude this paper in Section V. r=d; +di, +---+d;,, )

fiber delay line with delayl; for i = 1,2,..., M) can be
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TABLE |
THE C-TRANSFORM OFz WITH RESPECT Tod$ = (1,2, 3,5, 6, 8) FOR
z=0,1,2,...,25.
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Fig. 1. A 2-to-1 FIFO multiplexer with buffep" | d;.
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® o O

Fig. 2. A construction of a linear compressor with maximum d&ia/’ | d;

wherel <i; <ip < --- < i < M, then the packet is rou%ed
to the fiber with delayd;, at timet, to the fiber with delay
d;, attimet+d,,,..., and to the fiber with delay;, at time
t+ 25:_11 di-

The problem arises if there is a limitation on the number
of recirculations through thé/ fibers in order to ensure that a
packet can be reliably recognized at the destined output port.
In such situations, the buffer size (for 2-to-1 FIFO multiplex-
ers) or the maximum delay (for linear compressors and linear
decompressors) is given by the largest positive integer such
that each of the nonnegative integers not exceeding it has a
C-transform with the number of 1-entries less than or equal to
k as a packet with delay one more than this largest positive
integer will be routed through more thanfibers and hence
can not be reliably recognized at the destined output port. We
call such a largest positive integer the maximum representable
integer with respect tal}? and k, which is formally defined
below.

Definition 3 (Maximum Representable InteggrGiven an
M-sequenced}! of positive integers and a positive integer
k. The maximum representable integefd’”; k) with respect

to d)’ and k is defined as the largest positive integer such
that each of the nonnegative integers not exceeding it has a
C-transform with the number of 1-entries less than or equal
to k, i.e.,

M
B(d¥; k) :max{y:ZIi(gc) <k, sz,l,...,y}. (4)
i=1

For obvious reasons, we also defifdd}?; k) =0 if M =0
or k=0.

Note that from Theorem 2 we have3(d});k) =
B(AM;M) = YL d, for k > M if dM satisfies the
condition in (Al).

As we are most interested in the constructions of these
optical queues with as large buffer size/maximum delay as
possible, the optimal constructions (in the sense of maximizing
the buffer size/maximum delay) of these optical queues with
a limited number of recirculations through the fibers is equiv-
alent to the integer representation problem of constructing
an M-sequence that achieves the largest possible maximum
representable integer.

In this paper, we focus on a class of greedy constructions
of the M-sequenced! in Section Ill, and show that an
M-sequence achieving the largest possible maximum repre-
sentable intege3(d}/; k) over all dM € Ay, where Ay,
is the set of all M-sequences satisfying the condition in
(A2), could be given by a greedy construction in Section IV.
The results in this paper can therefore be applied to the
optimal constructions of 2-to-1 FIFO multiplexers with a
limited number of recirculations through the fibers. We note
that similar results can be obtained if the maximization of

by a concatenation of/ scaled optical memory cells with scaling factorsthe maximum representable integB(d{”; k) is over all M-

di,dz,...,dp.

sequences satisfying the condition in (A1), and the results can
be applied to the optimal constructions of linear compressors



and linear decompressors with a limited number of recirculbe at least one more thaB(d:™*;2). Again, this is possiB‘Ie
tions through the fibers. by choosingd; = B(d!™*;2) + 1 for i = 4,5,6. It follows
thatdy = B(d3};2) + 1 = 6,d5s = B(d};2) +1 = 10,ds =
B(d};2)+1 = 14. From Table IIl, we see thaB(df;2) = 17,

Suppose that < k < M. In this section, we give a classwhich is larger than 16 in the direct construction above.
of greedy constructions of th&/-sequencel?, and obtain an

IIl. A CLASS OFGREEDY CONSTRUCTIONS

explicit recursive expression fet}? and for the corresponding z || 1(z) | Ia(x) | I3(z) || la(z) | Is(z) | Is(x)
maximum representable integB(d2; k). 0 0 0 0 0 0 0
Consider the case with/ = 6 andk = 2. A direct construc- ; (1) 2 8 8 8 8
tion of dy,ds,ds, d4, ds, dg is to divide the construction into 3 0 0 1 0 0 0
two parts, the construction afy, d2, d3 and the construction 4 1 0 1 0 0 0
of dy,ds,ds, so that there is at most one nonzero entry in 5 0 1 1 0 0 0
. 6 0 0 0 1 0 0
{Ii(z),I2(x), I3(x)} and there is at most one nonzero entry v 1 0 0 T 0 0
in {I4(x), Is(z), Is(x)} for as many consecutive nonnegative 8 0 1 0 1 0 0
integersz as possible. For example, we can choase= 9 0 0 1 1 0 0
1,d2 = 2,d3 = 3 and achieveB(d3;1) = 3. Then we can 1(1) (1) 8 8 8 i 8
choosed, = B(dzl)’,l) +1 =4,d5 = Q(B(d:{’;l) + 1) = 12 0 1 0 0 1 0
8,ds = 3(B(d};1) +1) = 12. For4 < i < 6, it is 13 0 0 1 0 T 0
easy to see that far = d;,d; +1,...,d; + B(d3; 1), there 14 0 0 0 0 0 1
is at most one nonzero entry iif;(x), I>(z), Is(z)} and 15 L 9 0 0 0 L
IS arr y Wi(z), f2(x), I3 6] 0 1 0 0 0 1
there is exactly one nonzero entry {i4(x), I5(x), Is(z)} 17 0 0 1 0 0 1
(specifically, I;(«) = 1). It follows that such a construction
guarantees thaB(d$;2) > dg + B(d$; 1) = 15. Indeed, from TABLE 1l

Table Il we see thaB(d$;2) = 16, which is larger than 15. THEC-TRANSFORM OFz WITH RESPECT Tod§ = (1,2,3,6, 10, 14) FOR
z=0,1,2,...,17.

