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Abstract—Recent advances in gene expression profiling and
proteomics techniques have spawn considerable interest in du-
plication models for modelling the evolution and growth of
biological networks. In this paper, we consider the duplication
model studied by Chung et al. It seems (to the best of our
knowledge) that both the clustering coefficient and the Pearson
degree correlation coefficient of this model have not been studied
analytically. For such a model, we study the degree of a randomly
selected vertex and derive first-order differential equations for
its mean, second moment, and third moment. We also study
the degrees of the two vertices that appear at both ends of a
randomly selected edge and derive an approximation for the
expected product of the degrees of these two vertices. Using these
results, we obtain closed-form approximations for the clustering
coefficient and the Pearson degree correlation coefficient of
the duplication model. For the clustering coefficient, numerical
results calculated from our approximation and the corresponding
simulation results agree extremely well for the whole evolution
process. For the Pearson degree correlation coefficient, there
is some discrepancy at early times between the simulation
results and the numerical results. However, as time goes on, the
discrepancy diminishes. We present an asymptotic approximation
by keeping only the dominant terms in the clustering coefficient
and the degree correlation coefficient. Numerical study indicates
that relative approximation error can decrease slowly with time,
when the selection probability of the model is near some special
values.

keywords: duplication model, clustering coefficient, degree

correlation

I. INTRODUCTION

Recent advances in gene expression profiling and pro-

teomics techniques have fueled a series of studies on the

structure and evolution of many biological networks [5], [6],

[13]. Structures and properties of such networks have been

studied. One property of biological networks that has received

a lot of attention is the degree distribution of such networks.

It is well known that biological networks typically have a

scale-free degree distribution with exponents between 1 and 2

[4], non-biological networks typically have exponents between

2 and 4. Biological networks typically have large clustering

coefficients, negative degree correlations, and small network

diameters. Studies show that duplication of the information in

the genome is a fundamental force to drive biological evolution
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[11], [5], [13]. This prompts the study of an extremely popular

model called the duplication-divergence model [4], [3], [8],

[15], [1], [12].

Extensive studies on duplication models are available in the

literature. However, the duplication models studied by different

research teams may not be identical. Chung and her colleagues

studied a simple and elegant growth network model. At time

t, randomly select a sample vertex. Add a new vertex and

an edge between the sample vertex and the new vertex. This

step is called the vertex duplication. Also at time t, for each

neighbor of the sample vertex add an edge between the new

vertex and the neighbor vertex with probability a. This step

is called edge duplication. Chung et al. rigorously analyzed

the scale-free degree distributions of duplication models [4],

[3]. They also established bounds on the maximum degrees.

A duplication model with edge rewiring was studied by Solè

et al. [12]. Through computer simulation, Solè analyzed the

clustering coefficient and the average path length. Bhan et

al. [1] considered three duplication models. Their first model

corresponds to Chung’s model with a = 1. Their second

model is the first model with random removal of edges. The

third model is the first model with edge rewiring. Through

simulations, Bhan et al. studied the clustering coefficients,

average path lengths and exponents of scale-free degree dis-

tributions of the three models. Ispolatov et al. [8], [7] studied

the average degree and the average number of cliques in a

duplication-divergence model. Through computer simulations

Zhao et al. studied the Pearson degree correlation coefficient

for several duplication-divergence models [15]. Boccaletti et

al. [2] considered a model similar to the duplication model.

In Boccaletti’s model a new vertex is added to the network

at each time. A new vertex randomly selects a vertex from

the network and the neighbors of the selected vertex. The new

vertex establishes m edges randomly to the selected vertex

and its neighbors. Rate equations were derived for the degree

distribution and the conditional degree-degree probability of

this model.

In this paper we consider the duplication model studied by

Chung et al. [4], [3]. To the best of our knowledge, both

the clustering coefficient and the Pearson degree correlation

coefficient of this model have not been studied analytically.

The goal of this paper is to derive the clustering coefficient

and the Pearson degree correlation coefficient for this network.

We now describe Chung’s duplication model.

Chung’s duplication model:

(i) At time zero there are m0 vertices, forming an m0-
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clique. That is, the m0 vertices are fully connected.

Any pair of two vertices out of the m0 vertices is

connected by an edge.

(ii) At each time t, where t = 1, 2, . . ., a new vertex is

added into the network.

(iii) The new vertex randomly selects an existing vertex

in the network and attaches to the selected vertex

with an undirected edge.

(iv) Then, each neighbor of the randomly selected vertex

is attached to the new vertex with probability p
through an undirected edge. This is independent of

everything else.

(v) t← t+ 1. Repeat (ii).

Chung et. al. called the parameter p the selection probability

[3]. We shall use the same terminology and symbol.

Since exactly one vertex is added into the network at each

time, there are m0 + t vertices in the network at time t. For

each time t, we label the vertices such that the vertex that is

added into the network at time t is vertex m0+t. For notational

simplicity, we denote vertex m0 + t+ 1 by N at time t+ 1.

Denote by V the vertex randomly selected by N . Denote the

degree of V by X . In addition, denote the neighbors of V
by V1, V2, . . . , VX . Let the degree of Vi be denoted by Yi.

Denote the jth neighbor of vertex Vi by Vij . Let Zij be the

degree of Vij . We shall use notation N (v) to denote the set of

neighbors of vertex v. Using this notation, we have N (V ) =
{V1, V2, . . . , VX}. For vertex Vi, Bernoulli random variable

Ui = 1 indicates that Vi is attached to vertex m0 + t + 1.

Otherwise, Vi is not attached and Ui = 0. Random variables

U1, U2, . . . , are independent and identically distributed (i.i.d.).

Finally, we shall use symbol Aij to indicate the connectivity

of vertices i and j. That is, Aij = 1 if vertices i and j are

connected. Otherwise, Aij = 0. We refer the reader to Figure

1 for an illustration of these notations.

Fig. 1. A new vertex N joins the network and randomly attaches to a
vertex, labeled V in the illustration. Vertex V has two existing neighbors V1

and V2. Vertex N attaches to V2 but not to V1 in this illustration. Newly
created vertex and edges are marked with dashed lines in this illustration.
Vertices V1 and V2 have two and three existing neighbors (not including N )
respectively. Vertex V is a common neighbor of V1 and V2. Thus, V can
be labeled as V12 and V23. In this example, X = 2, Y1 = 2, Y2 = 3. In
addition, Z11 = Z21 = Z22 = 1 and Z12 = Z23 = 2.

We summarize our main contributions for this duplication

model as follows:

• In Section II, we first consider a simple undirected graph

and derive some identities for a randomly selected vertex

TABLE I
LIST OF NOTATIONS

N The new vertex added to the network
V The vertex selected by the new vertex N
X The degree of vertex V

Vi The ith neighbor of vertex V
Yi The degree of vertex Vi

p The selection probability to add a link between N and Vi

Uj ’s i.i.d. Bernoulli r.v.s with mean a

Vij The jth neighbor of vertex Vi

Zij The degree of vertex Vij

k(t) The expected degree at time t
τ(t) The expected number of triangles at time t
α(t) The second moment of degree at time t
β(t) The third moment of degree at time t

w(t) E[X
∑X

i=1
Yi]

X̃, Ỹ The degrees of the two vertices that appear
at the two ends of a randomly selected edge

n The number of vertices in a graph
m The number of edges in a graph
ki The degree of vertex i in a graph
A = (Aij) The adjacency matrix of a graph
C Clustering coefficient
ρ Pearson degree correlation coefficient

and the two vertices at the both ends of a randomly

selected edge. These identities are needed in our analysis

and appear to be of independent interest.

• In Section III, we perform an exact analysis for the

clustering coefficient. We consider a randomly selected

vertex in the duplication model and derive closed-form

expressions for the expected degree in Section III-A, the

number of triangles in Section III-B, and the second

moment of the degree in Section III-C.

