
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 1

Tracking Network Evolution and Their
Applications in Structural Network Analysis

Tsunghan Wu, Cheng-Shang Chang, Fellow, IEEE, and Wanjiun Liao, Fellow, IEEE

Abstract—Structural network analysis, including node ranking, community detection, and link prediction, has received a lot of attention
lately. In the literature, most works focused on the structural analysis of a single network. In this paper, we are particularly interested in
how the network structure evolves over time. For this, we propose a general framework to track, model, and predict the dynamic
network structures. Unlike some recent works that directly tracks the adjacency matrices of the networks, our framework utilizes the
spectral graph theory to track the latent feature vectors obtained by a low-rank eigendecomposition of the Laplacian matrices of the
networks. We then use the Finite Impulse Response (FIR) filter to model the evolution of the latent feature vector of each node. By
solving a ridge regression problem, the parameters of the FIR filter can be learned and used for predicting the future network
structures, including node ranking, community detection, and link prediction. To test the effectiveness of our framework, we perform
various experiments based on our synthetic datasets and three real-world datasets. Our experimental results show that our framework
is very effective in tracking latent feature vectors and predicting future network structures.

Index Terms—Network evolution, link prediction, community detection

F

1 INTRODUCTION

A S online social networks become very popular in peo-
ple’s social life, structural analysis of networks has

received a lot of attention lately. There are several important
research topics in structural analysis of networks, including
(i) centrality measures and node ranking [1], [2], [3], (ii)
community detection and clustering [4], [5], [6], and (iii)
similarity measures and link prediction [7]. In the literature,
most works on structural network analysis are based on a
single snapshot of a network. In this paper, we are particu-
larly interested in how the network structure evolves over
time by observing a sequence of networks indexed in time.
Specifically, we ask the following two questions:

(i) Given a sequence of time-varying networks
{G(t), t ≥ 0}, what is the essential information (in
a latent space) that we need to track for network
structural analysis such as community detection, link
prediction, and node ranking?

(ii) Given a sequence of time-varying networks
{G(t), t = 0, 1, . . . , T − 1}, how can we predict the
network structure at time T ?

For the second question, most of the works in the lit-
erature focused on one specific objective of network struc-
tural analysis, e.g., link prediction [8], [9], [10], community
analysis [11], [12], [13], evolutionary clustering [14], [15], or
community evolution [16], [17], [18], [19], [20]. One common

• T. Wu is with the Graduate Institute of Electrical Engineering, National
Taiwan University, Taipei, Taiwan, R.O.C.
E-mail: d99921033@ntu.edu.tw

• C.-S. Chang is with the Institute of Communications Engineering, Na-
tional Tsing Hua University, Hsinchu 300, Taiwan, R.O.C.
E-mail: cschang@ee.nthu.edu.tw

• W. Liao is with the Department of Electrical Engineering, National
Taiwan University, Taipei, Taiwan, R.O.C.
E-mail: wjliao@ntu.edu.tw

Manuscript received Month Day, Year; revised Month Day, Year.

approach is to track some measures of the networks over
time and use these measures to discover various properties
of evolving networks [21], [22], [23]. Another approach is
to model the dynamic evolutionary patterns from tracking
network measures [24], [25]. All these approaches lack a
general model to address the second question.

On the other hand, for the first question, there are many
works on dynamic network analysis [10], [26], [27], [28], [29],
[30]. Among these works, the latent space approaches in
[10], [27] are of particular interest to us. Sarkar and Moore
[27] extended the latent space approach in [31] for a static
link prediction model to a dynamic network model. There
they used a Hidden Markov Model (HMM) for modeling
network evolution. Under the Markovian assumption, one
can then use the matrix factorization approach to find the
latent vectors for each time t. Instead of using the Markov
assumption, a joint matrix factorization problem is proposed
in [10] to find the latent vectors jointly for all t (Problem
1 in [10]). For such a problem, they proposed the block-
coordinate gradient descent (BCGD) algorithm to obtain
a local optimum of the problem. Both works [10], [27]
used the adjacency matrices of networks to obtain the latent
vectors via matrix factorization. Using the adjacency matrices
might be reasonable for the link prediction problem targeted
in these two papers. But it lacks theoretical supports for
detecting the structure of a network.

Motivated by the success of the spectral graph theory
(see e.g., [32], [33]) in community detection and clustering,
in this paper we propose using the Laplacian matrices of
networks to obtain the latent feature vectors. In comparison
with the adjacency matrix, there are several advantages of
the Laplacian matrix:

(i) The Laplacian matrix of a network is positive
semidefinite and has an exact matrix factorization
[32]. As such, the error of a low-rank matrix factor-

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 2

ization can be theoretically bounded by a function
of its eigenvalues.

(ii) The number of components in a network is exactly
the same as the number of zero eigenvalues of its
Laplacian matrix. As such, the number of eigen-
values that are close to 0 is related to the community
structure of a network. In particular, the second
smallest eigenvector of the Laplacian matrix can be
used for finding a good graph cut [33].

(iii) The resistance distance obtained from the pseudo-
inverse of the Laplacian matrix [32] is a more ef-
fective dissimilarity measure than the geodesic dis-
tance obtained from the adjacency matrix (as the
geodesic distance between two nodes in a network
is only a positive integer bounded by the network
diameter).

For a sequence of networks {G(t), t ≥ 0} with n (common)
nodes, our specific steps to address these two problems are
as follows:

(S1) For each time t, use a low-rank eigendecomposition
(with rank K) for the Laplacian matrix of the net-
work at time t to learn a 1×K feature vector Zi(t)
for each node i at time t.

(S2) Use the Finite Impulse Response (FIR) filter to
track/learn the dynamics of the feature vectors
{Zi(t), t = 0, 1, . . . , T − 1}.