T Li(z) | L(z) | I3(x) Li(z) | Is(z) | Is(x)

0 0 0 0 0 0 0

1 1 0 0 0 0 0

g 8 é (1) 8 8 8 We can now describe our greedy constructions in a general

i 0 0 5 T 0 5 setting. ForM > 1 and1 < k < M, let ny,ny,...,n; be

5 1 0 0 1 0 0 positive integers such thaEf:lni = M, and letsy; = 0

? 8 é (1) i 8 8 ands; = >.,_,ne for i =1,2,... k. Define a sequence of

5 0 0 ) 5 1 o positive integersly, ds, . .., dys recursively as follows:

]:qO é 2 8 8 i 8 dSij = B(dii+]71; i+ 1) +1, (5)

12 8 8 é 8 é cl) where0 <i < k—1, 1 < j < n;4q. In other words, we divide

13 1 0 0 0 0 1 the construction intak parts. For the(i + 1)th part, where

14 0 1 0 0 0 1 0 < i < k-1, ds,+; is constructed recursively by using

12 8 8 é 2 8 i di,ds,...,dg,+;—1 according to (5) forj = 1,2,...,n41.

For example, in Table IV we provide th&/-sequenced}’

TABLE Il given by (5) for the case with/ = 18, £ = 6, n; = 3,

THE C-TRANSFORM OFxz WITH RESPECT Todfl3 =(1,2,3,4,8,12) FOR ng =5, n3 =2, ng =3, ns = 1, andng = 4.
z=0,1,2,...,16.

7 1 2 3 4 5 6 7 8 9 10
d; 1 2 3 6 10 14 18 22 44 70
i | 11 12 13 14 15 16 17 18

d; | 140 236 337 664| 1328 2420 3512 4604

A better construction, called a greedy construction in this
paper, can be described as follows. We still divide the construc- TABLE IV
tion into two parts as in the direct construction above. For therHEM_SEQUENCEdhdZ’_..’dM GIVEN BY (5) FOR THE CASE WITH
construction ofdy, dy, d3, eachd; is constructed recursively o, o a5 o5 1 AND mg = .
by usingds,ds,...,d;_; that have already been determined
so thatB(d}; 1) is at least one more thaB(d}*; 1), and this
is possible by choosing; = B(di™';1) + 1 for i = 1,2, 3.

Assuchd; = B(d};1)+1=1,dy = B(d};1)+1=2,d3 = After dy,ds, . ..,ds,+; have been determined, the integers
B(d?;1)+1 = 3. As for the construction of,, ds, ds, eachd; 0,1,...,B(d"j*+]_1;z’ + 1) are representable by using at
is also constructed recursively by usidg, ds,...,d;—; that mosti + 1 of the integersd,ds,...,d,, ;-1 according to

have already been determined, but nB\d?; 2) is required to the C-transform (note thatl,,,; > B(d;™~';i + 1) and



henced,,,; is not used in their representations). As w&heorem4 For M > 2 and 2 < k& < M -1, Ie5t
defined,,.; = B(d{™"';i + 1) + 1 in (5), the integer ni,ns,...,n; be positive integers such that, = 1 and
B(d$971i + 1) + 1 is representable by usind, ;. If Y. n; = M. Leti’ = min{2 < i < k : n; > 2}
we choosed,,,; > B(di""/~':i + 1) + 1, then the integer (note thati’ is well defined asn; = 1 and hence there
B(d;"7 71 i+1)+1 is not representable by using at mestl. must exist som& < i < k such thatn, > 2), and let

of the integersly, ds, . .., ds,+; according to the-transform, mi1 = 2, my = mg = -+ = my—1 = 1, my = ny — 1,
and such a choice of,,; will have no use in increasing My +1 = Ny41, Mirg2 = Nirg2,..., M = Ng. Suppose
the maximum representable integer. This is why we defitat di,ds,...,dy are generated by, ny, ..., n; by using

ds,+; = B(d]77 i+ 1) + 1 in (5). Furthermore, ads,+; (5), andhi, ho, ..., hy are generated byny,mo, ..., my by
is used in the representation of the integers not lessdhan  using (5). Thenl, = h, for all £ =1,2,..., M.

and the integers, 1,...,B(d‘ji+j‘1;z‘) are representable by

using at most of the integersiy, ds, ..., ds,+;-1, itis clear proof. See Appendix A. ]

i sitj—1., . . .

that the integersls, ., ds,j +1,..., ds,4; + B(dy"7510) In the following, we illustrate Theorem 4 by giving an ex-
are representable by using at mast- 1 of the integers ample. In Table V, we provide the/-sequence, ds, . . . , das
di,ds,...,ds,+;. As such, our construction guarantees th@tiven by (5) for the case with/ = 18, k = 7, n; = 1

Si | . S j—1_ . H - ! - ! - !
B(d™sit 1) > dSiJrthgd,l 7). Indeed, 'Q,';?EWM ng =1,n3 =1,n4 =3, n5 =5, ng =4, andny = 3. In
below, we show thaB(d;"";i+1) = ds,+;+B(d;"™ 54),  Taple VI, we provide thel/-sequenceii, ho, . .., hys given
i.e., the maximum representable integer is increased Qy (5) for the case Wit = 18, k = 7, my = 2, mo = 1

si+Jj. si+j—1, - _ si+j—1, . ! ! ! !
B(dy5i+1) = B(dy i+ 1) = BT + L mg=1,myg=ng—1=2,ms=n5=>5, mg=ng =4, and

We call such a construction greedy construction. Intu- ,,_ _ - — 3|t can be seen from Table V and Table VI that

itively, it is expected that such greedy constructions possegs— j, for all ¢ = 1,2,..., M.
certain optimal properties. Indeed, in Theorem 9 (in Sec-
tion IV) we will show that every optimal construction (in the >3 7 78 9 10 I

. . . 1
sense of achieving the largest possible maximum representablez 7172 y 8 16 31 62 108 154 200 24k

integer) is a greedy construction. We dengig ;. as the set 7T 12 13 14 1§ 16 17 18
of all M-sequencesl}! given by (5) by using sequences of [[d;[492 784 1076 13682736 4396 7056
positive integersiy, ns, ..., n; such thath:1 n; = M.