• In Section IV, we derive an approximation for the Pearson

degree correlation coefficient. We consider a randomly

selected vertex in the duplication model and derive a

closed-form expression for the third moment of the de-

gree in Section IV-A. We also consider the two vertices at

both ends of a randomly selected edge in the duplication

model and derive a closed-form approximation for the

product of the degrees of these two vertices in Section

IV-B.

• Our expressions for the clustering coefficient and the

Pearson degree correlation coefficient are quite compli-

cated. We present an asymptotic approximation by keep-

ing only the dominant terms to simplify the expressions.

We numerically study how relative approximation error

decreases with time.

• In Section VI, we perform various simulations to ver-

ify our analytical results. For the clustering coefficient,

numerical results calculated from our approximation and

the corresponding simulation results agree extremely well

for the whole evolution process. For the Pearson degree

correlation coefficient, there is some discrepancy at early

times between the simulation results and the numerical

results. However, as time goes on, the discrepancy dimin-

ishes.

In Table I, we provide a list of notations used in this paper.
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II. SOME IDENTITIES OF SIMPLE UNDIRECTED GRAPHS

In this section, we first prove some identities for simple

undirected graphs. These identities are needed in our analysis

later and appear to be of independent interest.

A graph G with the n × n adjacency matrix A = (Aij) is

called a simple and undirected graph if (i) Aii = 0 for all i,
(ii) Aij = Aji for all i and j, and (iii) Aij = 1 if there is an

edge between vertex i and vertex j and 0 otherwise. For such

a graph, the degree of vertex i, denoted by ki, is then

ki =

n
∑

i=1

Aij =

n
∑

j=1

Aij . (1)

Also, the total number of edges, denoted by m, in the simple

undirected graph G is

m =
1

2

n
∑

i=1

n
∑

j=1

Aij . (2)

Clearly, every realization of Chung’s duplication model at any

time t is a simple and undirected graph.

In the following lemma, we first show two identities for a

randomly selected vertex in a simple undirected graph.

Lemma 1 Suppose that V is a vertex uniformly selected from

a simple undirected graph G. Let X be the degree of vertex

V , Yi, i = 1, 2, . . . , X be the degree of the ith neighbor of

vertex V , and Zij be the degree of jth neighbor of the ith

neighbor of vertex V . Then

E[Xν ] = E

[

X
∑

i=1

Y ν−1
i

]

, for all ν = 2, 3, . . ., (3)

and

E

[

X

X
∑

i=1

Yi

]

= E





X
∑

i=1

Yi
∑

j=1

Zij



 . (4)

Proof. Note from (1) and Aij = Aji that

E[Xν ] =
1

n

n
∑

i=1

(ki)
ν

=
1

n

n
∑

i=1





n
∑

j=1

Aij





ν

=
1

n

n
∑

i=1





n
∑

j=1

Aij





(

n
∑

k=1

Aik

)ν−1

=
1

n

n
∑

j=1





n
∑

i=1

Aji

(

n
∑

k=1

Aik

)ν−1




=
1

n

n
∑

j=1

(

n
∑

i=1

Aji (ki)
ν−1

)

= E

[

X
∑

i=1

Y ν−1
i

]

.

Identity (4) follows simply from definitions and easy ma-

nipulation of summations.

Since every realization of Chung’s duplication model at any

time t is a simple and undirected graph, the two identities in

Lemma 1 still hold for the random network from Chung’s

duplication model by taking the expectation (over all the

realizations) on both sides of the identities. This leads to the

following corollary.

Corollary 2 The two identities in (3) and (4) hold for the

random network from Chung’s duplication model.

Our second lemma shows two identities for a randomly

selected edge in a simple undirected graph.

Lemma 3 Consider a simple and undirected graph G with

m edges. Suppose that we uniformly select an edge from the

graph, i.e., with probability 1/m, an edge is selected among

these m edges in the graph. Let X̃ and Ỹ be the degrees of the

two vertices at the two ends of the edge. Then for ν = 1, 2, . . .,

E[X̃ν ] =
E[Xν+1]

E[X]
, (5)

and

E[X̃Ỹ ] =
E

[

X
∑X

i=1 Yi

]

E[X]
, (6)

where X is the degree of a uniformly selected vertex from G,

and Yi, i = 1, 2, . . . , X is the degree of the ith neighbor of

that vertex.

Proof. Now we prove (5). Note that the probability that the

edge between vertex i and vertex j is selected is Aij/m. To

compute E[X̃ν ], we take an average of the ν-th power of the

two degrees at the two sides of an edge. Thus, we have from

the symmetric property of the adjacency matrix and Aii = 0
that

E[X̃ν ] =
1

m

n
∑

i=1

∑

j>i

Aij

(

(ki)
ν + (kj)

ν

2

)

=
1

2m

n
∑

i=1

n
∑

j=1

Aij(ki)
ν

=
1

2m

n
∑

i=1

(ki)
ν+1.

In view of (1) and (2), it is easy to see that E[X̃ν ] is equal to

1
n

∑n
i=1 (ki)

ν+1

1
n

∑n
i=1 ki

,

which by definition is equal to the right side of (5).

Finally, we prove (6). Given graph G, by definition we have

E

[

X

X
∑

i=1

Yi

]

=
1

n

n
∑

i=1





n
∑

j=1

Aij





n
∑

k=1

Aik

(

n
∑

ℓ=1

Akℓ

)

. (7)
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Also,

E

[

X̃Ỹ
]

=
1

m

n
∑

i=1

∑

j>i

Aij(ki · kj) (8)

=
1
2

∑n
i=1

∑n
j=1 Aij (

∑n
k=1 Aik) (

∑n
ℓ=1 Ajℓ)

1
2

∑n
i=1

∑n
j=1 Aij

. (9)

Since E[X] = (
∑n

i=1

∑n
j=1 Aij)/n,

E[X̃Ỹ ]E[X]

=
1

n

n
∑

i=1

n
∑

j=1

Aij

(

n
∑

k=1

Aik

)(

n
∑

ℓ=1

Ajℓ

)

. (10)

To prove (6), we need to show that (7) and (10) are equal.

We achieve this by simply exchanging the order of the second

summation and the third summation in (7).

We note that E[X̃] is known as the average degree of a

neighbor and the identity for ν = 1 is also well-known for the

configuration model (see e.g., the book [10]).

Though the two identities in Lemma 1 still hold for the

random network from Chung’s duplication model, the two

identities in Lemma 3 cannot be extended in the same way

to Chung’s duplication model as they are represented in the

ratio form. However, if the average degree, E[X], for every

realization of a random network is a constant, then we can still

take the expectation (over all the realizations) on both sides

of the two identities in Lemma 3. One possible application

is for random networks that are generated by a fixed degree

sequence/distribution. As it has been shown that the degree

distribution of Chung’s duplication model converges to a scale-

free distribution as t goes to infinity [4], intuitively one might

expect that the average degree, E[X], would also converge

to a constant and thus the two identities in Lemma 3 would

(approximately) hold for the random network from Chung’s

duplication model as t goes to infinity. In view of this, we

shall use the two identities in Lemma 3 as approximations for

Chung’s duplication model.

III. CLUSTERING COEFFICIENT

In this section we perform our analysis for the clustering

coefficient. Recall that the clustering coefficient of a determin-

istic network is defined as the ratio [10]:

C =
(number of triangles)× 3

(number of connected triples)
. (11)

The clustering coefficient of a random network is defined

similarly with the numerator and the denominator in (11)

replaced by their expectations [10]. Let τ(t) be the expected

number of triangles that a randomly selected vertex has at

time t. Let n(t) be the number of vertices at time t. Since

each triangle has three vertices, it follows that the expected

number of triangles of the entire network is

n(t)τ(t)/3. (12)

Consider a randomly chosen vertex and let its degree be X .

The expected total number of connected triples of the network

is

n(t)E

[(

X
2

)]

= n(t)
α(t)− k(t)

2
, (13)

where α(t) is defined as E[X2] and k(t) = E[X]. Substituting

(12) and (13) into (11), we obtain

C =
2τ(t)

α(t)− k(t)
. (14)

From (14), one needs to evaluate k(t), τ(t) and α(t) in order

to compute the clustering coefficient C. Differential equations

for k(t), τ(t) and α(t) will be shown later in Section III-A,

Section III-B and Section III-C, respectively. By solving these

differential equations, we obtain closed-form expressions for

k(t) in (18), τ(t) in (27), and α(t) in (48), respectively.