(S3) Use the learned dynamics to predict the feature
vectors of all the n nodes, i.e., Zi(T), i = 1, 2, . . . , n.

(S4) Use the predicted feature vectors for various ap-
plications of network analysis (e.g., link prediction,
community prediction, and node ranking).

To the best of our knowledge, our work is the first one
to propose a general framework that uses the Laplacian
matrices of observed networks for the structural analysis
of dynamic networks, including link prediction, community
prediction, and node ranking. To test the effectiveness of our
framework, we conduct various experiments on synthetic
datasets and three real-world datasets, including Haggle,
Infectious and Reality Mining obtained from the Koblenz
Network Collection [34]. The synthetic datasets are gen-
erated by using the well-known stochastic block model
with ground-truth communities and migrating users. Our
experimental results for the synthetic datasets show that
the feature vectors of migrating users can be tracked by
an FIR filter with a proper order and these feature vectors
also reveal the communities of the migrating users. For the
link prediction problem, we compute the cosine similarity
of the predicted latent vectors of two nodes. In comparison
with the common-neighbor (CN) approach in the literature
[35], our top-k predictor significantly outperforms that from
the CN approach for migrating users. For the three real-
world datasets, there are no ground-truth communities. As
such, we compare our predicted community structure at
time T with that from the spectral clustering algorithm
[36], [37], [38] with a known adjacency matrix at time
T . Our experimental results also show that the predicted
community structure matches extremely well with that from
the spectral clustering algorithm with a known adjacency
matrix. For the link prediction problem, our top-k predictor

still outperforms that from the CN approach for these three
datasets. For the node ranking problem, our method is very
effective in predicting/tracking important nodes in terms
of the (refined) closeness centrality ([33], eq. (7.30)). In
particular, for the Infectious dataset, the precision is roughly
80% for the top-15 predictor and over 60% for the top-5
predictor for most of the time.

The rest of this paper is organized as follows: In Section
2, we use the spectral theory and the FIR filter to track
and predict the network evolution. We then discuss how
our framework can be used for various structural analyses,
including tracking community evolution, link prediction,
and node ranking in Section 3. To test the effectiveness of
our framework, we conduct various experiments in Section
4. Finally, we conclude the paper in Section 5, where we also
discuss possible future research topics.

2 TRACKING NETWORK EVOLUTION

2.1 Review of the Spectral Graph Theory

In this section, we briefly review the spectral graph theory
and introduce the notations that we will use in this paper.
For more details of the spectral graph theory, we refer to the
books [32], [33]. Consider an undirected graph G = (V,E)
with the set of nodes V and the set of edges E. Let n = |V |
be the total number of nodes, m = |E| be the total number
of edges, and wi, i = 1, 2, . . . , n, be the degree of node i.
Also, let A be the n × n adjacency matrix of the graph G,
where its (i, j)th element is 1 if (i, j) is an edge in E and
0 otherwise. The (graph) Laplacian of G, denoted by L, is
defined as D − A, where D = diag(w1, w2, . . . , wn) is the
n× n diagonal matrix with the diagonal elements being the
degrees of the n nodes. It is well-known that the Laplacian
L is symmetric and positive semi-definite. As such, all its
n eigenvalues, λi, i = 1, 2, . . . , n, are nonnegative. In this
paper, we order the n eigenvalues such that

λ1 ≤ λ2 ≤ . . . ≤ λn.

Moreover, there exists an orthonormal basis of n×1 column
vectors {Z1,Z2, . . . ,Zn} such that Zi is the eigenvector of
L corresponding to the eigenvalue λi, i.e.,

LZi = λiZi.

As such, the Laplacian has the following eigendecomposi-
tion:

L =
n∑
i=1

λiZiZ
T
i , (1)

where ZTi is the transpose of Zi.
It is well-known (see e.g., [33]) that the smallest eigen-

value, λ1, is 0, and Z1 is the n × 1 column vector with all
its elements being 1/

√
n. If, furthermore, the graph G is

connected, then the second smallest eigenvalue, λ2, known
as the algebraic connectivity, is always positive. Thus, for a
connected graph, one can define the pseudo-inverse of the
Laplacian L as follows:

Γ =
n∑
i=2

1

λi
ZiZ

T
i . (2)

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 3

The resistance distance between two nodes u and v, denoted
by du,v , is then defined as

du,v = (Γ)u,u + (Γ)v,v − 2(Γ)u,v, (3)

where (Γ)u,v is the (u, v)th element of the matrix Γ. Using
(2) yields

du,v =
n∑
i=2

(zi,u − zi,v)2

λi
, (4)

where zi,u is the uth element of the vector Zi. The resistance
distance is known to be a metric that satisfies the triangular
inequality. Let

εK = 2
n∑

i=K+1

1

λi
.

Since ||Zi|| = 1, we have (zi,u−zi,v)2 ≤ 2. Then it is easy to
see from (4) that one can approximate the resistance distance
du,v by

d̂u,v =
K∑
i=2

(zi,u − zi,v)2

λi
(5)

such that
d̂u,v ≤ du,v ≤ d̂u,v + εK . (6)

The approximation error in (6) holds for any pair of two
nodes. This suggests that one can approximate the resistance
distance within the error bound εK by using the first K
smallest eigenvalues and their corresponding eigenvectors
of the Laplacian.