Note that forM = 1, we havel; = d, 1 = B(d;1)+1 = TABLE V

1 as B(d?;l) — 0 by definition. ForM > 2 andk = M, THE M-SEQUENCEd1,ds, . ..,dy GIVEN BY (?) FOR THE CASE WITH
we must havem g ==y = 1 and81 _ 1,82 _ M=18,k=7,n1 =1,n2 =1,n3 =1,nq4 = 3, n5 = 5, ng = 4, AND
2,...,8p = M. Asitis easy to see thd®(1,2,...,n;1) =n
for all n > 1, it follows from (5) that

ny = 3.

di =dgyr1 = B(d};1) +1 =1,
dy =dg, 11 =B(d];2)+1=d; +1=2,

5 7 1 2 3 4 5 6 7 8 9 10 11
9 9 d; 1 2 4 8 16 31 62 108 154 200 244
dy = dys1 = B(d};3) +1=) d+1=27, i1 12 13 14 1§ 16 17 18
=1 d; 492 784 1076 13682736 4396 7056
TABLE VI
dy =dsyy_ 41 = B(diw’l; M) +1 THE M-SEQUENCEh1, ho, ..., hps GIVEN BY (5) FOR THE CASE WITH
M-1 M=18,k=7T,m1 =2, ma=1,m3=1,mg =n4 — 1 =2,
:ng+1:2M71, ms =ns =5, mg =ng =4, AND m7 =ny = 3.
/=1
whered; =1, dy = 2,..., d; = 2'~! satisfy the condition

in (A2) for eachi = 1,2,...,M — 1, and we have used the
fact thatB(d};i+1) = B(d};i) = >_,_, d¢. As such, in the
following we only consider the nontrivial case withl > 2
and1 < kK < M — 1. In such a nontrivial case, there mus
exist somel < ¢ < k such thatn; > 2 as otherwise we
will have ny = ng = - =n =1 ande:In,; =k <
M — 1, contradicting to}""_, n; = M. Furthermore, from Theorem5For M > 2 and1 < k < M — 1, let

the following theorem, it suffices to consider only the case ., ni, be positive integers such that, > 2 and
}€ A -

with ny > 2. Siyni = M, and lets, = 0 and s; = 22:1 n, for
i = 1,2,...,k. The M-sequenced} given by (5) can be

In the following theorem, we derive an explicit recursive
expression for theM-sequenced}’ given by (5) by using
ositive integersny, n, ..., ng with S3¥  n; = M, and for
he corresponding maximum representable inte@ed?’; k).



; 6
expressed recursively as follows: letso =0ands; = > ,_, ngfori=1,2,..., k. Suppose that
for somel <i<k—1and0<j <n;1 — 1, the sequence
di,ds, ..., ds,+; is given by (6) and (7), and suppose that

Then we have

dj:jalgjgsla (6)
dSH‘j = 2d5i + (.7 - 1)(d81 + dSz +ee +dsi + 1)’

Furthermore, the)M-sequenced}’ satisfies the condition in - -
(A2), and we have B(di'™;4) = B(dy';4). (13)

B(dﬂl'; D=j, 1<j<si, (8) Proof. See Appendix D. . [ ]
B(dii+j;i+1) = doij + dyy +dy + e+ d,, Proof. (Proof of Theorem 5) Clearly, it follows from (5) that

1<i<k—1,1<j<ni1. (9 di = dg 41 = B(d};1) +1=0+1=1,
dy =dsyso=B(dj;1)+1=1+1=2,

Theorem 5 tells us that if tha/-sequencel? in Figure 1 5
d32d50+3:B(d1,1)+1:2+1:3,

is given by (5), then it satisfies the condition in (A2) and hence

the feedback system in Figure 1 can be opgrated as a 2-to-1

FIFO multiplexer with bufferB(dM: k) = >27_, d,, under ' .

the constraint that each packeg ci’:m b)e rOlJZt:éd 1through at mostlsr = dso+s: = B(d7' B H1= (s - 1)+ 1=,

k of the M fibers by using the packet routing policy in [13].and
We need the following three lemmas for the proof of

Theorem 5. B(dy';1) = s1.

For eachj = 1,2,...,s1, it is easy to see that the sequence

Lemma 6 Let dy,dy,...,d, be a sequence of positive in-d; =1, dy = 2,..., d; = j satisfies the condition in (A2).

tegers satisfying the condition in (A2). Suppose that 0 Therefore, we have proved that (6) and (8) hold.

and ¢ = max{1 < ¢ < n: dy < B(d};i+ 1)}, namely, In the following, we show by induction that (7) and (9) hold,

dp < B(dY;i+ 1) < dpyq if 1 < < n—1, and and the sequencé,,ds,...,ds,; satisfies the condition in

B(d};i+ 1) > d, if ¢ =n. Then we have (A2) forall1 <i<k-—1andl<j<n; . From (5) with
Bl 1) = Bl i+ 1) = o — B(d{;iJr 3 :'“:/el andj = 1, and from (11) withi = 1 andj = 0, we
= dy + B(d; " ';4). (10) door = B(d:2) 41
Proof. See Appendix B. [ =d,, + B 1) +1
We remark that the condition thét = max{l1 < ¢ < n: —dy, +(dy, —1)+1

dy < B(d};i+1)} is essential for the relatioB(d7;i+1) =
dy + B(d” ;%) in Lemma 6 to hold. IfB(d};i + 1) < dy, = 2ds,,
then obviously it is impossible thaB(dY;i + 1) = dv + whereB(dj'~';1) = s; — 1 = d,, — 1 follows from (8) and
B(d!{ ~';4). So at least we need the condition tti2¢d};i + (6). Therefore, (7) holds foi = 1 andj = 1. It then follows
1) > dy. Even if B(dT;i 4+ 1) > dy, it is not always true from Lemma 7 that the sequendg,ds,...,ds, +1 satisfies
that B(d7;i4+1) = de +B(d’f‘1; i) as can be seen from thethe condition in (A2), and
following counterexample: fotl; = 1, ds = 2, d3 = 4, and o141 s
di — 8, we haveB(d%:2) = 6 > dp and B(d1: 1) = 1, but BT 32) = daya + Bd'i1) = dyya +
B(d};2) # do+B(d}; 1); however, we havés < B(d};2) < where B(d';1) = s; = d,, follows from (8) and (6). As
ds and B(d};1) = 2, and henceB(d;2) = ds + B(di;1).  such, (9) also holds foi=1 andj = 1.