A. Expected Degree

Let k(t) denote the expected degree at time t. We shall

derive a differential equation for k(t). We will first derive a

difference equation by equating the total expected number of

edges in the network right before and after time t. We then

approximate the difference equation by a differential equation.

Since there are m0 + t vertices in the network at time

t, clearly the total expected degree of the entire network is

(m0 + t)k(t) at time t. Since each edge has two ends, the

expected number of edges at time t is (m0+t)k(t)/2. The new

vertex that arrives at time t randomly selects and attaches to an

existing vertex. This produces a new edge. With probability p
a new edge is formed between each neighbor of the randomly

selected vertex and the new vertex. Recall that the parameter p
is called the selection probability. Since the expected degree of

the randomly selected vertex is k(t), additional pk(t) edges are

generated on average from step (iv) in the duplication model.

Thus, on average 1 + pk(t) new edges are generated. Thus,

we have

(m0 + t+ 1)k(t+ 1)

2
=

(m0 + t)k(t)

2
+ 1 + pk(t). (15)

Eq. (15) is a difference equation. We propose to approximate

this difference equation by a differential equation. To achieve

this, we rewrite (15) as

k(t+ 1)− k(t) =
2 + (2p− 1)k(t)

m0 + t+ 1
. (16)

We approximate the left hand side of (16) by derivative k′(t)
and obtain

k′(t) =
2 + (2p− 1)k(t)

m0 + t+ 1
(17)

with initial condition k(0) = m0 − 1. If p 6= 1/2, (17) is a

separable differential equation whose solution is

k(t) = k1(m0 + t+ 1)2p−1 + k2, (18)

where constant k1 is determined by the initial condition

k(0) = m0 − 1, i.e.

k1 =

(

m0 − 1 +
2

2p− 1

)

(m0 + 1)1−2p. (19)
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Constant k2 in (18) is given by

k2 = 2/(1− 2p). (20)

If p = 1/2, the coefficient of k(t) in the right side of (17) is

zero and this differential equation can be solved easily. The

solution is

k(t) = 2 log(m0 + t+ 1) + c1, (21)

where

c1 = m0 − 1− 2 log(m0 + 1). (22)

We remark here that all closed-form solutions of differential

equations have been verified independently using Mathematica

[14].

B. Expected Number of Triangles

In this section we shall first derive a difference equation for

τ(t) by equating the expected total number of triangles in the

network right before and after time t. We then approximate

the difference equation by a differential equation.

In the duplication model, the total number of vertices at time

t is n(t) = m0 + t. Since each triangle has three vertices, the

expected total number of triangles at time t is (m0+ t)τ(t)/3.

Thus, we reach the following identity

(m0 + t+ 1)τ(t+ 1)

3
=

(m0 + t)τ(t)

3
+ pk(t) + p2τ(t).

(23)

We now explain the last two terms in the right hand side of

(23). Suppose that at time t a new vertex N is attached to

vertex V as shown in Figure 2. With probability a, an edge be-

tween vertex N and a neighbor of V is established. These two

new edges introduce two new triangles NV V1 and NV V2. In

addition, with probability p2 triangle NV1V2 is formed. Thus,

k(t) new triangles (on average) could be introduced. Each is

introduced with probability p independently. In addition, τ(t)
new triangles (on average) could also be introduced. Each is

introduced with probability p2 independently.

Now we approximate τ(t+1)− τ(t) by τ ′(t). Eq. (23) can

be approximated by the following differential equation

τ ′(t) =
3pk(t) + (3p2 − 1)τ(t)

m0 + t+ 1
(24)

with initial condition

τ(0) = (m0 − 1)(m0 − 2)/2. (25)

Fig. 2. A new vertex, denoted by vertex N , is attached to vertex V . Two new
triangles NV V1 and NV V2 are formed, each with probability p. Triangle
NV1V2 is formed with probability p2.

In general, (24) is a first-order linear differential equation

that can be solved by the technique of integrating factors.

Specifically,

τ(t) = c(m0 + t+ 1)3p
2−1 +

(m0 + t+ 1)3p
2−1

∫

3pk(t)

(m0 + t+ 1)3p2 dt, (26)

where c is a constant to be determined by the initial condition

in (25). If p 6= 0, 1/2 or 2/3, substitute (18) into (26) and

integrate. We obtain

τ(t) = τ1(m0+ t+1)3p
2−1+ τ2(m0+ t+1)2p−1+ τ3, (27)

where constant τ1 is determined by the initial condition in

(25), i.e.

τ1 =
( (m0 − 1)(m0 − 2)

2
− 3pk1(m0 + 1)2p−1

2p− 3p2

+
6p

(2p− 1)(1− 3p2)

)

(m0 + 1)1−3p2

. (28)

Constants τ2 and τ3 in (27) are given by

τ2 =
3pk1

2p− 3p2
(29)

τ3 =
6p

(1− 2p)(1− 3p2)
. (30)

Solution (27) is not valid for p = 0, 1/2, 2/3, and 1/
√
3.

The constant τ1 in (28) is not defined when p is 0 or 2/3. If

p = 1/2, substitute (21) into (26) and get the solution

τ(t) = 6(2 log(m0+t+1)−8+c1)+c2(m0+t+1)−1/4. (31)

If p = 1/
√
3, the coefficient of τ(t) on the right side of (24)

vanishes and (24) can simply be solved by integration. Its

solution is

τ(t) =
√
3(3 + 2

√
3)
(

k1(m0 + t+ 1)−1+2/
√
3

−2 log(m0 + t+ 1)
)

+ c3. (32)

If p = 0, the integral in (26) yields a logarithmic term and the

solution is

τ(t) =
c4

m0 + t+ 1
. (33)

We can similarly derive the solution for p = 2/3.

τ(t) = (m0 + t+ 1)1/3(c5 + 2k1 log(m0 + t+ 1))

+36. (34)

Constants c2, c3, c4 and c5 are determined through the initial

condition in (25).

C. Second Moment of Degree

In this section we shall derive a differential equation for

E[X2] (denoted by α(t)). We first study the difference between

(m0+t+1)α(t+1) and (m0+t)α(t). Suppose that the degree

of a vertex is changed from X to X + ∆X , this vertex will

contribute

(X +∆X)2 −X2 = (∆X)2 + 2∆X ·X (35)
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toward to the difference. In view of the duplication model,

there are three cases that the degree of a vertex is changed

from time t to t+ 1.

• The new vertex: Vertex N is added into the network at

time t. The second moment of its degree must be included

in the difference, i.e.,

(

1 +
X
∑

i=1

Ui

)2

. (36)

• The selected vertex: The degree of vertex V is changed

from X to X+1. According to (35), vertex V contributes

1 + 2X (37)

to the difference.

• The neighbors of the selected vertex: The i-th neighbor,

denoted by Vi, may change its degree from Yi to Yi +1,

if Ui = 1. If Ui = 0, the degree of Vi remains unchanged

at Yi. One can identify X with Yi and ∆X with Ui in

(35). According to (35), the contribution of vertex Vi is

U2
i + 2UiYi.

