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Cost Analysis of Optical Networks with Dynamic
Setup and Release of λ-channels

Cheng-Shang Chang, Hsin-Yi Lee

Abstract— We consider a threshold type control mecha-
nism for dynamic setup/release of λ-channels in optical net-
works. There are two types of costs for the control mech-
anism: the setup/release cost and the operation cost. For
such a control mechanism, there is a corresponding Markov
model with high complexity. By state aggregation, we are
able to identify a semi-Markov process that is simpler to
analyze. Based on the semi-Markov process, we derive the
average cost formula for the threshold type control mecha-
nism and carry out several numerical examples to find the
optimal thresholds that minimize the average cost.

Keywords— lightpath, Semi-Markov process.

I. Introduction

The trend in the network infrastructure is moving to-
ward high-speed routers interconnected by intelligent core
optical networks. The basic transportation method is to
provision wavelength circuits called lightpaths. The intelli-
gence in optical networks allows the control on wavelengths.
In this paper, we mention about the control plane issue.

First, we give a brief introduction to the layered infras-
tructure of optical networks[6],[1]. The three layers are the
fiber layer, the optical layer, and the logical layer (see Fig-
ure 1)[7]. The fiber layer constitutes the layout of physical
infrastructure of the optical network. Note that when we
mention one single link between nodes or stations, it may
consist of pairs of fibers.

The optical layer contains two sublayers: the λ-channel
sublayer and the transmission channel sublayer[7]. The
function of the λ-channel sublayer is to manage the allo-
cation of λ-channels for point-to-point optical links. The
end-to-end lightpath is a sequence of optical links(or nodes)
that may use the same or different wavelengths[5]. The
lightpaths are established through the coordinated actions
of optical nodes along the route.

The function of the transmission channel sublayer is to
convert the logical signals into the optical signals. Many
logical connection requests are from logically routed net-
work(LRN), taking the forms like synchronous digital hier-
archy(SDH) path signals, asynchronous transfer mode vir-
tual paths(ATM VP’s), or plesiochronous digital hierar-
chy(PDH) path signals[4]. Those logically routed networks
are thus in the logical layer.

Lightpaths that are in the form of the λ-channels may be
dynamically set up or released in response to the change of
connection requests from LRNs. A mechanism is required
for dynamic connection management[2] to determine the
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Fig. 1. The layered architecture of the optical network

lightpath routing before the connection is setup. On the
contrary, connection release may be initiated by a signal
from any node along the path and then the control mecha-
nism decides if it is necessary to signal all the participating
network elements to release the lightpath.

In general, there are two types of costs for the λ-channels:
the setup/release cost and the operation cost. The set-
up/release cost is the cost involving a sequence of steps
to make optical connections. The operation cost includes
the cost that involved the maintenance or repair fee of the
system.

One of the main objectives of this paper is to investi-
gate the tradeoff between the setup/release cost and the
operation cost. In Section II, we consider a threshold type
of control mechanism for dynamic setup or release of λ-
channels. A Markov model is proposed in Section II-A to
analyze such a control mechanism. As the complexity of
the Markov model is high, a semi-Markov process that uses
the technique of state aggregations is derived in Section II-
B. We then also derive the average cost in Section II-B.
Various numerical examples are computed to find the opti-
mal thresholds for dynamic setup or release of λ-channels.

II. Modelling for dynamic setup and release of
λ-channels

In this section, we consider an optical network that im-
plements a control mechanism for dynamic setup and re-
lease of λ-channels. For the optical network, we assume
there are K λ-channels. Once being set up, one λ-channel
provides M logical channels and each logical channel can
accommodate one connection request. Throughout the pa-
per, we call M the capacity of one λ-channel. Also, a λ-
channel is said to be active after being set up, and idle after
being released.