2.2 Modeling the System Dynamics

In this section, we propose our approach for tracking
the evolution of a sequence of time-varying networks
{G(t), 0 ≤ t ≤ T − 1}. In view of the spectral theory dis-
cussed in the previous section, one can recover the Laplacian
of a graph by using the eigendecomposition in (1). Thus, if
we can track all the eigenvectors and the eigenvalues of a
sequence of networks {G(t), 0 ≤ t ≤ T − 1}, then we can
recover the whole sequence of networks. However, tracking
all the eigenvectors and the eigenvalues is very costly. For
certain applications, such as community detection, link pre-
diction, and node ranking, what we need is a distance metric
between any pair of two nodes. As discussed in the previous
section, such a distance metric can be well approximated by
looking at the first K smallest eigenvalues and their corre-
sponding eigenvectors of the Laplacian. Rooted in this, our
approach for tracking the evolution of a sequence of time-
varying networks {G(t), 0 ≤ t ≤ T−1} is to track the firstK
smallest eigenvalues and the corresponding eigenvectors of
the Laplacian matrices of these graphs. For this, we let λi(t)
be the ith smallest eigenvalue of the Laplacian of the graph
G(t) and Zi(t) be the corresponding eigenvector. Also, let
zi,k(t) be the kth element of Zi(t). Ideally, if the sequence
of networks evolves slowly, then one might expect that the
ith smallest eigenvalue and its corresponding eigenvector
also evolve slowly and thus the order of the first K smallest
eigenvalues/eigenvectors remains unchanged with respect
to time. This is the assumption that we will use in this
paper. Even under such an assumption, there is still a
subtle problem that needs to be resolved. In the process

of solving the eigendecomposition for the Laplacian of the
graph G(t), both Zi(t) and −Zi(t) are eligible for being the
corresponding eigenvector of the eigenvalue λi(t). For the
purpose of tracking network evolution, we first compute the
correlation between Zi(t+ 1) and Zi(t). If the correlation is
nonnegative, then we select Zi(t + 1). On the other hand,
if the correlation is negative, then we select −Zi(t + 1). We
note that the sign of the correlation between Zi(t + 1) and
Zi(t) is the same as the sign of the inner product of these
two vectors, i.e., Zi(t+ 1)TZi(t). It is easy to see that this is
equivalent to choosing

Zi(t+ 1) = argminZ∈{Zi(t+1),−Zi(t+1)}||Z − Zi(t)||.

To track the network evolution, we need to identify a
system model for the dynamics of the time series of these
eigenvalues and eigenvectors. Such a problem is known as
the system identification problem in the literature [39]. One of
the most commonly used models for system identification
problems is the linear system model. As such, we consider
the Finite Impulse Response (FIR) filter (one of the simplest
linear system models) for tracking each eigenvalue and
each element in the eigenvectors. Specifically, we form the
estimate {ẑi,k(t), t = 0, 1, . . . , T −1} by finding the impulse
response αi,k,j , j = 1, 2, . . . , J (for some J) and the bias bi,k
such that for t = J, . . . , T − 1,

ẑi,k(t) = αi,k,1zi,k(t− 1) + αi,k,2zi,k(t− 2) + . . .

+αi,k,Jzi,k(t− J) + bi,k. (7)

The best estimate can be solved by the following ridge
regression.

min
αi,k,j ,bi,k

T−1∑
t=J

(
zi,k(t)− ẑi,k(t)

)2
+ γ

J∑
j=1

‖αi,k,j‖22, (8)

where γ is the regularization parameter. Similarly, for track-
ing the K eigenvalues, we form the estimate {λ̂i(t), t =
0, 1, . . . , T − 1} by finding the impulse response βi,j , j =
1, 2, . . . , J and the bias ci such that for t = J, . . . , T − 1,

λ̂i(t) = βi,1λi(t− 1) + βi,2λi(t− 2) + . . .

+βi,Jλi(t− J) + ci. (9)

Once again, the best estimate can be solved by the following
ridge regression.

min
βi,j ,ci

T−1∑
t=J

(
λi(t)− λ̂i(t)

)2
+ γ2

J∑
j=1

‖βi,j‖22, (10)

where γ2 is the regularization parameter.
We note that one can choose a much more complicated

model than the FIR model proposed here. For instance,
we solve the ridge regression problem in (7) separately for
each dimension. One possible generalization is to solve the
ridge regression problem jointly in the matrix form. But
this not only increases the number of variables but also
increases the computational cost. Also, according to several
experimental results of ours, it seems that the evolution of
the latent feature in one dimension is uncorrelated to that in
another dimension. As such, using a matrix model for the
regression problem is not recommended as it does not gain
too much regarding the accuracy of the predicted feature

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 4

vectors. We also note that the first-order Markov assumption
used in [10] might not be good enough for modeling social
networks. From various experiments of ours, it seems that
human behaviors are not just affected by their latest actions,
and better predictive results can be obtained by increasing
the order of the FIR filter to be more than 1. On the other
hand, human behaviors are more likely to be influenced by
recent events than old (obsolete) events, and the influence
of an old event is generally discounted very quickly over
time. As such, we believe that using the FIR filter should
be enough to model the evolution of online social networks,
and there is no need to use more complicated IIR filters.

We also note that the order of the eigenvectors might be
changed occasionally in practice. When this happens, there
is a transient period before our approach can regain its
tracking capability.

2.3 Prediction of Network Evolution

Once we solve the ridge regressions in (8) and (10), we
have all the needed parameters for modeling the system
dynamics. As such, we can then use these for predicting
the eigenvectors/eigenvalues of the network at time T .
Specifically, we form the following estimates

ẑi,k(T) = αi,k,1zi,k(T − 1) + αi,k,2zi,k(T − 2) + . . .

+αi,k,Jzi,k(T − J) + bi,k, (11)

and

λ̂i(T) = βi,1λi(T − 1) + βi,2λi(T − 2) + . . .