Summing up all the contributions from all the neighbors

of V and using the identity U2
i = Ui, we obtain the total

contribution
X
∑

i=1

(1 + 2Yi)Ui. (38)

We first analyze the expectation of (36). Using conditional

expectations, we have

E





(

X
∑

i=1

Ui

)2


 = pE[X] + p2E[X(X − 1)]

= pk(t) + p2(α(t)− k(t)). (39)

Hence,

E





(

1 +

X
∑

i=1

Ui

)2


 = 1 + 3pk(t) + p2(α(t)− k(t)) (40)

The expectation of (37) is simply

E[2X + 1] = 2k(t) + 1. (41)

We now analyze the expectation of (38). Again using the

technique of conditional expectations, we have

E

[

X
∑

i=1

YiUi

]

= E

[

E

[

X
∑

i=1

YiUi

]]

= E

[

X
∑

i=1

E[YiUi |X]

]

= E

[

X
∑

i=1

E[Yi|X]E[Ui|X]

]

= E

[

X
∑

i=1

pE[Yi|X]

]

= pE

[

E

[

X
∑

i=1

Yi|X
]]

= pE

[

X
∑

i=1

Yi

]

= pE[X2] = pα(t), (42)

where we use (3) (for ν = 2) in the last identity. Thus, the

expectation of (38) is

E

[

X
∑

i=1

(2Yi + 1)Ui

]

= 2pα(t) + pk(t). (43)

It follows from (40), (41) and (43) that

(m0 + t+ 1)α(t+ 1)− (m0 + t)α(t) =

(1 + 3pk(t) + p2(α(t)− k(t)) + (2k(t) + 1)

+(2pα(t) + pk(t)). (44)

Equation (44) is a difference equation and it can be approx-

imated by first-order linear differential equation

α′(t) =
1

m0 + t+ 1

(

(−1 + p2 + 2p)α(t) + 2

+(2− p2 + 4p)k(t)
)

(45)

with initial condition

α(0) = (m0 − 1)2. (46)

Applying the technique of integrating factors, we obtain the

solution as follows

α(t) = (m0 + t+ 1)p
2+2p−1

(

c+
∫

2 + (−p2 + 4p+ 2)k(t)

(m0 + t+ 1)p2+2p
dt
)

, (47)

where constant c is determined from the initial condition in

(46). If p 6= 0, 1/2, or
√
2 − 1, one can substitute (18) into

(47) and obtain a general solution

α(t) = α1(m0+t+1)p
2+2p−1+α2(m0+t+1)2p−1+α3, (48)

where constant α1 is determined from the initial condition in

(46). Constants α2 and α3 are given by

α2 =
p2 − 4p− 2

p2
k1 (49)

α3 =
2p2 − 4p− 6

(2p− 1)(−p2 − 2p+ 1)
. (50)

If p = 0, the integral in (47) produces a logarithmic term

and the solution is

α(t) =
2k1 log(m0 + t+ 1) + 6t+ c6

m0 + t+ 1
. (51)

If p = 1/2, one substitutes (21) into (47) and obtain

α(t) = c7(m0 + t+ 1)1/4 − 30 log(m0 + t+ 1)−
15c1 − 128. (52)

If p =
√
2 − 1, the coefficient of α(t) on the right side of

(45) vanishes and the differential equation can be solved by

integration. The solution is

α(t) = 4(5 + 4
√
2) log(m0 + t+ 1)−

(9 + 8
√
2)k1(m0 + t+ 1)2

√
2−3 + c8. (53)

Constants c6, c7 and c8 are determined from the initial

condition (46).
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IV. PEARSON DEGREE CORRELATION COEFFICIENT

In this section, we derive an approximation for the Pearson

degree correlation coefficient in the duplication model.

We first give the definition of the Pearson degree correlation

coefficient of a random network. Randomly select an edge

from the network. Let X̃ and Ỹ be the degrees of the two

vertices at the two ends of the edge. The Pearson degree cor-

relation coefficient of the network is defined as the correlation

coefficient of X̃ and Ỹ , i.e.,

ρ(X̃, Ỹ ) =
E[X̃Ỹ ]− E[X̃]E[Ỹ ]

σX̃σỸ

, (54)

where σX̃ and σỸ are the standard deviation of random

variables X̃ and Ỹ respectively [10]. Since X̃ and Ỹ are

statistically indistinguishable and thus identically distributed,

(54) can be rewritten as

ρ(X̃, Ỹ ) =
E[X̃Ỹ ]− (E[X̃])2

E[X̃2]− (E[X̃])2
. (55)

The expectations in (55) were studied in Lemma 3 for a de-

terministic undirected graph. However, the duplication model

is a random network and the identities in (5) and (6) can not

be extended to the averages of all the realizations of a random

network. To evaluate (55), we shall approximate (5) and (6)

by

E[X̃ν ] ≈ E[Xν+1]

E[X]
(56)

and

E[X̃Ỹ ] ≈
E

[

X
∑X

i=1 Yi

]

E[X]
(57)

respectively. Recall that (5) and (6) are valid for a determin-

istic graph. In a ratio form, (5) and (6) are in general not

true for random graphs. However, from Chung’s study and

our simulation study, E[X] converges to a constant as time

becomes large. The approximation in (56) and (57) becomes

more accurate as t goes to infinity.

Let β(t) = E[X3] and w(t) = E[X
∑X

i=1 Yi]. Then we can

approximate the Pearson degree correlation coefficient in the

duplication model as follows:

ρ(X̃, Ỹ ) ≈
w(t)
k(t) − (α(t)k(t) )

2

β(t)
k(t) − (α(t)k(t) )

2
, (58)

where k(t) = E[X] and α(t) = E[X2] are derived in the

previous section. In Section IV-A, we shall derive a differential

equation for β(t). Then in Section IV-B, we shall use the

identity in (4) to derive a differential equation for w(t). By

solving these differential equations, we obtain closed-form

expressions for β(t) in (72) and w(t) in (103), respectively.

A. Third Moment of Degree

In this section we shall derive a differential equation for

E[X3] (denoted by β(t)). The argument is parallel to that

in Section III-C for E[X2]. Consider the difference between

(m0+t+1)β(t+1) and (m0+t)β(t). Suppose that the degree

of a vertex is changed from X to X + ∆X , this vertex will

contribute

(X+∆X)3−X3 = (∆X)3+3(∆X)2 ·X+3∆X ·X2 (59)

toward to the difference. In view of the duplication model,

there are three cases that the degree of a vertex is changed

from time t to t+ 1.

• The new vertex: Vertex N is added into the network at

time t. The third moment of its degree must be included

in the difference, i.e.,
(

1 +

X
∑

i=1

Ui

)3

. (60)

• The selected vertex: The degree of vertex V is changed

from X to X+1. According to (59), vertex V contributes

1 + 3X + 3X2 (61)

to the difference.

• The neighbors of the selected vertex: Vertex Vi may

change its degree from Yi to Yi+1, if Ui = 1. According

to (59), the total contribution in this case is

X
∑

i=1

(1 + 3Yi + 3Y 2
i )Ui (62)

We first analyze the expectation of (60). Using conditional

expectations, we have

E





(

X
∑

i=1

Ui

)3




= pE[X] + p2E[3X(X − 1)] + p3E[X(X − 1)(X − 2)]

= p · k(t) + 3p2(α(t)− k(t)) + p3(β(t)− 3α(t) + 2k(t))

= p3β(t) + (3p2 − 3p3)α(t) + (p− 3p2 + 2p3)k(t). (63)

Hence, using (40) and (63) yields

E





(

1 +
X
∑

i=1

Ui

)3




= 1 + 3pk(t) + 3E





(

X
∑

i=1

Ui

)2




+E





(

X
∑

i=1

Ui

)3




= 1 + p3β(t) + (6p2 − 3p3)α(t)

+(7p− 6p2 + 2p3)k(t). (64)

The expectation of (61) is simply

E[1 + 3X + 3X2] = 1 + 3k(t) + 3α(t). (65)

We now analyze the expectation of (62). Again using the

technique of conditional expectations as in (42), we have

E

[

X
∑

i=1

Ui(1 + 3Yi + 3Y 2
i )

]

= E

[

a

X
∑

i=1

(1 + 3Yi + 3Y 2
i )

]

. (66)
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By (3), (66) is equal to

a(k(t) + 3α(t) + 3β(t)). (67)

From (64), (65) and (67), we reach the following balance

equation

(m0 + t+ 1)β(t+ 1) = (m0 + t)β(t) +

1 + p3β(t) + (6p2 − 3p3)α(t) +

+(7p− 6p2 + 2p3)k(t) +

1 + 3k(t) + 3α(t) +

a(k(t) + 3α(t) + 3β(t)). (68)