��� ��

λ

µ

Fig. 2. The ON-OFF model
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We assume there are N independent sources of connec-
tion requests and each source is modelled by a continuous-
time two-state Markov chain (see Figure 2). In the OFF
state, the source is idle and it will generate a connection re-
quest according to an exponentially distributed time with
mean 1/λ and then is switched to the ON state. In the ON
state, the source occupies a logical channel for an expo-
nentially distributed time with mean 1/µ and then is back
to the OFF state. Let the number of λ-channels K is not
less than � N

M � so that none of the connection requests are
blocked.

The control mechanism is as follows: let N(t) be the
number of ON sources at time t and I(t) being the num-
ber of active λ-channels at time t. Then an additional
λ-channel is set up at time t when there is a connection
request at time t and N(t−) = MI(t−). By setting up
a λ-channel for the connection request at time t, we have
N(t) = N(t−)+1 and I(t) = I(t−)+1. The release of a λ-
channel is based on the concept of the average utilization,
which is defined to be N(t)/MI(t). A λ-channel is released
at time t when a connection request is released at time t
and N(t−) − 1 = rM(I(t−) − 1). When this occurs, we
have N(t) = N(t−) − 1 and I(t) = I(t−) − 1. The release
threshold r is between 0 and 1 and it is chosen so that rM
is an integer. The optimal value of the release threshold
r will be chosen to minimize the average system cost dis-
cussed in Section III. For such a control mechanism, we
have that

rM(I(t) − 1) < N(t) ≤ MI(t), for all t.

A. Markov model

Now we introduce an additional indicator random vari-
able J(t) to further distinguish the previous change of I(t).
The indicator variable J(t) is 1 if the previous change of
I(t) is to increase I(t) by 1, and J(t) is 2 if the previous
change of I(t) is to decrease I(t) by 1.

Consider the trivariate stochastic process Z(t) =
(N(t), I(t), J(t)). Since N(t) is from multiplexing the N
i.i.d ON-OFF sources, it is well known that N(t) is a
continuous-time Markov process with the transition dia-
gram in Figure 3. As both I(t) and J(t) are simply func-
tions of the state change of N(t), the stochastic process
Z(t) is also a a continuous-time Markov process. In Fig-
ure 4, we show the transition diagram of process Z(t) with
each state denoted by (n, i, j). The number in each state
indicates the number of active ON sources, n. The states
within each dotted circle have the same number of active
λ-channels, i. The upper states have j equal 1 and the
lower states have j equal 2.
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Fig. 3. The state transition diagram of N(t)

Let q((n1, i1, j1), (n2, i2, j2)) be the transition rate of
Z(t) from the state (n1, i1, j1) to the state (n2, i2, j2). In
general, we can classify the transitions of Z(t) in Figure 4
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Fig. 4. The state transition diagram of Z(t)

into two classes: (i) internal transitions where I(t) is not
changed, and (ii) external transitions where I(t) is changed.
Refer to Figure 3 and we have

q((n, i, j), (n+1, i, j)) = (N−n)λ, ∀ i, j, (i−1)rM+1 ≤ n < iM,

q((n, i, j), (n−1, i, j)) = nµ, ∀ i, j, (i−1)rM +1 < n ≤ iM.

The external transitions can be further divided into two
types: (i) the upward transition and (ii) the downward
transition. The upward transition corresponds to the setup
of a λ-channel and it has the transition rate

q((n, i, j), (n + 1, i + 1, 1)) = (N − n)λ, ∀ i, j, and n = iM.

The downward transition corresponds to the release of a
λ-channel and it has the transition rate

q((n, i, j), (n−1, i−1, 2)) = nµ, ∀ i, j, and n = (i−1)rM+1.

B. Semi-Markov process by state aggregation

To simplify the trivariate stochastic process, we consider
the bivariate stochastic process W (t) = (I(t), J(t)).It is
obtained by aggregating the states in Z(t) with the same
value of I(t) and J(t) (see Figure 5).