+βi,Jλi(T − J) + ci. (12)

In view of (5), we can form the estimate of the resistance
distance between two nodes u and v at time T by using

d̂u,v(T) =
K∑
i=2

(ẑi,u(T)− ẑi,v(T))2

λ̂i(T)
. (13)

The details of our proposed approach for track-
ing/predicting time-varying graphs is shown in Algorithm
1.

2.4 Computational Complexity

Now we discuss the computational complexity of Algorithm
1. The time complexity for computing the degree of each
node in Step (0) is O(n2) and that for the eigendecompo-
sition in Step (1) is O(n3) [40], where n is the number of
nodes in each network. In Step (2), the complexity of the
dot product for the K eigenvectors is O(nK). In general,
K is much smaller than n. Since there are T networks,
the computational complexity for step (0), (1) and (2) is
O(Tn3). The time complexity for ridge regression and
computing the resistance distances for all node pairs is
O([(T − J)J2 + J3]nK) and O(Jn + n2K), respectively.
As J is much smaller than T , the overall computational
complexity is O(Tnmax[n2, J2K]).

ALGORITHM 1: The Tracking Algorithm for Time-
Varying Graphs

Input: A sequence of networks in time
{G(t), 0 ≤ t ≤ T − 1} with the corresponding
adjacency matrices {A(t), 0 ≤ t ≤ T − 1}.

(0) Let D(t) = diag(w1(t), w2(t), . . . wn(t)), where
wi(t) =

∑n
j=1Ai,j(t) is the degree of node i in

G(t).
(1) Let λ1(t), λ2(t), . . . , λK(t) and
Z1(t),Z2(t), . . . ,ZK(t) be the K smallest
eigenvalues and their corresponding eigenvectors
of the Laplacian matrix D(t)−A(t) (chosen to be
orthogonal to each other).

(2) If Zi(t)TZi(t− 1) < 0, for t = 1, 2, . . . , T − 1,
then Zi(t) = −Zi(t).

(3) Solve the ridge regressions in (8) and (10) to
obtain the parameters for the FIR model for
tracking eigenvectors/eigenvalues in (7) and (9).

(4) Use the estimates in (11) and (12) to predict the
eigenvectors/eigenvalues of the network at time T .
Approximate the resistance distance between two
nodes u and v at time T by using (13).

2.5 Network Embedding and Latent Feature Vectors
In this section, we provide further insights of our tracking
algorithm in Algorithm 1 by using network embedding. For
this, let us define the latent feature vector of node u at time
t, denoted by ψu(t), as the 1 × (K − 1) row vector with its
kth element being zk+1,u(t)/

√
λk+1(t), i.e.,

ψu(t) = (
z2,u(t)√
λ2(t)

,
z3,u(t)√
λ3(t)

, . . . ,
zK,u(t)√
λK(t)

). (14)

In view of the latent feature vector in (14), we have created
a mapping from every node in G(t) to a vector in RK−1.
Such a mapping is commonly known as network embedding
in the literature. Now tracking the evolution of a sequence
of networks in time is reduced to the problem of tracking
a time series of finite dimensional vectors in a Euclidean
space. Moreover, as each latent feature vector can be used
for representing a node in a network, one can use that for
various network analyses, such as community detection,
link prediction, and node ranking (centrality). We will dis-
cuss these applications in the next section.

3 APPLICATIONS

In this section, we discuss three possible applications of our
tracking algorithm for time-varying networks: (i) tracking
community evolution, (ii) link prediction, and (iii) node
ranking.

3.1 Tracking Community Evolution
Detecting community structure in large complex networks
has been a very hot research topic since the first paper
appeared in the physics literature by Girvan and Newman
[41]. The problem of detecting community structure in large
complex networks is also known as the graph partitioning
problem that divides a graph into several disjoint sub-
graphs, called clusters, blocks, or communities. As pointed

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 5

out in the review papers in [42] and [43], many algorithms
have been developed by researchers from various research
communities, including physicists, biologists, and computer
scientists (see e.g., [44], [45], [46], [47], [48], [49] and refer-
ences therein). However, it seems that a systematic method
of tracking the evolution of communities is still lacking.

Our idea for tracking community evolution is rooted
on the spectral clustering algorithm (see e.g., [50] for a
tutorial). It is well-known (see e.g., the book [33]) that the
number of zero eigenvalues of the Laplacian of a graph
represents the number of components in that graph. As
such, if there is a significant spectral gap between the Kth

smallest eigenvalue and the (K + 1)th smallest eigenvalue
of the Laplacian of a graph, then that graph may be cut
into K communities. To detect these K communities, the
spectral clustering algorithm first embeds each node in a
graph to a latent feature vector and then applies the K-means
algorithm (see e.g., [51]) for clustering the n nodes into K
communities based on their latent feature vectors. Certainly,
one can use the latent feature vector in (14). However, for the
purpose of community detection, we consider the following
(simplified) latent feature vector

Pu(t) = (z1,u(t), z2,u(t), . . . , zK,u(t)). (15)

The differences between the latent feature vector in (14)
and that in (15) are the normalizing weights from the
eigenvalues. As such, the K-means algorithm needed for
the spectral clustering algorithm is replaced by the weighted
K-means algorithm. We believe such a replacement is not
crucial for the purpose of community detection if the net-
works are connected all the time. However, if for some time
t, a network is separated into two or more components, then
the latent feature vector in (14) cannot be used as λ2(t) = 0.
Thus, for the purpose of community detection, we believe
the latent feature vector in (15) is a better choice.

Now with the latent feature vectors in (15), we can then
apply the tracking algorithm in Algorithm 1 to track the
evolution of communities. The detailed step is outlined in
Algorithm 2. Note that for t = T , one can use the predicted
eigenvectors in (11) of the network at time T for clustering
the n nodes. Also, as the K-means algorithm is known to
be a linear lime algorithm, the computational complexity of
Algorithm 2 is also dominated by the eigendecomposition
as in Algorithm 1.