Now assume as the induction hypothesis that (7) and (9)
Lemma 7 ForM >2andl1 <k < M-1,letny,ns,...,n, hold up to somel <i <k—-1andl < j < n;y1, where
be positive integers such tha > 2 and Zle n; = M, and s; +j < M, and the sequencé,ds,...,d,,+; satisfies the
let s = 0ands; = >,_,ne for i = 1,2,... k. Suppose condition in (A2). We need to consider the following two
that for somel <i <k —1and0 < j < n;,1, the sequence cases:
di,ds,...,ds,+; is given by (6) and (7). Then the sequence Case 11 < j <n;;1—1: Inthis case, we have < j+1 <

di,da, ..., ds,+; satisfies the condition in (A2), and we haver;+1. It follows from (5) and the induction hypothesis that
B(d7 i+ 1) = dy, 45 + BAT 7). (11) ds,rje1 = B 5i+1) +1
=dg,yj+de +dey 4+ +ds, +1
Proof. See Appendix C. [ ] + ' :

:2d5i+(j_1)(d51 +d82+"'+d5i+1)

Lemma 8 For M >2andl < k < M —1, letny,na, ..., nk tds, +ds, + -+ ds, + 1
be positive integers such thag > 2 and Zle n; = M, and =2ds;, + j(ds, +ds, + -+ +ds, +1).



We then have from Lemma 7 that the sequence IV. AN OPTIMAL CONSTRUCTION IS AGREEDY
di,ds, ..., ds,+j+1 satisfies the condition in (A2), and CONSTRUCTION

B(dS i+ 1) = dy i1 + B(d5H). (14 ForM >1andl <k < M, let B(M, k) be the the largest
‘ possible maximum representable integefd}’; k) over all
As it is easy to see from the induction hypothesis that (13 c A,,, i.e.,
holds up toi, it follows from (14),1 < i< k—-1,1<j < v
n;4+1 — 1, and Lemma 8 that B(M, k) = d?ﬁi(k, B(d;"; k). (19)

sitj+1, _ . si+i. .
B(d; yit 1) =ds, 4541 + By ) We call the construction of an/-sequencal*’ e A, an

= ds,+j4+1 + B(d}';4) optimal construction if B(M, k) = B(d*}"; k).
=dg, 1jr1+ds, +dgy + -+ ds,. In the following, we will show that every optimal construc-
tion is a greedy construction. Note that féf = 1, the only
Case 2.j = n;41: Note that as we assume tht+ j = sequence satisfying the condition in (A2)ds = 1, which

sit1 < M, we havei < k —2 in this case. In this case, s also the only sequence generated by (5) as we have shown
we haves; +j + 1 = si11 + 1, and it follows from (5), the iy section Iil. As there is only one construction in this case,
induction hypothesis, and Lemma 7 that the optimal construction is also the greedy construction. For

dyy 1 = B30 +2) +1 M > 2andk = M, it *IS easy t*o see th;at the 2optlmal

sip1—1 . construction is given byl = 1, d5 = 2, dy = 2°,...,
= ds,;, + B(d, i+1)+ 1 (19) di; = 2M~1 In this case, we have shown in Section IlI that
_ _ _ 92 _ oM-—1; H

If niy1 = 1, thens,.1 — 1 = s;. As such, we have from the @ = 1. d2 = 2,d3 = 2%,..., dpy = 27" is the only possible

i+1

induction hypothesis, Lemma 7, and (5) that sequence generated by (5), and it then follows that the optimal
construction is also the greedy construction. As such, in the
B i+ 1) +1=B(di+1)+1 following theorem we only consider the nontrivial case with
=d,, +B(d i)+ 1 M >2andl < k < M — 1, and show that every optimal
=d,, + (ds, — 1) + 1 construction is a greedy construction.
= 2dy,. (16)

Theorem 9 Let M > 2 and1 < k < M — 1. Suppose that
As we also havel, ., = 2d,, from the induction hypothesis, B(M, k) = B(d*1'; k) for somed*}" € Ay. Thend*}' €

it follows from (16) ands; 1 = s; + 1 that Gum i In other words, every optimal construction is a greedy
construction.

B i+ 1) +1=2d,, =dg, 41 =d 17)

. - Theorem 5 implies that an optimal constructidri]’ in
On the other hand, if;4, > 2, thenn;y; —1>1and ffom  gigyre 1 that achieves the maximum buffer size among
the induction hypothesis we have (B(aM;k) : d¥ e Ay} could be given by a greedy
B(dii+1—1;i+1)+1 constructiqn, namelyd* € G . F_rom [15], we knqw
_ B(dsq+m+1—1_i 1) 41 that the size quM grows at least witr2*—! (exponential
1 ’ growth). Also, it is easy to see that the numbekefequences

= dsi+ni+171 +dsl +d52 + - +d87, +1 (nl,ng,...7nk) with n > 2,ny > 1,....np > 1 and
=2, + (nig1 — 2)(ds, +doy + - +ds, +1) S ni = M is given by (4’~2). It follows that the size of
tdy, +dg, -+ ds, +1 G, grows at most witi{ M —2)k~1 (polynomial growth). As

such, the complexity of searching for an optimal construction

=2, + (i1 = 1)(dsy +doy +--- sy + 1), can be greatly reduced from exponential time to polynomial

= dsipnigy = dsiyy- (18) time by only considering the greedy constructions instead of
By combining (15), (17), and (18), we have performing an exhaustive search. N . .
o Proof. (Proof of Theorem 9) We divide the proof into five
dsi+1+1 = d8i+1 + B(di1+1 57/ + 1) + 1 = 2d$i+17 partS