We claim that W (t) is a semi-Markov process (see e.g.,
[3]). For this claim, we need to identify an embedded
Markov chain of the semi-Markov process W (t). Note from
Figure 5 that all the transitions in W (t) are the external
transitions in Z(t) Also, there is exactly one entry state
for every aggregated state in Figure 5 (this is the reason
why we introduce the indicator variable J(t)). Let τk be the
epoch immediately after the kth external transition of Z(t).
Consider the stochastic sequence Wk ≡ {W (τk), k ≥ 1}.
Since there is exactly one entry state for every aggregated
state, it is easy to see that conditioning on Wk = (i, 1) is
equivalent to conditioning on Z(τk) = ((i − 1)M + 1, i, 1).
Similarly, conditioning on Wk = (i, 2) is equivalent to con-
ditioning on Z(τk) = (irM, i, 2). Thus, the Markov prop-
erty of {Wk, k ≥ 1} then follows directly from the Markov
property of Z(t).

B.1 Transition probabilities of the embedded chain

Parallel to the two types of external transitions in Z(t),
the embedded chain {Wk,≥ 1} also has the following two
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Fig. 5. The aggregated states of the process W (t)

types of transitions: the upward transitions and the down-
ward transitions. For these, we define

pu
i,j = P ( Wk+1 = (i + 1, 1) | Wk = (i, j) ), ∀ i, j,

and

pd
i,j = P ( Wk+1 = (i − 1, 2) | Wk = (i, j) ), ∀ i, j.

The transition diagram of the embedded Markov chain is
shown in Figure 6.

The transition probability pu
i,1 is the conditional prob-

ability that the Markov process Z(t) reaches the state
(iM + 1, i + 1, 1) before the state ((i − 1)rM, i − 1, 2)
given that Z(0) = ((i − 1)M + 1, i, 1). Similarly, pd

i,1 is
the the conditional probability that the Markov process
Z(t) reaches the state ((i− 1)rM, i− 1, 2) before the state
(iM +1, i+1, 1) given that Z(0) = ((i−1)M +1, i, 1). Note
that pu

i,1+pd
i,1 = 1. To compute such conditional probabili-

ties, we further define pu
n,i,1 to be the conditional probabil-

ity that Z(t) reaches the state (iM + 1, i + 1, 1) before the
state ((i − 1)rM, i − 1, 2) conditioning on Z(0) = (n, i, 1).

Conditioning on whether the first internal transition is an
arrival of a connection request or a release of a connection
request, we have the following recursive equations

pu
n,i,1 =

(N − n)λ
(N − n)λ + nµ

pu
n+1,i,1 +

nµ

(N − n)λ + nµ
pu

n−1,i,1, (1)

n = (i − 1)rM + 1, (i − 1)rM + 2, . . . , iM.

We can then solve pu
n,i,1’s in (1) with the obvious boundary

conditions pu
iM+1,i,1 = 1 and pu

(i−1)rM,i,1 = 0. We then ob-
tain pu

i,1 = pu
(i−1)M+1,i,1 and pd

i,1 = 1− pu
i,1. The transition

probabilities pu
i,2 and pd

i,2 can be computed similarly.
Let πe

i,j (with the superscript e denoting the embedded
chain) be the stationary probability for the embedded

2,1 3,1 4,1 K,1

1,2 2,2 3,2 K-1 ,2

�����
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up 1,2
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dp 1,3
dp 1,2
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dp 1,4
u
Kp 2,1−

d
Kp 1,

Fig. 6. The state transition diagram for the embedded Markov chain
Wk

Markov chain {Wk, k ≥ 1} to be in the aggregated state
(i, j). Also let

πe = (πe
1,2, π

e
2,1, π

e
2,2, . . . , π

e
K−1,1, π

e
K−1,2, π

e
K,1).

Then one can easily derive from Figure 6 the corresponding
transition probability matrix P of the embedded chain as
follows:

P =




0 1 0 0 . . . 0 0 0
pd
2,1 0 0 pu

2,1 . . . 0 0 0
pd
2,2 0 0 pu

2,2 . . . 0 0 0
0 0 pd

3,1 0 . . . 0 0 0
0 0 pd

3,2 0 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . pu

K−2,2 0 0
0 0 0 0 . . . 0 0 pu

K−1,1

0 0 0 0 . . . 0 0 pu
K−1,2

0 0 0 0 . . . 0 1 0




. (2)

One can then solve the stationary probabilities by the
global balance equation

πe = πeP (3)

and

πee = 1, (4)

where e is the column vector of 1’s with an appropriate
dimension.