We note that for the K-means algorithm, K centroids
have to be chosen to represent K clusters at the beginning.
If the sequence of networks evolves slowly, these feature
vectors Pi(t)’s also vary slowly. As such, the centroids of
the K communities also vary slowly and one can then use
the centroids at time t − 1 as the initial centroids at time t.
However, for the choice of the initial K centroids at time 0,
we simply choose them randomly. There are several papers
that addressed the issue of choosing the initial centroids to
improve the performance of the K-means algorithm (see
e.g., [52], [53], [54], [55]).

3.2 Link Prediction

Liben-Nowell and Kleinberg [56] considered the following
problem:

ALGORITHM 2: The Spectral Clustering Algo-
rithm for Time-Varying Graphs

Input: A sequence of networks in time
{G(t), 0 ≤ t ≤ T − 1} with the corresponding
adjacency matrices {A(t), 0 ≤ t ≤ T − 1},
and the number of communities K .

Output: A sequence of partitions of sets
{S1(t), S2(t), . . . , SK(t)}.

(1) Use the tracking algorithm in Algorithm 1 to
obtain Z1(t),Z2(t), . . . ,ZK(t).

(2) Form the n×K matrix
Z(t) = (zi,j(t)) = [Z1(t),Z2(t), . . . ,ZK(t)] by
stacking these K vectors in columns.

(3) Let Pi(t) be the ith row of Z(t). Treat Pi(t) as a
feature vector in RK for node i at time t. Use the
K-means algorithm to cluster these n feature
vectors with the initial K centroids from the
partition {S1(t− 1), S2(t− 1), . . . , SK(t− 1)}.

(4) Assign node i to the set Sk(t) if row i of Z(t) is
assigned to the kth cluster by the K-means
algorithm.

Given a snapshot of a social network, can we infer which new
interactions among its members are likely to occur in the near

future?

Such a question was formulated as the link prediction prob-
lem and was addressed in [56] by considering various
“proximity” measures. The link prediction problem is cru-
cial to the success of constructing recommendation systems.
There are various methods proposed in the literature (see
e.g., the survey paper [57]), including collaborative filtering
[58], spectral graph transformation [59], tensor factorization
[8] and temporal matrix factorization [60]). Our approach
for the link prediction problem is similar to that in [56]. One
may use the approximation of the effective distance in (13)
as the proximity measure. Given a sequence of networks
{G(t), 0 ≤ t ≤ T − 1}, one can then predict the k most
likely links, called the top-k predictions, that are connected
to node i at time T by selecting the k nodes that have the
k smallest values of the approximated effective distance in
(13).

As described in the previous section, there might be a
problem for using the approximated effective distance in
(13) when a network is separated into two or more compo-
nents. When this happens, the approximated effective dis-
tance in (13) is not defined. To get around this problem, we
propose using the latent feature vector in (15) and the cosine
similarity measure as the proximity measure. Specifically,
let

P̂u(T) = (ẑ1,u(T), ẑ2,u(T), . . . , ẑK,u(T)), (16)

where ẑi,k(t) is the estimate in (11). For two nodes u and v at
time T , the cosine similarity measure is defined as follows:

sim(u, v)COS =
P̂Tu (T) · P̂v(T)∥∥∥P̂u(T)

∥∥∥ ·∥∥∥P̂v(T)
∥∥∥ . (17)

In addition to the cosine similarity measure, we note that
one can also use other similarity measures in the literature

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 6

(see e.g., [33], [61]) for the two latent feature vectors, such as
the Pearson’s correlation coefficient.

3.3 Node Ranking
Analogous to the link prediction problem, one can also ask
the following question:

Given a sequence of networks {G(t), 1 ≤ t ≤ T − 1}, can we
infer which nodes are important nodes at time T?

In order to define “important” nodes, there has to be a
method for ranking the nodes in a graph. There are various
notions of centralities that can be used for ranking nodes
in the literature (see e.g., the book [33]), including degree
centrality, eigenvector centrality, Katz centrality, PageRank
[3], closeness centrality, and betweenness centrality. As we
have already had the approximated effective distance in
(13), we define the following (refined) closeness centrality
([33], eq. (7.30)) for node u at time T as follows:

Cu(T) =
1

n− 1

∑
v 6=u

1

d̂u,v(T)
, (18)

where d̂u,v(T) is the approximated effective distance de-
fined in (13). Nodes with high closeness centrality in (18)
are then considered to be important.

4 EXPERIMENTS

4.1 Experiments on Synthetic Datasets
We first conduct our experiments on the synthetic datasets.
The main reason for doing this is to test our method in a
controllable environment so that we can gain insights of the
effects of various parameters and thus better understand
when our method could be effective.

4.1.1 Methods of Generating Synthetic Datasets
For t = 0, we first use the stochastic block model (SBM)
to generate a network with n nodes and K blocks (com-
munities or clusters). The stochastic block model is a gener-
alization of the Erdös-Rényi random graph [62] and it has
been widely used for generating random graphs that can
be used for benchmarking community detection algorithms
[63], [64]. In a stochastic block model withK blocks, the total
number of nodes in the random graph is evenly distributed
to these K blocks. The probability that there is an edge
between two nodes within the same block is pin and the
probability that there is an edge between two nodes in
two different blocks is pout. These edges are generated
independently. For our experiments, we set n = 100, K = 4,
pin = 0.8 and pout = 0.1. Specifically, nodes 0, 1, . . . , 24
are in block 0, nodes 25, 26, . . . , 49 are in block 1, nodes
50, 51, . . . , 74 are in block 2, and nodes 75, 76, . . . , 99 are in
block 3.