(i) First we show thaB(M, k) > d},. Suppose on the con-

Jary that B(M, k) < dj;. Clearly, B(M, k) = B(d*): k) >
T = d:. Therefore, we haveli < B(d*M;k) < d%, and it
follows that there exists afl, wherel < ¢ < M — 1, such
B(dii+1+1;i +2) = da,. i1 + B(dii+1;i +1) that dj, < B(]\{, k)£< d;’-',—l' p 4 ( Viop

_ Leth,=d; for/=1,2,...,¢,andh, = B(M,k)+/{—

= ot T dsy F sy +oHdyy sy for ¢ = ¢ +él,£’ +2,...,M. We claim thath} ¢ A,,.
where B(d"*";i + 1) = dy, +ds, + -+ + ds, + ds,,, Sinced*)’ € Ay, we haved] = 1 anddj < dj; < 2d;
follows from the induction hypothesis. We have completeldr ¢ = 1,2,...,M — 1. As such, it follows fromh, = d;
the induction and the theorem is proved. m for/=1,2,...,¢ thathy = 1 andhy < hy1 < 2hy for

which is the desired result.
Again, we have from Lemma 7 that the sequen
dy,dy, ..., ds, 41 satisfies the condition in (A2), and
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(=1,2,...,0/—1.Fromd;, < B(M, k) < dj, ., anddy, ., < (iif) We claim thats; > 2. Suppose on the contrary that
2d;,, we have s1 = 1. We will show by induction on thats; = 4 for all
i = 1,2,...,k. As such, it follows fromk < M — 1 that

, — > */ */ — , D) ) 1 =
hepr =B(M k) +12 di +1> Ci’v’ he, sy = k # M, and we have reached a contradiction.

hyp1=B(M, k) +1 < djy <2djy = 2hy. Assume thats; = 1, s = 2,..., s; = i for somel < i <
This leads tohy < hyyq < 2he. It is also easy to see from & — 1. Note thatsiiy > s; +1 =1+ 1. Suppose that;,, >
he = B(M,k)+£—¢ for ¢ = ¢ + 1,0/ +2,...,M that ¢+2 Thensii; —1>i+1anddi,,, di,,,....d; o Wil
hos1 = he+1for 6 =0 + 1,0/ +2,...,M — 1, and hence Not be used in the representation of an integer less dhan

he < hest <2hgfor6=0+1,0+2,...,M—1. by using theC-transform. Asd; = 1 andd; < dj,, < 2d;
Fromd;, < B(M,k) = B(d*{';k) < d;,,, for some1 < for¢=1,2,....M —1, we have
¢ < M —1, Lemma 6, anchy = dj for ¢ =1,2,...,0, we .

<odf =df +d
<dit2di, =di +diy +d_,
< diy +2d),

have i+l
B(M,k) = B(a*}"; k) = B(d*{;k) = B(h{; k).

It follows that the integer9,1,2,...,B(M,k) are repre-

sentable with at most of the ¢’ integershq, ha, ..., hy by :

using theC-transform. AsB(M, k) < hyy11 = B(M,k) + 1 <di+di_+---+d5+2d)
andhgp 11 < hpgg < - < hp herv1, hego, ... by Will not = B( *117Z> +1,

be used in the representation of the inteders . .., B(M, k)

by using theC-transform. As such, we havé(h}’; k)
B(M, k). Furthermore, the integer, where B(M, k) + 1

where the equality follows from (23) and =1, s =2,.. .,
s; = i. This implies that the integer8, 1,...,d;,, — 1 are
x < B(M,k)+ M — ¢, is representable by, _ g i)1e representable by using at mostof the s;.; — 1 integers
(x = B(M,k) +0) + B(M,k) = ¢ = z asl +1 1.d3,....d;, 1 by using theC-transform. Furthermore,

a—B(M, k)+¢' < M. Combining withB(hi’; k) > B(M,k) 4z, is clearly representable, implying tha(d*;**~";i) >

IN ATV

leads toB(h’; k) > B(M, k) + M — ¢’ > B(M, k). d}, . As a result, we have from (22) that > i + 1, contra-
As a result, we have dicting to the induction hypothesis that = i. Therefore, we

B(M,k) = max B(d{”; k) > B(h{”; k) > B(M, k), mu_st haves; 1 =i+ 1, and the inductiqn is completed.
dMeAn (lV) Let s =0 andn; = s; — s;_1 fori = 1,2,..., k, and

and we have reached a contradiction. letd,,ds, ..., dy be the sequence generatedhyns, ..., ng
(i) From B(M,k) = B(d*M;k) > d%, in (i) and by using (5). In the following, we show by induction dnh
Lemma 6, we haV%(d*Zl\/[,k) _ d7\4 + B(d*]l\/[_l,k _ 1) that dz < dy for all é =1,2,..., M, and dz < dy for all
Let s, — M, then we have C=0.0'+1,...,Mif dj, < dy for some2 < ¢ < M (note
thatd; = d; = 1).

B(d**;k) = d;, + B(d"{ 7k - 1). (20)  From the definition ofB(d*$2~!;1), it is not difficult to
Let see thatB(d*$*>~'; 1) = d},, where
Sp—1 =max{l <l <sp—1: dZSB(d*ik_l;k—l)}, U=max{2<l<sy—1:dy—dj <1, d5—d5<1,...,

then it follows from Lemma 6 that dp —dy_y <1}.(24)
B Nk —1)=B(@ %k —1) In other words,?’ is the largest index if2,3,...,s2 — 1}
such that the difference betwedjp andd;_, is at most one
: forall/=2,3,...,¢. (Note that/’ is well defined as we have
= B(d** 'k —1) s9—12> s > 2from (i) and &5 —dy < 2d} —d} =dj =1.)
—1— If 2 < ¢ <sy—2,thend}, , —d} > 2 and hencel;, ,, >
= d* B(d*5 ! 1k—2 ) > > S2 , 01 v = o1 =
s T BT ’ ) di +2 = B(d*> 1) +2 > B(d*>"';1). On the other
By repeating the above procedure for- 1 times, we have hand, we haveB(d*irl; 1) =d;, , if £/ =5, —1. As such,

wSig1—1 o N wSi - it follows from (22) thats; = ¢’. Asd} = 1 and the difference
B(d, i) = B*(d ! *;Z_); = B(d"1'37) betweend; andd;_, is at most one foX = 2,3,...,s;, we
=d;, +B(d"" i—1), (1) then have fromi, = ¢ for £ = 1,2,...,s, in (6) that
where