Equation (68) is a difference equation and it can be approxi-

mated by first-order linear differential equation

β′(t) =
1

m0 + t+ 1

(

(p3 + 3p− 1)β(t) + 2

+(3p+ 6p2 − 3p3 + 3)α(t)

+(8p− 6p2 + 2p3 + 3)k(t)
)

(69)

with initial condition

β(0) = (m0 − 1)3. (70)

Using the technique of integrating factors, we obtain the

following solution

β(t) = (m0 + t+ 1)p
3+3p−1

(

c+

∫

2 + (−3p3 + 6p2 + 3p+ 3)α(t)

(m0 + t+ 1)p3+3p
dt+

∫

(2p3 − 6p2 + 8p+ 3)k(t)

(m0 + t+ 1)p3+3p
dt

)

, (71)

where constant c is determined from the initial condition in

(70). For general values of p, we substitute k(t) in (18) and

α(t) in (48) into (71) and obtain

β(t) = β1(m0 + t+ 1)p
3+3p−1 + β2(m0 + t+ 1)p

2+2p−1

+β3(m0 + t+ 1)2p−1 + β4, (72)

where constant β1 is determined from the initial condition in

(70). Constants β2, β3 and β4 are given by

β2 =
3α1(p

3 − 2p2 − p− 1)

p(p2 − p+ 1)
(73)

β3 =
k1(p

5 − 12p4 + 7p3 + 18p2 + 18p+ 6)

p5 + p3
(74)

β4 =
2(p5 − 10p4 + 8p3 − p2 + 13p+ 13)

(1− 2p)(p2 + 2p− 1)(p3 + 3p− 1)
. (75)

The solution expressed in (72) is not valid for special cases in

which p is 0, 1/2,
√
2− 1 and the unique root of p3 +3p = 1

in the interval (0, 1). It can be shown that the unique root in

the interval (0, 1) is

r =

(√
5 + 1

2

)1/3

−
(√

5− 1

2

)1/3

. (76)

If p = 0, substitute α(t) from (51) and k(t) from (18) into

(71) and we have

β(t) =
c9 + 26t

m0 + t+ 1

+
3(c9 + k1 − 6(m0 + 1)) log(m0 + t+ 1)

m0 + t+ 1

+
3k1(log(m0 + t+ 1))2

m0 + t+ 1
. (77)

If p =
√
2 − 1, we substitute α(t) from (52) and k(t) from

(18) into (71) and we obtain

β(t) = c10(m0 + t+ 1)−11+8
√
2 +

16(94− 69
√
2)

−2052 + 1451
√
2

− (11118− 7865
√
2)k1

−2052 + 1451
√
2

(m0 + t+ 1)−3+2
√
2

+
12(1486 + 1093

√
2)

−2052 + 1451
√
2

log(m0 + t+ 1). (78)

If p = 1/2, substituting α(t) from (52) and k(t) from (21)

into (71) we obtain

β(t) = c11(m0 + t+ 1)5/8 +
1258

5
log(t)− 15c7(m0 + t+ 1)1/4 +

38784 + 3145c1
25

. (79)

Constants c9, c10 and c11 are determined by the initial con-

dition in (70). If p = r, the solution is too complicated and

messy to be expressed in closed form. We suggest that (69)

be solved numerically when p = r. We remark here that

all closed-form solutions of differential equations have been

verified independently using Mathematica [14].

B. Product of Degrees

In this section, we shall derive a differential equation for

w(t). This is done by deriving a balance equation that relates

w(t) and w(t+ 1). By definition, w(t) · (m0 + t) equals to

m0+t
∑

i=1

Xi

Xi
∑

j=1

Yij , (80)

where Xi is the degree of vertex i before N is added into the

network and Yij is the degree of the j-th neighbor of vertex

i. Similarly, w(t+ 1) · (m0 + t+ 1) equals to

m0+t+1
∑

i=1

X̂i

X̂i
∑

j=1

Ŷij , (81)

where X̂i is the new degree of vertex i after vertex N has

been introduced into the network. Similarly, Ŷij is the new

degree of the jth neighbor of vertex i. We need to express

the quantity in (81) as the sum of the quantity in (80) and an

increment. To find the increment, we rewrite (81) as

X̂m0+t+1 ·
X̂m0+t+1
∑

j=1

Ŷm0+t+1,j +

m0+t
∑

i=1

X̂i

X̂i
∑

j=1

Ŷij . (82)



9

We first analyze the first term in (82). Recall that vertex N
is the new vertex that is introduced into the network. Thus,

vertex N is also vertex m0 + t+ 1. Clearly,

X̂m0+t+1 = 1 +

X
∑

i=1

Ui

and

Ŷm0+t+1,j

=

{

X + 1, if the jth neighbor is vertex V ,

(Yj + 1)Uj , otherwise.

Thus, the first term in (82) is equal to

(

1 +

X
∑

i=1

Ui

)



(X + 1) +

X
∑

j=1

(Yj + 1)Uj



 . (83)

Now we analyze the second term in (82). We let X̂i =
Xi+∆Xi and Ŷij = Yij+∆Yij , where ∆Xi and ∆Yij are the

increments of Xi and Yij respectively due to the introduction

of vertex N . The second term in (82) corresponds to vertices

that are already present in the network before vertex N is

introduced and attached. Since vertex i, where 1 ≤ i ≤ m0+t,
is an existing vertex, the change of i’s degree can be at most

one. That is, ∆Xi is either one or zero. Thus, the second term

in (82) can be rewritten as

m0+t
∑

i=1

X̂i

X̂i
∑

j=1

Ŷij

=

m0+t
∑

i=1

(Xi +∆Xi)

Xi+∆Xi
∑

j=1

(Yij +∆Yij)

=

m0+t
∑

i=1







Xi

Xi
∑

j=1

Yij+ (84)

Xi

Xi
∑

j=1

∆Yij + (85)

∆Xi

Xi
∑

j=1

Yij + (86)

∆Xi

Xi
∑

j=1

∆Yij + (87)

(Xi +∆Xi)(Yi,Xi+∆Xi
+∆Yi,Xi+∆Xi

)

}

. (88)

Note that the term in (84) is equal to (m0 + t)w(t).
In view of the above analysis, to derive the increment

from (80) to (81), one considers all vertices in the network

at time t + 1. The contribution of the new vertex N is

expressed in (83). Next, one considers each existing vertex

whose degree has changed. One also needs to consider existing

vertices whose degrees have not changed, but the degrees of

at least one of their neighbors have changed. Consider vertex

i. If i’s degree has changed, this change causes an increment

corresponding to the term in (86), and possibly the term in (87)

if at least one of i’s neighbors has also changed its degree.

If i’s degree has not changed but one of its neighbors has

changed its degree, this causes an increment corresponding to

the term in (85). Note that the above two cases assume that

i and its neighbors are connected by edges that exist before

vertex N is attached. The term in (88) corresponds to the case

in which vertex i acquires a new edge. For edges that are not

present before N is attached, the products of degrees at the

two sides of such edges must be included in the calculation

of the difference between (81) and (80). To make subsequent

discussions easier to understand, we shall refer to vertex i in

(85) to (88) as a focused vertex.

In the following we shall enumerate and identify each vertex

in the network as a focused vertex. For each focused vertex,

we shall discuss their contributions to the increment. We shall

identify their contributions to the increment with the terms

in (85) up to (88). Note that vertices whose degrees have

not changed and none of their neighbors have changed their

degrees are simply ignored in the analysis, as they make no

contribution to the increment.

• Identify vertex N as a focused vertex. Its corresponding

increment is given in (83).

• Identify vertex V as a focused vertex. The degree of V
before and after vertex N is added is X and X + 1,

respectively. The degrees of V ’s existing neighbors may

change from Yj to Yj + Uj . In addition, V has a new

neighbor. The new edge between N and V contributes

(X+1)
(

1 +
∑X

i=1 Ui

)

to the increment. This increment

corresponds to (88). The degree change of V contributes

1 ·∑X
i=1(Yi+Ui). This corresponds to (86) and (87). The

degree changes of V ’s neighbors contribute X
∑X

i=1 Ui.