To model the needed network evolution, a subset of
nodes, called migrating nodes, are selected to migrate from
blocks to blocks. To ensure that the sequence of networks
evolves slowly, only a small set of migrating nodes are
selected. For our experiments, we choose the following set
of migrating nodes:

{1, 15, 29, 43, 57, 71, 85, 99}.

TABLE 1
The Blocks for Migrating Nodes at t = 0 and t = 99 Generated by

Method 1 and Method 2

Node t = 0 t = 99 (M1) t = 99 (M2)
1 0 3 3
15 0 3 2
29 1 0 0
43 1 0 1
57 2 1 0
71 2 1 0
85 3 2 1
99 3 2 1

When a migrating node moves from one block at time t to
another block at time t + 1, we remove all its edges at time
t and randomly add new edges to this migrating node at
time t + 1 according to the construction of the SBM, i.e.,
with probability pin (resp. pout) an edge is added between
this migrating node and another node in the same block
(resp. different blocks).

We consider two methods for modeling the (determinis-
tic) migrating patterns of the migrating nodes:

(i) Method 1: a migrating node in block j at time t will
migrate to block ((j + 1) mod K) at time t+ 1.

(ii) Method 2: we increase additional complexity to the
migrating pattern by allowing the migrating pattern
to be dependent on the index of a migrating node
and time. Specifically, the migrating node i in block
j at time t will migrate to block ((j + ((t mod i) +
1)) mod K) at time t+ 1.

4.1.2 Tracking Latent Feature Vectors

In this section, we report our experimental results for using
the FIR model to track the feature vectors. In our exper-
iments, we set T = 99 and J = 8 for Algorithm 1. In
Fig. 1 and Fig. 2, we compare the actual latent features
(from the feature vectors for the network at time t) and
the predicted latent features (predicted by (11)) in time.
Since K = 4, each feature vector has four latent features.
However, as discussed in Section 2.1, the values of the first
latent features are fixed constants over time (i.e., 1/

√
n or

−1/
√
n). Therefore, we only show the other three latent

features in the following figures. In Fig. 1, we show the
comparison results for node 1 (a migrating node). Since the
migrating pattern designed for Method 1 is periodic with
period 4, we expect to see that the features values are also
periodic with the same period. As shown in this figure, the
predicted values are very close to the actual values in our
experimental results. It means our FIR model can track the
evolutions of migrating nodes well. Additionally, in Fig. 2,
we show the values of feature vectors of node 0 (a non-
migrating node). As shown in this figure, the actual latent
features of this non-migrating node do not fluctuate a lot
and we also have steady predicted latent features from our
model. It is a reasonable result because non-migrating nodes
are expected to have static latent features over time. In
Fig. 3 and Fig. 4, we show similar results for the synthetic
networks generated by Method 2.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 7

(a) The 2nd latent feature (b) The 3rd latent feature (c) The 4th latent feature

Fig. 1. Comparisons of actual latent feature vectors and predicted latent feature vectors over time of node 1 (a migrating node) for Method 1.

(a) The 2nd latent feature (b) The 3rd latent feature (c) The 4th latent feature

Fig. 2. Comparisons of actual latent feature vectors and predicted latent feature vectors over time of node 0 (a non-migrating node) for Method 1.

(a) The 2nd latent feature (b) The 3rd latent feature (c) The 4th latent feature

Fig. 3. Comparisons of actual latent feature vectors and predicted latent feature vectors over time of node 1 (a migrating node) for Method 2.

(a) The 2nd latent feature (b) The 3rd latent feature (c) The 4th latent feature

Fig. 4. Comparisons of actual latent feature vectors and predicted latent feature vectors over time of node 0 (a non-migrating node) for Method 2.

4.1.3 Prediction of Latent Feature Vectors

In the previous section, we have shown that the FIR model
can be used for tracking latent feature vectors. In the section,
we further report our experimental results for predicting
latent feature vectors. For this, we use the networks for
0 ≤ t ≤ T − 1 as the training set and the network at time T
as the testing set. Once again, T is set to be 99. Our objective
is to predict the feature vectors for all nodes at time T by
using (11).

As shown in Fig. 5, the predicted values and the actual
values are very close to each other for the synthetic dataset
generated by Method 1. It means that we can predict the
feature vectors with a high degree of accuracy. Moreover,
the predicted feature vectors of a node can be used for
determining the block of that node (and we will use the
spectral clustering algorithm in Algorithm 2 to verify this
in the next section). In Fig. 5, there are four different colors

representing the four different blocks: red for block 0, green
for block 1, yellow for block 2 and blue for block 3. One can
easily see from the four colors in Fig. 5(a) that the blocks
for these n nodes at time 0 (as the first eigenvector remains
unchanged over time). For example, nodes 0, 1, . . . 24 are
in the red region which means they are in block 0 at time
0. However, the migrating nodes migrate to different blocks
during [0, T]. One can observe that there are some peaks
in Fig. 5(b), Fig. 5(c) and Fig. 5(d). Those peaks indicate
that some of the migrating nodes no longer belong to their
original blocks and they move to other blocks at time T . In
Table 1, we show the ground-truth blocks for the migrating
users at time 0 and time T . Furthermore, we number and
color each migrating user with the same color of its block at
time T . As shown in Fig. 5 and Fig. 6, the predicted values
of latent features of each migrating node at time T match
very well with those of the other nodes in the same block.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 8

TABLE 2
The Community Prediction Results For Two Synthetic Datasets

Generated by Method 1 and Method 2 Respectively

Method Accuracy NMI

Method 1 1.00 1.00
Method 2 0.99 0.97

As such, we also expect the spectral clustering algorithm in
Algorithm 2 can be used for predicting the block of each
migrating node. We take node 1 for example (and the other
migrating nodes, node 15, node 29, node 43, node 57, node
71, node 85, and node 99, can be verified in the same way).
First, we note from Table 1 that node 1 is in block 3 at time
T . As such, we expect that the latent features of node 1 will
be similar to the latent features of the other nodes in block
3. In Fig. 5, we mark node 1 by a blue circle. From Fig. 5,
one can easily observe that node 1 indeed has similar latent
features to the nodes in the same block. Our experimental
results of these predicted values of feature vectors reveal
that the spectral clustering algorithm in Algorithm 2 will
work well. In Fig. 6, we observe the same results for the
synthetic dataset generated by Method 2.