Ay <l=dy, 0=1,2,... 5. (25)

i = 1<l<sip—1: df <B*5 7 h0)), (22

si = max{l < £< si (s Bl 0k (22) Furthermore, ifd;, < dy = ¢’ for some2 < ¢’ < s, then
fori =1,2,...,k—1. From (20) and (21), it is easy to deduce ) ) )

by induction oni that dp <dp + (=) <l +({=0)=Ll=dy, (26)

B(d*{'i) =di, +di, +---+di, i=12,...,k. (23) forall{=/00'41,...,5;.



We have proved in (25) and (26) théit < d, d < da,..., follows from (28) and (7) that

d;, < ds,, anddy < dy, djy < dpyr,... di < d, if g =
dj < dy for some2 < ¢’ < s;. Now assume as the induction “¢+1 = Psiti+1
hypothesis thatl; < di, dj < ds,..., d; < d, for some <dsqjtds, +ds, +--+ds; +1
s1 <l < M-1, andd;f, < dy, d;furl < dpi1y-- dz < dg if =2d,, + (] — 1)(dsl +dg, + -+ ds, + 1) +ds,
d; < dy for some2 < ¢’ < {. We then consider the following tdy, + o+ dy, + 1
two cases: ) :
Case 1.0 = s;, wherel < i < k—1: As d*M € Ay, =2dy; +5(dsy +ds, -y +1)
we haved;,, < 2d;. In this case, we have from (7) that = ds; i1 = deyr.
dep1 = ds;p1 = 2ds, = 2dg. It then follows from the gy rhermore, ifd}, < dp for some2 < ¢ < ¢, then we have
induction hypothesis that dj, < dy, djiyy < dpya,..., dj < dg from the induction
hypothesis. As such, the inequality in (28) becomes a strict
iy < 2dy < 2dg = dpyr inequality and it then follows that
Furthermore, ifd}, < d, for some2 < ¢’ < ¢, then we have diyq < detr-

dj < dg, dj . < dpya,..., dj < dg from the induction

k : Finally, h hatl; = d, forall £ =1,2,..., M.
hypothesis. As such, it follows that (v) Finally, we show thati; = dy for all ¢

From (23) andd; < d, for all ¢ = 1,2,...,M in (iv), we

. . have -
d[+1 S 2dz < 2d( = dEJrl.

B(M,k):B(d*i’“;k):d;+d;‘2+-~-+d;‘k
Case 2./ = s; +j,wherel <i<k—1landl <j < <dg, +dg, + -+ ds,. (29)

ni+1 — 1: Consider an integer, where0 <z <dj ;. —1. o )
AS s; 4+ j +1 < 8 +nie1 = si11, We have from (23) that From the definition ofB(M, k) in (19) and from Theorem 5,

we have
r<dg i —1<d;,, —1 B(M,k) = max B(hM; k)
< d:l + d; 4+ d:iﬂ hy 63\441%
= B4, > BN ) = doy s+ oo+ (30
As such, it follows from (29) and (30) tha (M, k) = ds, +
As such, all the integer® 1, ..., d; | ;,, —1 are representable 4, 4...4d,, andd: =d,, foralli=1,2,..., k. This leads
by using at most + 1 of the s;, integersd;,d3,...,d; . tod; =d, for all ¢ = 1,2,..., M. Otherwise, we must have
by using theC-transform. i, < dy for some2 < ¢/ < M, and it follows from the results
We claim that in (iv) thatd; < d, forall ¢ =¢',¢'+1,..., M. In particular,
we haved;, = d), < dy = d,,, and a contradiction is
di o — 1< di ;4 B(d50). (27) reached. This shows that'}’ = d ¢ Gy, and we have
completed the proof that every optimal construction is a greedy
If di, ;1 —1<d;, ,, then there is nothing to prove. On theconstruction. u
other hand, ifd;, ,;,, —1 > d5,;, then consider an integer V. C
xz, whered! , < x < d! ., — 1. According to theC- - CONCLUSION
transform,d; , ;.y,d% (4, --,d;,,, Will not be used inthe  In this paper, we considered the constructions of optical

representation of, butd;, . . will be used. As a result, the queues by using optical Switches and fiber Delay Lines (SDL)

integerx—d:ﬁj, where0 < r—di  <di g —di -1, with a limited number of recirculations through the fibers.
is representable by using at masof the s; +j — 1 integers Such a limitation on the number of recirculations comes from
1,d5, ..., d;, ;1 by using theC-transform. This implies that practical feasibility considerations, such as crosstalk, power
loss, amplified spontaneous emission (ASE) from the Erbium
Ay —diy—1< B(d*i"“’l;z’) = B(d*$';4), doped fiber amplifiers (EDFA), and the pattern effect of the
optical switches.
WhereB(d*iiﬂ‘fl;i) = B(d*$';4) follows from (21). We first transformed the design of the fiber delays in

such SDL constructions to an equivalent integer representation
problem. We then gave a class of greedy constructions for

&5 <df L+ B 4+ 1 the M—sequencai{? in the eql_Ji\_/aIent in_teger repre_sentation
sititl = Tsity L problem, and obtained an explicit recursive expression for such

=dg gy tdy Hdg, + -+ dg + 1 an M-sequencel)’ and for the corresponding maximum rep-

<dg+;+ds, +ds, +-+ds, +1.  (28) resentable integeB(d}?; k). Finally, we showed that an opti-

mal construction that achieves the largest possible maximum
As1l < j<mni1—1, we have2 < j +1 < n;yy. It then representable integer can be given by a greedy construction.