This corresponds to (85). Combining the above, the total

increment due to the identification of V as a focused

vertex is

(X+1)

(

1 +
X
∑

i=1

Ui

)

+1·
X
∑

i=1

(Yi+Ui)+X ·
X
∑

i=1

Ui. (89)

• Identify an existing neighbor of V , say vertex Vi, as a

focused vertex. If Vi is attached to N , the new edge

between these two vertices produces a contribution of

(Yi + 1)Ui ·
(

1 +
∑X

j=1 Uj

)

. This corresponds to (88).

The change of degree of Vi produces a contribution

of Ui

∑Yi

j=1 Zij through the edges between Vi and its

existing neighbors. This increment corresponds to (86).

Now consider Vi’s neighbors. Consider the possibility

that Vi’s neighbors may change their degrees. One of

Vi’s neighbor is V , which surely changes its degree. This

causes an increment
∑X

i=1(Yi+Ui) ·1. This corresponds

to the sum of terms in (85) and (87). In addition, suppose

that there exists a vertex Vj such that Vi, Vj and V form

a triangle and Vj also establishes a new edge with N .

This case causes increments of amount

X
∑

i=1

X
∑

j=1

AViVj
UjYi
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and amount
X
∑

i=1

X
∑

j=1

AViVj
UjUi.

These increments correspond to (85) and (87), respec-

tively. Overall, the total increment due to the neighbors

of V is

X
∑

i=1

(Yi + 1)Ui ·



1 +

X
∑

j=1

Uj



+

X
∑

i=1

Ui

Yi
∑

j=1

Zij

+

X
∑

i=1

X
∑

j=1

AViVj
Uj(Yi + Ui) + 1 ·

X
∑

i=1

(Yi + Ui).

(90)

• Consider the neighbors of Vi. One of Vi’s neighbors

clearly is V . The neighbors of Vi can be another neighbor

of V besides Vi, say Vj , if Vi, V and Vj form a triangle.

Finally the neighbors of Vi can be a vertex that is neither

V nor a neighbor of V . Since the first two cases have

been analyzed already, we consider the last case. Consider

the jth neighbor of Vi. Denote this vertex by Vij . Now

identify vertex Vij as a focused vertex. Since Vij is not a

neighbor of V , the degree of Vij must be unchanged after

N is introduced to the network. However, Vij’s neighbor,

vertex Vi, has a degree change of Ui. Thus, the edge

between Vij and Vi produces an increment of Zij ·Ui. This

increment corresponds to the term in (85). The increment

is
X
∑

i=1

Ui

Yi
∑

j=1
Vj 6=V

Zij(1−AVijV ). (91)

To see the correspondence between (91) and (85), one

must identify Zij and Ui in (91) with Xi and ∆Yij in

(85), respectively.

To derive a balance equation, one needs to derive expec-

tations for (83), (89), (90) and (91). Before deriving the

expectations, we first simplify the sum of (83), (89), (90) and

(91). It is a routine task to show that the sum is

2(X + 1)

(

1 +

X
∑

i=1

Ui

)

+2

(

1 +

X
∑

i=1

Ui

)(

X
∑

i=1

(Yi + 1)Ui

)

+2

X
∑

i=1

Ui

Yi
∑

j=1

Zij + 2

(

X
∑

i=1

(Yi + Ui)

)

+
X
∑

i=1

X
∑

j=1

AViVj
Uj(Yi + Ui)

−
X
∑

i=1

Ui

X
∑

j=1

YjAViVj
. (92)

One rewrites the difference between the last two terms in (92)

as
X
∑

i=1

X
∑

j=1

AViVj
Uj(Yi + Ui)−

X
∑

i=1

Ui

X
∑

j=1

YjAViVj

= 2

X
∑

i=1

X
∑

j=1

UiUj

2
AViVj

.

Substituting the above identity into (92), we obtain the total

increment

2(X + 1)

(

1 +

X
∑

i=1

Ui

)

+2

(

1 +

X
∑

i=1

Ui

)(

X
∑

i=1

(Yi + 1)Ui

)

+2

X
∑

i=1

Ui

Yi
∑

j=1

Zij + 2

(

X
∑

i=1

(Yi + Ui)

)

+2

X
∑

i=1

X
∑

j=1

UiUj

2
AViVj

. (93)

We now derive the expectation of (93). Using conditional

expectations, it is easy to show that

E

[

X
∑

i=1

YiUi

]

= pE

[

X
∑

i=1

Yi

]

= pα(t). (94)

Similarly, using conditional expectations, it is easy to show

that

E





X
∑

i=1

Ui

Yi
∑

j=1

Zij



 = pE





X
∑

i=1

Yi
∑

j=1

Zij



 = pw(t). (95)

The second equalities in (94) and (95) are due to (3) and (4)

respectively. In addition, using conditional expectations, we

have

E

[

X

X
∑

i=1

Ui

]

= E

[

E

[

X

X
∑

i=1

Ui

]∣

∣

∣

∣

∣

X

]

= E [E[X · a ·X|X]]

= pα(t). (96)

Finally, using conditional expectations, we have

E





X
∑

i=1

X
∑

j=1

UiUjYj





= E









X
∑

i=1

X
∑

j=1

UiUjYj

∣

∣

∣

∣

∣

∣

X









= E





X
∑

i=1

X
∑

j=1

E[Yj |X]E[UiUj |X]





= aE

[

X
∑

i=1

Yi

]

+ E





X
∑

i=1

X
∑

j=1,j 6=i

E[Yi|X] · p2




= pE

[

X
∑

i=1

Yi

]

+ p2E

[

(X − 1)
X
∑

i=1

E[Yi|X]

]

= pα(t) + p2(w(t)− α(t)), (97)
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where we use (3) and (4) in the last identity.

With (39), (94), (95), (96) and (97), it is not difficult to

show that the expectation of (93) is

2 ·
(

p2w(t) + pw(t) + (1 + 4p− p2)k(t)

+(1 + 3p)α(t) + p2τ(t) + 1
)

. (98)

From (98), we obtain the following balance equation

(m0 + t+ 1)w(t+ 1) = (m0 + t)w(t)

+2
(

p2w(t) + pw(t) + (1 + 4p− p2)k(t)

+(1 + 3p)α(t) + p2τ(t) + 1
)

. (99)

This difference equation can be approximated by the follow-

ing first-order linear differential equation

w′(t) =
2

m0 + t+ 1

((

p2 + p− 1

2

)

w(t)

+(1 + 4p− p2)k(t) + (1 + 3p)α(t)

+p2τ(t) + 1

)

(100)

with initial condition

w(0) = (m0 − 1)3. (101)

Applying the technique of integrating factors, the solution of

(100) can be written as

w(t) = (m0 + t+ 1)2p
2+2p−1

(

c+

2

∫

(m0 + t+ 1)−2p2−2p(1 + (3p+ 1)α(t) +

(1 + 4p− p2)k(t) + p2τ(t)) dt, (102)

where c is a constant to be determined from the initial

condition (101). Substituting k(t) from (18), τ(t) from (27)

and α(t) from (48) into (102), we obtain

w(t) = w1(m0 + t+ 1)2p
2+2p−1 +

w2(m0 + t+ 1)p
2+2p−1 + w3(m0 + t+ 1)3p

2−1 +

w4(m0 + t+ 1)2p−1 + w5, (103)

where constant w1 is determined from the initial condition in

(101). Constants w2 through w5 are given by

w2 = −α1(6p+ 2)p−2

w3 = 2τ1p(p− 2)−1

w4 = k1(p
2 − 4p− 1)p−2 −

k1(3p+ 1)(p2 − 4p− 2)p−4 − 3k1(2− 3p)−1

w5 =
4p2 − 12p− 6

(2p− 1)(−2p2 − 2p+ 1)
+

(6p+ 2)(2p2 − 4p− 6)

(2p− 1)(−p2 − 2p+ 1)(−2p2 − 2p+ 1)
−

12p3

(2p− 1)(1− 3p2)(−2p2 − 2p+ 1)
.