4.1.4 Community Prediction
In this section, we report the community prediction results
for all the n nodes at time T by using the spectral clustering
algorithm in Algorithm 2. We use two metrics ”accuracy”
and ”NMI” (the Normalized Mutual Information measure)
to evaluate our algorithm. The ground-truth blocks for the
migrating nodes at t = 99 are shown in Table 1 for both
datasets from Method 1 and Method 2, and the ground-truth
blocks for the non-migrating nodes at t = 99 are the same
as their ground-truth blocks at t = 0. Let nc be the number
of nodes that are correctly predicted by Algorithm 2 (after
finding the permutation of the four output sets of Algorithm
2 that maximizes the number of correctly predicted nodes).
Then the accuracy is defined as

Acc =
nc
n
. (19)

As shown in Table 2, for the synthetic dataset generated
by Method 1, the accuracy is 100%, i.e., all the nodes are
correctly predicted. For the synthetic dataset generated by
Method 2, the accuracy is also near 100%. This shows that
the spectral clustering algorithm in Algorithm 2 is very
effective in tracking/predicting community evolution. As
shown in Table 2, Algorithm 2 also yields very high NMI
for both synthetic datasets.

4.1.5 Link Prediction
In this section, we report our experimental results for link
prediction by using the same synthetic datasets as those in
the previous section. For our link prediction experiments,
we only report the results obtained by using the cosine sim-
ilarity measure in (17). The experimental results obtained
by using the Pearson’s correlation coefficient are similar. A
node pair with a higher cosine similarity score is considered
to have a higher probability to form a link between them.
We compare our method with the common-neighbors (CN)

approach that is based on counting the number of common
neighbors between each node pair. There are many methods
proposed in the literature for the link prediction problem
(see e.g., [65]), but there does not exist a single dominat-
ing approach for all the cases. The reason we choose the
common-neighbors approach is that it is known to be an
intuitive and very effective method (see e.g., [35]). In Table
3, we show the precision and recall of the top-k predictor
for k = 5, 10, 15 and 20 for node 0 (a non-migrating node)
and node 1 (a migrating node) at time t = 99 for the
synthetic dataset by Method 1. The results for Method 2 are
shown in Table 4. These results are obtained by averaging
100 experiments. From these two tables, one can see that
our method is significantly better than the CN approach
for node 1 (a migrating node). This is because a migrating
node removes all its previous links and establishes new
links according to its new community structure (from our
synthetic methods). As the CN approach cannot predict the
new community structure and thus fails to predict the new
links of a migrating node. On the other hand, as our method
can predict the new community structure of a migrating
node (as illustrated in the previous section), our method
can predict new links with a much higher precision. Even
for a non-migrating node, such as node 0, our method still
outperforms the CN approach.

4.2 Experiments on Real-world Datasets
Besides the synthetic data, we also conduct experiments on
three real-world datasets in this section. We evaluate our
method for three applications of structural network analysis,
community prediction, link prediction, and node ranking.

4.2.1 Datasets
The three real-world datasets are Haggle, Infectious and
RM (Reality Mining) obtained from the Koblenz Network
Collection [34].

(i) Haggle [66]: This network records human contacts
by carried wireless devices in the University of Cal-
ifornia, San Diego (UCSD) during 77 days. A node
represents a person, and a timestamped link between
two nodes represents that two people contacted each
other at a specific time.

(ii) Infectious [67]: The network records the face-to-
face contacts between visitors during the exhibition
INFECTIOUS: STAY AWAY in 2009 at the Science
Gallery in Dublin. A node represents a visitor, and
a link represents a contact between two visitors for
at least 20 seconds.

(iii) Reality Mining (RM) [68]: The network records the
human contacts between 100 students or faculty of
the Massachusetts Institute of Technology (MIT) in
2004 during 9 months. A node represents a student,
and a link represents a physical contact.

In order to obtain a sequence of discrete-time networks
{Gp(t), t ≥ 0} for each dataset, we first partition the time
duration of a dataset into time slots (with a fixed length),
indexed from t = 0, 1, 2, The links with timestamps
in the tth same slot are added to the network Gp(t). To
ensure the slow evolution of such a sequence of networks,

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 9

(a) The 1st latent feature (b) The 2nd latent feature

(c) The 3rd latent feature (d) The 4th latent feature

Fig. 5. Comparisons of actual latent feature vectors and predicted latent feature vectors at t = 99 for Method 1. Four different colors are used for
representing the four blocks. The numbered nodes are migrating nodes, and their colors denote their blocks at t = 99.

(a) The 1st latent feature (b) The 2nd latent feature

(c) The 3rd latent feature (d) The 4th latent feature

Fig. 6. Comparisons of actual latent feature vectors and predicted latent feature vectors at t = 99 for Method 2. Four different colors are used for
representing the four blocks. The numbered nodes are migrating nodes, and their colors denote their blocks at t = 99.