B.2 The holding time of the embedded chain

In this section, we derive the holding time distribution
of the embedded chain {Wk, k ≥ 1}. The holding time
for the state (i, 1) ((i, 2) ) is simply the first exit time of
the Markov process Z(t) to either the state ((i− 1)rM, i−
1, 2) (((i − 1)rM, i − 1, 2)) or the state (iM + 1, i + 1, 1)
((iM + 1, i + 1, 1)) given that Z(0) = ((i − 1)M + 1, i, 1)
(Z(0) = (irM, i, 2)).

The first exit time of a Markov chain is known to have
a phase distribution (see e.g. [3]) and it can be modelled
by a transient Markov process with an absorbing state. In
Figure 7, we show the transition diagram for the holding
time of the aggregated state (i, j). Note that there are ni

states in the aggregated state (i, j) , where ni = iM −
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Fig. 7. The transition diagram for the holding time of the aggregated
state (i, j)
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(i − 1)rM . We number the state ((i − 1)rM + 1, i, j) as
the first state of the ni states in Figure 7 and the state
(iM, i, j) as the last state of the ni states. In addition to
these ni states, we add an absorbing state in the transition
diagram in Figure 7. Let βi,j ≡ (βi,j,1, βi,j,2, . . . , βi,j,ni

),
be the initial probability vector, i.e., with probability βi,j,�

the initial state is the �th state. We have

βi,1,� =
{

1 if � = (i − 1)M + 1 − (i − 1)rM
0 elsewhere ,

and

βi,2,� =
{

1 if � = irM − (i − 1)rM
0 elsewhere .

Let Qi,j be the ni × ni transition rate matrix for the ni

states. In Figure 8, we show the transition rate matrix Qi,j

and the transition rates are simply the internal transition
rates of Z(t).
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Fig. 8. The transition rate matrix

Let Hi,j be the holding time of the aggregated state (i, j)
and FHi,j

be its cumulative distribution. From the well
known results for the phase distribution (see e.g., [3]), it
follows that

FHi,j
(x) = 1 − βi,je

Qi,jxe

and that

E[Hi,j ] = −βi,jQ−1e (5)

III. Minimizing the average cost

In this chapter, we formulate the problem of choosing
the appropriate release threshold r as a cost minimization
problem. We assume there are two types of costs: the
setup cost and the operation cost. Let β be the setup cost
of a λ-channel. Without loss of generality. Let α be the
operation cost for running an active λ-channel per unit of
time.

Let G(m) be the total cost after m upward transitions
of the embedded chain {Wk, k ≥ 1}. The setup cost after
m upward transitions is simply βm. To compute the op-
eration cost, let Ni,j(m) be the number of visits to the
aggregated state (i, j) and Li,j(k) be the holding time
in the aggregated state (i, j) during the kth visit to that
state. Then the operation cost after m upward transitions

is
∑K

i=1 i α
∑2

j=1

∑Ni,j(m)
k=1 Li,j(k). Thus,

G(m) =
K∑

i=1

i α

2∑
j=1

Ni,j(m)∑
k=1

Li,j(k) + β m

= m
( K∑

i=1

i α
2∑

j=1

Ni,j(m)
m

Ni,j(m)∑
k=1

Li,j(k)
Ni,j(m)

+ β
)
(6)

On the other hand, let T (m) be the time it takes for the
m upward transitions. Note that

T (m) =
K∑

i=1

2∑
j=1

Ni,j(m)∑
k=1

Li,j(k)

= m
( K∑

i=1

2∑
j=1

Ni,j(m)
m

Ni,j(m)∑
k=1

Li,j(k)
Ni,j(m)

)
.