The solution in (103) is not valid for p =
0, 1/2, 2/3, 1/

√
3,
√
2 − 1 and (

√
3 − 1)/2, which is

the positive root of 2p2 + 2p− 1 = 0. For p = 0, substituting

k(t), τ(t) and α(t) from (18), (33), and (51) respectively into

(102), we obtain

w(t) = (m0 + t+ 1)−1
(

c17 + 18t+ 2k1(log(m0 + t+ 1))2

+2(−6 + k1 + c6 − 6m0) log(m0 + t+ 1)
)

. (104)

For p = 1/2, substituting k(t), τ(t) and α(t) from (21),

(31), and (52) respectively into (102), we obtain

w(t) = 1856 + 133c1 −
2c2

3(m0 + t+ 1)1/4

−20c7(m0 + t+ 1)1/4 + c18
√
m0 + t+ 1

+266 log(m0 + t+ 1). (105)

For p = 2/3, substituting k(t), τ(t) and α(t) from (18),

(34), and (48) respectively into (102), we obtain

w(t) =
−1578
11

+
4807k1 − 88

88
(m0 + t+ 1)1/3

−297α1(m0 + t+ 1)7/9 + c19(m0 + t+ 1)11/9

−2k1(m0 + t+ 1)1/3 log(m0 + t+ 1). (106)

For p = 1/
√
3, substituting k(t), τ(t) and α(t) from (18),

(32), and (48) respectively into (102), we obtain

w(t) = (m0 + t+ 1)(−3+2
√
3)/3

(

c20 +

(m0 + t+ 1)−2(1+
√
3)/3

−38 + 21
√
3

×
(

(492 + 242
√
3 + 2(−8 + 5

√
3)c3)(m0 + t+ 1)−

(374− 143
√
3)k1(m0 + t+ 1)2/

√
3 −

(150− 102
√
3)α1(m0 + t+ 1)(1+2

√
3)/3 +

+12(1− 2
√
3)(m0 + t+ 1) log(m0 + t+ 1)

))

. (107)

For p =
√
2−1, substituting k(t), τ(t) and α(t) from (18),

(27), and (53) respectively into (102), we obtain

w(t) = (m0 + t+ 1)3−2
√
2

(

c21 + 2×
(

(−65 + 46
√
2)τ1(m0 + t+ 1)5−4

√
2

−119 + 84
√
2

+

(−295 + 218
√
2)k1(m0 + t+ 1)−6+4

√
2

2(−65 + 46
√
2)

+

(68− 3
√
2 + (812− 574

√
2)c8(m0 + t+ 1)−3+2

√
2

2(379− 268
√
2)

+

56(−38 + 27
√
2)(m0 + t+ 1)−3+2

√
2 log(m0 + t+ 1)

2(379− 268
√
2)

))

.

(108)

When p is (
√
3−1)/2, it follows that 2p2+2p−1 = 0 and

the coefficient of w(t) on the right side of (100) vanishes. In



12

this case, the differential equation can be solved by integration.

That is,

w(t) = c22 +
(m0 + t+ 1)−(4+3

√
3)/2

9812− 5665
√
3

×
(

−22(−362 + 209
√
3)τ1(m0 + t+ 1)4+

22(1481− 855
√
3)α1(m0 + t+ 1)1+2

√
3 +

(74798− 43303
√
3)k1(m0 + t+ 1)5

√
3/2 −

176(9− 5
√
3)(m0 + t+ 1)(4+3

√
3)/2 log(m0 + t+ 1)

)

.

(109)

Constants c17 through c22 in Eqs. (104) through (109) are all

determined by the initial condition in (101).

V. ASYMPTOTIC ANALYSIS

In this section we derive an asymptotic analysis for the

clustering coefficient and the degree correlation coefficient. We

begin with the clustering coefficient in (14). We approximate

the functions k(t), τ(t) and α(t) by keeping the dominant

terms. Specifically, from (18), (27) and (48), we have

k(t) ≈
{

k1t
2p−1 p > 1/2

k2 p < 1/2,
(110)

τ(t) ≈







τ1t
3p2−1 p > 2/3

τ2t
2p−1 1/2 < p < 2/3

τ3 p < 1/2,

(111)

α(t) ≈
{

α1t
p2+2p−1 p >

√
2− 1

α3 p <
√
2− 1.

(112)

In the above approximations we have approximated m0+t+1
by t, since we consider very large t. We also note that

although τ(t) and α(t) have different expressions in (32),

(33) and (51) when p is 0 or 1/
√
3, the approximations in

(111) and (112) remain valid for these special values of p. We

substitute approximations (110), (111) and (112) into (14) and

approximate C by Ca, where

Ca ≈



















(2τ1/α1)t
3p2−1−(p2+2p−1) p > 2/3

(2τ2/α1)t
(2p−1)−(p2+2p−1) 1/2 < p < 2/3

(2τ3/α1)t
−(p2+2p−1)

√
2− 1 < p < 1/2

2τ3/(α3 − k2) p <
√
2− 1.

(113)

The clustering coefficient at the special points of p can be

approximated using (21), (31), (34), (52), (53). We have

Ca ≈











(4k1/α1)t
−4/9 log(t) p = 2/3

12 log(t)
c7t1/4

p = 1/2
2τ3

4(5+4
√
2) log(t)

p =
√
2− 1.

(114)

From (113) and (114), it follows that as t approaches infinity,

the limiting clustering coefficient is

C ≈











1 p = 1
3p(p2+2p−1)
(2p+1)(3p2−1) 0 < p <

√
2− 1

0 otherwise.

Numerical calculations show that the limiting clustering coef-

ficient is between zero and one. For p between 0 and
√
2− 1,

the maximum is 0.2743 and occurs at p = 0.2181.

Next we derive an approximation for the degree correlation

coefficient in (58). From (110) and (112) we approximate

α(t)/k(t), i.e.

α(t)

k(t)
≈











α1

k1
tp

2

p > 1/2
α1

k2
tp

2+2p−1
√
2− 1 < p < 1/2

α2

k2
p <
√
2− 1.

(115)

From (72) and (103) we approximate β(t) and w(t) as follows

β(t)

k(t)
≈







β1t
p3+p/k1 p > 1/2

β1t
(p3+3p−1)/k2 r < p < 1/2

β4/k2 p < r,

(116)

where r is defined in (76), and

w(t)

k(t)
≈







w1t
2p2

/k1 p > 1/2

w1t
(2p2+2p−1)/k2 (

√
3− 1)/2 < p < 1/2

w5/k2 p < (
√
3− 1)/2.

(117)

We note that although β(t) and w(t) have different expressions

when p is 0 or 1/
√
3, the approximations above remain valid

for these two special values of p. Substituting (115), (116) and

(117) into (58), we approximate ρ by ρa, where

ρa ≈


























































(w1/k1)t
2p2−(α1/k1)

2t2p
2

(β1/k1)tp
3+p−(α1/k1)2t2p

2 p > 1/2

(w1/k2)t
2p2+2p−1−(α1/k2)

2t2(p
2+2p−1)

(β1/k2)tp
3+3p−1−(α1/k2)2t2(p

2+2p−1)

√
2− 1 < p < 1/2

(w1/k2)t
2p2+2p−1−(α3/k2)

2

(β1/k2)tp
3+3p−1−(α3/k2)2

(
√
3− 1)/2 < p

<
√
2− 1

(w5/k2)−(α3/k2)
2

β1tp
3+3p−1/k2−(α3/k2)2

r < p

< (
√
3− 1)/2

(w5/k2)−(α3/k2)
2

(β4/k2)−(α3/k2)2
p < r.

(118)

At other special points of p, the degree correlation is approx-

imately equal to

ρa ≈











c19−α2
1/k1

β1
t−2/27 p = 2/3

(c11/c18)t
−1/8 p = 1/2

(c21/c10)t
14−10

√
2 p =

√
2− 1.