From (27), (23), and the induction hypothesis, we have
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The results can be applied to the constructions of optical 2-to-Now assume as the induction hypothesis that hy,ds =

1 FIFO multiplexers with a limited number of recirculationshs, . .

.,dg = hy for somesy 1 +2 < £ < M —1. We need

and we showed that the complexity of searching for an optimal consider the following two cases:

construction can be greatly reduced from exponential time toCase 1./ = s;;_1 + j, where2 < j < n; — 1: In this case,
polynomial time by only considering the greedy constructionse have from3 < j + 1 < n; and (5) that

instead of performing an exhaustive search. Similar results can

be obtained for linear compressors and linear decompressors

with a limited number of recirculations.
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APPENDIX A
PROOF OFTHEOREM 4

We will show by induction or¢ thatd, = h, for all £ =
1,2,...,M.Letsp=0ands; = > ,_ nefori=1,2,... k.
Then we have; =ifori=1,2,...,¢—1ands; >4 +1as
from the definition ofi’ we haven, =ny=---=ny_1 =1
andn; > 2. It follows from (5) that

dy =dsy41 = B(d%1) +1=1,
dy = ds, 41 = B(dj;2) +1=dy +1 =2,

2
d3 = dgy1 = B(d};3) + 1= Zdz +1=22%
=1

i'—1
dy =ds, 1 =B(d] L) +1=> d+1=2""
=1

di’+1 = dsi'—1+2 = B(d,il,’ll) +1= Zd( + 1= 2i/.
=1

Letto = 0 andt; = > ,_, my for i = 1,2,..., k. Then we
havet; =t +1=s;+1fori=1,2,...,9 — 1, andt; = s;
fori=1,i+1,..., k. As such, it follows from (5) that

hi = hyyy1 = B(h{;1) +1 =1,

hy = hyy1o = B(h};1)+1=hy +1=2,

2
hs = ht, 41 = B(hi;2) + 1 = Zhe-i-l =22
=

hi =he, 41 =Bl 5 —1)+1
i —1

=> he+1=2"""
(=1

higr =he, 11 =B +1=> h+1=2".
=1
As such, we havel; = hqy,ds = ho, ...
(note thati’ + 1 = s 1 + 2).

adsi/,1+2 = hsi/,1+2

dey1 =ds,,_ 1541
=B} i) +1

= B(d4; i) + 1. (32)

-1 +1,2<5<ny—1=my, (5), and the
duction hypothesis, we have

hevr =hsy 4jr1 = hey 45

= BTy 1= Bm ) 1

= B(h{;7) +1 = B(d%;i) + 1. (32)

As such, we have from (31) and (32) thét., = hyys.

Case 2./ = s; +j, wherei’ < i< k—-1and0 < j <
n;y+1 — 1: In this case, we haveé < j+1 < n;yq, and it
follows from (5) that

dpp1 = ds, 441
=Bdy;i+1)+1

=B(di+ 1)+ 1 (33)

Fromt¢, = s;, 1 < j+1< Ni41 = M4i41, (5), and the
induction hypothesis, we have

het1 = hs,jr1 = he 1541
=BMh{™;i+1)+1=Bh";i+1)+1

=BMhii+ 1) +1=DB(di+1)+1. (34)

It then follows from (33) and (34) thaiy.; = hyyi. This
completes the induction and the theorem is proved.

APPENDIXB
PROOF OFLEMMA 6

If 1 < ¢ < n—1, then we haved, < B(d};i +
1) < dpg1. As dpy1 < dpys < --- < d,, the integers
dpry1,dp 42, ..., d, Will not be used in representations of the
integers0, 1,2, ..., B(d}; i+ 1) according to the-transform,
and it follows thatB(d};i +1) = B(d} i+ 1) = --- =
B(dY';i+1). As such, in this case we has&(d!’;i+1) > dy
and we need to show tha(d!';i + 1) = dp + B(d! ;i)
which is exactly the same as that for the case with=
n. Therefore, in the following we assume without loss of
generality thatB(dy;i + 1) > d,, and show that
B(dy;i+ 1) = d, + B(d}10). (35)
Note that (35) holds trivially forn = 1 asd; = 1,
and B(d};i + 1) = 1 and B(d%;i) = 0 for all i > 0.
So we assume that > 2 in the rest of the proof. If
i = 0, then from B(d};¢ + 1) = B(d{;1) > d, it
is easy to deduce thaB(d};1) = d,, as we also have



B(d}; 1) < max{dy,ds,...,d,} = d,. As such, it follows
from B(d}~';4) = B(d}™;0) = 0 that

B(d};1) =d, = d, + B(d}™1;0).

Therefore, we can further assume that 1 in the rest of the
proof.

11
= dSl + dSQ +eee At dsi//,l +1- 2d57//71

_(ni” — 1)(d51 + d52 + M + dsi,,71 + 1)
—2d <0.

Sy >

<

Case 3/ =sy +j,wherel < <i—1land2 < j <
ny 1 — 1: In this case, we hav8 < j'+ 1 < nyy; and it

Since B(dy;i + 1) > dyn, dy is used in the representationfq|iows from (7) that

of the integerz, whered,, < = < B(d};i + 1), by using the
C-transform. As a result, the remaining value- d,, mustbe
represented by using at masbf the integersiy, ds, ..., d,_1
by using theC-transform. A0 < z—d,, < B(d};i+1)—d,,
we deduce from the definition aB(d? ;i) that B(d};i +
1) —d, < B(d}Y40), ie, B(dYi+1) < d, + B} Y4).
To complete the proof, we need to show tliid?};i+1) >
dn + B(d}~Y;4). Since B(d};i + 1) > d,,, we only need to
show that an integex, whered,, < =z < d,, + B(d?*l;i),
is representable by using at most+ 1 of the integers
dy,dso, ..., d, by using theC-transform. According to thé€-
transform,d,, is used in the representation of the integer
whered, < = < d, + B(d}"%4). As0 < x —d, <
B(d?*;4), we have from the definition aB(d’' ;) that the

remaining valuer — d,, can be represented by using at mosgg

i of the integersdy, do, . ..
This completes the proof.