Since the embedded Markov chain is positive recurrent,
we have Ni,j(m) → ∞ as m → ∞. It follows from the
strong laws of large numbers for the semi-Markov process
W (t) that

lim
m→∞

Ni,j(m)∑
k=1

Li,j(k)
Ni,j(m)

= E[Hi,j ], a.s.,

and that

lim
m→∞

Ni,j(m)
m

= πe
i,j , a.s.

Thus, we can define the average cost per unit of time g as
follows:

g = lim
m→∞

G(m)
T (m)

=

∑K
i=1 i α

∑2
j=1 πe

i,jE[Hi,j ] + β∑K
i=1

∑2
j=1 πe

i,jE[Hi,j ]
(7)

Choosing the release threshold r can then be formulated
as the minimization problem for the average cost per unit of
time g. In all our numerical examples, the capacity of one
λ-channel M is 20, the number of sources N is 180, and the
number of λ-channels K is 9. Also, note that the optimal
release threshold r∗ depends on the ratio β/α. To identify
the optimal release threshold r, we also plot the numerical
results in these two tables in Figure 9 and Figure 10. Since
the setup cost is the dominant factor for large β/α, one
can see from these figures that one should choose a lower
release threshold r as the ratio β/α becomes larger.

Note also that the rates of an ON-OFF source altering
between two states influence the number of setup/release
actions, we consider (µ+λ) altogether. To be precise, we fix
πon to obtain the same uniformized Markov processes and
the same stationary distribution of the embedded Markov
chain. Then different rates only change the holding time of
each state in the embedded Markov chain Wk and we have
E[Hi,j ] = 1

µ+λf(i, j). In Figure 11, we show the optimal
release thresholds r∗ with different (µ + λ) and β/α, but
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with the same πon = 0.4. One can see from the figure
that with larger (µ + λ), one should choose smaller r∗.
To explain the result, note that the effect of (µ + λ) on
the holding time in g shift to β

′
in a new average cost

g
′
=

∑ K
i=1 i α

∑2
j=1 πe

i,jE[Hi,j ]+β
′

∑ K
i=1

∑2
j=1 πe

i,jE[Hi,j ]
with β

′
= β(µ + λ). As

(µ + λ) becomes larger, it is equivalent to a larger β/α in
g, so we choose a lower release threshold.

IV. Conclusions

Motivated by the trend for supporting cost-effective re-
source usage for data transmission, we considered a thresh-
old type control mechanism for dynamic setup/release of λ-
channels in optical networks. There are two types of costs
for the control mechanism: the setup/release cost and the
operation cost. For such a control mechanism, we proposed
a Markov model with ON-OFF sources. However, solving
such a Markov model directly is in general difficult. By
state aggregation, we were able to identify a semi-Markov
process that is simpler to analyze.
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Fig. 11. Minimized release threshold for fixed πon = 0.4 with variant
β
α

and µ + λ

For this semi-Markov process, we derived detailed ap-
proaches to compute the transition probabilities and the
expected holding times of the embedded Markov chain.
Based on these, we derived a formula for the average cost
and formulated the problem of finding the appropriate
thresholds as a minimization problem for the average cost.

From Equation (7), the average cost g is affected by the
ratio of β/α. Several numerical examples are carried out
to find the optimal thresholds that minimize the average
cost. Intuitively, the results show that as β/α increases, the
optimal release threshold r∗ decreases. To examine how µ
and λ affect r∗, we fix πon. Because fixed πon ensures
the same uniformized Markov processes and then µ and
λ only affect the holding time at any state. To explain
the result in Figure 11, note that the effect of (µ + λ) on
the holding time in g shift to β

′
in a new average cost

g
′
=

∑ K
i=1 i α

∑2
j=1 πe

i,jE[Hi,j ]+β
′

∑ K
i=1

∑2
j=1 πe

i,jE[Hi,j ]
with β

′
= β(µ + λ). As

(µ + λ) becomes larger, it is equivalent to a larger β/α in
g, so we choose a lower release threshold.
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