(119)

It follows from (118) and (119) that

ρa ≈











(w1/k1)−(α1/k1)
2

−(α1/k1)2
p > 1/2

0 r < p < 1/2
(w5/k2)−(α3/k2)

2

β4/k2−(α3/k2)2
p < r

(120)

as t goes to infinity.

VI. NUMERICAL AND SIMULATION RESULTS

In this section we present numerical and simulation results

to verify our analysis. First, we simulate the duplication model

one hundred times and calculate the mean degree and the

expected number of triangles per vertex. Ninety-five percent
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confidence intervals were collected based on the repeated

simulation of one hundred times. We choose m0 = 4.

We first compare the numerical evaluation of the clustering

coefficient with the simulation result. The results with p = 0.3
and p = 0.6 are shown in Figure 3. As one can see, the

analytical result is very accurate. This accuracy holds for other

values of p as well.

We compare the numerical evaluation of β(t) and w(t)
shown in (72) and (103) with simulation. The results are

shown in Figure 4 and Figure 5, respectively. We study the

accuracy of the approximation of E[X̃ν ] in (56) for ν = 1, 2.

The result is shown in Figure 6. These figures show that

the numerical results and approximation are very close to

the simulation results. Finally, we show the Pearson degree

correlation coefficients for p = 0.3 and 0.6 in Figure 7. There

is an obvious discrepancy at early times. However, as time

goes on, the discrepancy diminishes. As argued in Section II,

one possible explanation for this is that the two identities in

Lemma 3 would (approximately) hold for the random network

from Chung’s duplication model as t goes to infinity.

Finally we study the accuracy of approximating clustering

coefficients and degree correlation coefficients by their asymp-

totic formulae. For a specific value p and t, we define the

relative approximation error for the clustering coefficient to

be ∣

∣

∣

∣

C − Ca

C

∣

∣

∣

∣

,

where C is the analytic solution using differential equations

and Ca is obtained from (113) and (114). Our numerical

experience indicates that for some values of p, the most

dominant term in C can be quite close to the second dominant

term. It takes very large t for the asymptotic approximation to

be close to the analytic result. For these large values of t, the

computation time and storage requirements can be enormous

and impractical. Our study has established that analytical

results are very close to simulation results when t is large.

Thus, we have not compared asymptotic results with simula-

tion results. Instead, we compare the asymptotic results with

analytical results. The result is shown in Figure 8 and Figure 9.

As shown in these figures, as t becomes large, the asymptotic

approximation improves. However, for p in the neighborhood

of one of its special values, the accuracy improves very slowly.

We numerically compute the first time that the relative error of

the clustering coefficient and the degree correlation coefficient

reaches ten percents, five percents and one percent. The result

is shown in Figure 10. From this figure, we see that the time to

reach small relative errors can be very large, especially when

p is close to one of its special values. The accuracy of the

approximation depends not only on the most dominant terms,

but also on the second dominant terms. We illustrate this point

using the clustering coefficient as an example. Consider the

approximation of τ(t) in the neighborhood of p = 2/3. From

(111) the first two terms on the right side are the the most

dominant term and the second dominant term, respectively,

of τ(t) depending on whether p is greater than or less than

2/3. From (28) and (29), p = 2/3 is a singlar point of the

coefficients of the two terms. Thus, the most dominant term

and the second dominant term both have a large coefficient in

the neighborhood of p = 2/3. In addition, the exponents of

the dominant term and the second dominant term are equal at

p = 2/3. These two factors imply that it takes a long time to

compute τ(t) accurately using only the most dominant term

when p is near 2/3.
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Fig. 3. Clustering coefficients as a function of time with p = 0.3 and 0.6.

Fig. 4. β(t) as a function of time with p = 0.3 and 0.6.

Fig. 5. w(t) with p = 0.3 and 0.6.

VII. CONCLUSIONS

Duplication models have been used successfully to study

biological networks and social networks. In this paper, we first

derived some identities that relate the degree of a randomly

selected vertex and those of its neighbors in a simple undi-

rected network. These identities were used to derived closed-

form expressions for the clustering coefficient and Pearson

degree correlation coefficient of the duplication model. These

identities can potentially be applied to other problems and are

of independent interest. The two identities in (5) and (6) that

were used to the Pearson degree correlation coefficient involve
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Fig. 6. E[X̃] and E[X̃2]. p = 0.6.

Fig. 7. Pearson degree correlation coefficients as a function of time with
p = 0.3 and 0.6.
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Fig. 8. Asymptotic analysis of the clustering coefficient.

0.01 0.1 0.2 0.3 0.4 0.51 0.6 0.7 0.8 0.95
10

−20

10
−10

10
0

10
10

p

R
e
la

ti
v
e
 e

rr
o
r

t=10
4

t=10
8

t=10
12

Fig. 9. Asymptotic analysis of the Pearson degree correlation coefficient.
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Fig. 10. First time that the relative error of the clustering coefficient and
the degree correlation coefficient reaches ten percents, five percents and one
percent.

with expected ratios of two random quantities. We approxi-

mate the expected ratio by the ratio of expected numerator and

expected denominator. This approximation works well when

the expected denominator, i.e. the mean degree, converges

as the time becomes large. The closed-form solutions for

the clustering coefficient and the Pearson degree correlation

coefficient are quite complicated and lengthy. We proposed an

asymptotical approximation by keeping only a dominant term

and ignoring the rest terms.

Through numerical and simulation study, we showed that

the numerical calculation of the clustering coefficient and

the corresponding simulation agree extremely well. For the

Pearson degree correlation coefficient there is an obvious

discrepancy at early times between the simulation results and

the numerical results. However, as time goes on, the discrep-

ancy diminishes. We numerically studied the accuracy of the

asymptotic approximation. Our numerical result indicated that

this approximation works reasonably well for only moderate

value of t. However, when the selection probability p is near

one of its special values, it can take a very large t to reach a

small relative approximation error.

Acknowledgement

This research was supported in part by the Ministry of

Science and Technology, Taiwan, R.O.C., under Contract

NSC-99-2221-E-007-079-MY3.

REFERENCES

[1] A. Bhan, D. J. Galas, and T. G. Deway. A duplication growth model of
gene expression networks. Bioinformatics, 18(11):1486–1493, 2002.

[2] S. Boccaletti, D.-U. Hwang, and V. Latora. Growing hierarchical scale-
free networks by means of nonhierarchical processes. International

Journal of Bifurcation and Chaos, 17(7):2447–2452, 2007.
[3] F. Chung and L. Lu. Complex graphs and networks. In Regional

Conference Series in Mathematics, number 107. American Mathematical
Society, 2004.

[4] F. Chung, L. Lu, and T. G. Dewey. Duplication models for biological
networks. Journal of Computational Biology, 10(5):677–687, 2003.

[5] R. Friedman and A. Hughes. Gene duplications and the structure of
eukaryotic genomes. Genome Res., 11:373–381, 2001.

[6] Z. Gu and A. Cavalcanti and F.-C. Chen and P. Bouman and w.-H. Li.
Extent of gene duplication in the genomes of drosophila, nematode, and
yeast. Mol. Biol. Evol., 19:256-262, 2002.

[7] I. Ispolatov, P. L. Krapivsky, I. Mazo, and A. Yuryev. Cliques and
duplication-divergence network growth. New Journal of Physics, june
2005.

[8] I. Ispolatov, P. L. Krapivsky, and A. Yuryev. Duplication-divergence
model of protein interaction network. Phys. Rev. E, 71:061911, Jun
2005.



15

[9] Duan-Shin Lee, Cheng-Shang Chang, Wen-Gui Ye, and Min-Chien
Cheng. Analysis of clustering coefficients of online social networks
by duplication models. In IEEE ICC 2014, Sydney, Australia.

[10] M. Newman. Networks: An Introduction. Oxford, 2010.
[11] S. Ohno. Evolution by Gene Duplication. Springer, New York, 1970.
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