,d,_1 by using theC-transform.
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(i) First we show that the sequendeg,ds,...,d,+; sat-
isfies the condition in (A2). From (6), we havk = ¢ for
1 < /¢ < sq, and it is easy to verify thad; = 1 andd, <
dorq1 <2dy for£=1,2,...,s — 1. In the following, we will
show thatd, < dpy1 < 2dy forl=s1,81+1,...,8,+j— 1.
We need to consider the following four cases:

Case 1/ = s;;, wherel <4 < i—1: In this case, we have

from (7) thatdy, 1 = ds,+1 = 2ds, = 2d,. It then follows
thatdy < dyy1 < 2d,.

Case 2.0/ = sy + 1, wherel <4 <i—1: If nyyq =1,
then? = s;; +1 = s;41 and we havel, < dy4+1 < 2d, by the
same argument as in Case 1. On the other hand, if; > 2,
then leti” = max{1 <i < : n; > 2} (note that:” is well
defined as we have assumed that> 2). From (7), we have

d£+1 - dé - dSi/JrQ - dSi/Jrl
=ds, +dsy, +---+ds, +1>0.
From (7),7Li//+1 =Ngrrgg = -0 =Ny = 1, andn;» > 2, we
have

dé+1 - 2d€ = dSi/+2 - 2d5i/+1

:dsl +d52 +"'+ds,i/ +172dSL/

- d31 + d52 + -+ dsi/71 + 1-— dsi/

= dsl + d52 ++ dsi/_l +1-— 2dsi/_1
—(ng —1)(ds, +dsp +---+ds,_, +1)

= d51 + d52 + -+ dsi/71 + 1-— 2dsi/71

dev1 —dp = ds,, 1141 — ds, 140
:dsl +d32+"'+dsi/ +1ZO7

and

doy1 —2dg = ds 1y 11— 2ds, 4
—2d,, — (j' = 2)(ds, +dsy +---+ds, +1)
< -2d,, <0.

Case 4/ = sy +j', wherei’ = ¢ and0 < 5/ < j—1: In this
case, we also havé, < d,11 < 2d, by the same arguments
asforl <i <i—1and0<j <nyiq—1in Cases 1to 3.
(i) Now we show thatB(dj ;i + 1) = ds4; +
(d¥**771. 7). We consider the two cases= 0 and 1 <
j < mn;y1 Separately.

Case 1.j = 0: From (5), we havel,, = B(d}"';i) + 1.

As such, it follows from the definition oB(d$*~*;4) that an
integer0 < z < d,, — 1 is representable by using at most
i of the integersd;, ds, ..., ds,—1 by using theC-transform.
As d,, will not be used in the representation of an integer
less thand,, according to the-transform, it then follows that
B(dj;i+1) >ds, — 1.

Clearly, the integer,, is representable. As such, we have
B(dj';i+ 1) > d,,. By using Lemma 6, we have

B(d$;i+1) =ds, + B(d14).

Case 2.1 < j < n;yi: From (5), we haved,,,; =
B(d7 71 i4+1)+1. (Note that this equality does not reduce
to d,, = B(d$"';i) + 1 whenj = 0, and that is why we
need to discuss the two casgs= 0 and1 < j < n;y
separately.) By the same argument as in Case 1, we also have
B(d;;i+ 1) > ds, 4, and it follows from Lemma 6 that

B(dy5i 4 1) = dy,iy + B 70).
The completes the proof.
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The lemma holds trivially forj = 0. So in the rest of
the proof, we assume thdt < j; < n;;; — 1. Note that
from Lemma 7, the sequencd,ds,...,ds,+,; Satisfies the
condition in (A2).

We first show thaB(dj*;i)+1 < ds,+1. Letd’ = max{1 <
i <i:mn; > 2} (note thati’ is well defined as we have
assumed that; > 2). It then follows from (12), (7), and



Njry1 = MNgrgg =+ =Ny = 1 that [6]

B(di;i) +1 —dsia

=ds, +ds, +--+ds, + 1 —2d4, [7]
:dsl +d52+...+d5i—1+1idsi
=ds, +ds, +--+ds,_, +1—2d,,_,

8
_(ni_1)<d81 +d82+"'+d8i71+1) e

=ds, +ds, ++ds,_, +1—2ds, ,

El

(20]

—dy, +dgy + - +dy, +1—2d,,. (36)

If ¢/ =1, then from (36) andl,, = s; = n; > 2 in (6), we

11
have -

B(di4) +1 —dg, 11 =ds, +dgy + -+ +dy, +1—2d,, [12]
=1—d, <0.

On the other hand, if > 2, then from (36), (7)n;; > 2, and

ds, _, > ds, >0, we have

(23]

B(d';i) + 1 — dg 11 4]

:d51 +d82 +"'+dsi/ +1_2d87/
- dsl + d52 + -+ d51/71 +1- ds,i/
=ds, +ds, +'”+d51’71 +1_2dsi’—1 [15]

—(ng —1)(ds, +ds, +---+ds, , +1)

< —2d51,’,71 < 0. [16]

As B(dy';i)+1 < ds,+1 @ndds, 11 < ds, 42 < - < ds, 4,

the integersds, y1,ds, 12, - - ., ds,+; Will not be used in the [17]
representations of the integersl, ..., B(d{*;4), B(dj*;4)+1
by using theC-transform. From the definition aB(dj’; ), an
integer0 < x < B(dj';1) is representable by using at mast
of the integersdy, ds, ..., ds,, implying that B(d{*7;i) >
B(dj’;4); however, the integetB(dj’;i) + 1 can not be
so represented, implying thag(d;*7;i) < B(dj;i) + 1.
This shows thatB(d;*7;i) = B(dj’;i) and the proof is
completed.
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