TABLE 3
Precision/Recall of The Top-k Predictors at Time t = 99 by Using The Cosine Similarity Measure (COS) in (17) and The Number of Common

Neighbors (CN) for The Synthetic Dataset Generated by Method 1

Node 0 top-5 top-10 top-15 top-20 top-25 top-30
COS 0.928/0.156 0.904/0.306 0.922/0.470 0.914/0.618 0.870/0.733 0.767/0.779
CN 0.758/0.127 0.776/0.262 0.807/0.411 0.840/0.569 0.803/0.677 0.688/0.700

Node 1 top-5 top-10 top-15 top-20 top-25 top-30
COS 0.896/0.151 0.836/0.281 0.875/0.444 0.854/0.576 0.808/0.680 0.707/0.715
CN 0.128/0.021 0.124/0.041 0.133/0.066 0.135/0.090 0.146/0.121 0.184/0.184

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 10

TABLE 4
Precision/Recall of The Top-k Predictors at Time t = 99 by Using The Cosine Similarity Measure (COS) in (17) and The Number of Common

Neighbors (CN) for The Synthetic Dataset Generated by Method 2

Node 0 top-5 top-10 top-15 top-20 top-25 top-30
COS 0.904/0.158 0.921/0.319 0.916/0.479 0.903/0.621 0.878/0.770 0.776/0.806
CN 0.744/0.129 0.810/0.281 0.811/0.424 0.828/0.569 0.808/0.710 0.695/0.722

Node 1 top-5 top-10 top-15 top-20 top-25 top-30
COS 0.816/0.141 0.781/0.270 0.846/0.441 0.847/0.581 0.800/0.700 0.672/0.693
CN 0.124/0.021 0.109/0.037 0.107/0.054 0.127/0.085 0.101/0.087 0.139/0.141

TABLE 5
Statistics and Parameters of The Three Datasets

Dataset # nodes # links@T # snapshots J K

Haggle 60 941 150 10 30
Infectious 52 172 250 5 40

RM 43 236 200 15 30

we adopt a smoothing mechanism, called the sliding window
mechanism, that aggregates several consecutive time slots
into a time window. Specifically, let Tw be the number of
time slots in a time window. Then we construct another
sequence of discrete-time networks {G(t), t ≥ 0} by adding
all the links in {Gp(s), s = t, t+ 1, . . . , t+ Tw − 1} in G(t).
Each network G(t) generated this way is called a snapshot of
the dataset at time t.

In Table 5, we summarize the statistics of the three
datasets, including the number of nodes and the number
of links. It should be noted that the number of links in
these three networks might vary with respect to time and
we only show the number of links in each network at the
last snapshot. The third column of Table 5 shows the total
number of snapshots in these three datasets. The order of the
FIR filter J and the number of eigenvectors K used in our
tracking method for each dataset are also shown in the last
two columns of Table 5. To visualize these three networks,
we also plot the networks at the last snapshot in Fig. 7. As
shown in Fig. 7, it seems that both the Haggle network and
the RM network only have a densely connected component
and show no obvious community structure. On the other
hand, the Infectious network exhibits a much clearer com-
munity structure. All these three networks are in the cate-
gory of human contact networks. Through our experiments,
we will demonstrate that our proposed method is capable of
identifying/capturing the structure of human interactions.

4.2.2 Community Prediction
In this section, we predict the community structure in the
network at time T and use NMI as our evaluation metric.
Traditionally, a community detection algorithm divides the
network into several clusters based on the graph. But we pre-
dict the community structure of a graph without having the
information of the whole graph. For our spectral clustering
algorithm for time-varying graphs in Algorithm 2, we use
the predicted latent feature vector of each node to construct
the community structure. To show the effectiveness of our
method, we first directly perform spectral clustering on the
network at time T and use such a result as the ground-

TABLE 6
NMI Results for The Three Datasets

Dataset NMI

Haggle 1.00
Infectious 1.00

RM 0.95

truth community structure at time T . We then compare
that ground-truth community structure with the predicted
community structure from our method. In Table 6, we show
the NMI scores for these three datasets. The high NMI scores
indicate that our method can not only track the network
evolutions but also predict the community structures in the
future.

4.2.3 Link Prediction

In this section, we report our link prediction results for
these three real-world datasets. As our experiments for the
synthetic datasets, we also use the cosine similarity measure
(COS) in (17) for link prediction and compare that with
the common-neighbors (CN) approach. In Fig. 8, we plot
the precision of the top-k predictor for each dataset (as a
function of k). Since these three networks vary slowly, the
structures of two consecutive networks are similar. As such,
the common-neighbors approach can yield a high precision
for link prediction. Nevertheless, we still can obtain bet-
ter precisions than those of the CN approach (as shown
in Fig. 8). The experimental results on the three datasets
demonstrate that our model provides a useful mechanism
for tracking the network evolutions of human interactions.
We can predict the links that will appear in the future only
based on the feature vector of each node instead of the
whole topologies of networks.

4.2.4 Node Ranking

In this section, we test the effectiveness of our approach
for node ranking by using the Infectious dataset. For the
ground-truth centrality, we first compute the (refined) close-
ness centrality ([33], eq. (7.30)) by using the geodesic distance
between each node pair in the original network at each time
t. We then use the predicted latent feature vectors obtained
in the previous section to compute the approximated effec-
tive distance as follows:

d̂u,v(t) =
K∑
i=2

(ẑi,u(t)− ẑi,v(t))2, (20)

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 11

(a) Haggle (b) Infectious (c) Reality Mining

Fig. 7. Visualization of the networks at time T . Haggle and RM have a densely connected component and no apparent community structure.

(a) Haggle (b) Infectious (c) Reality Mining

Fig. 8. Comparisons of the link prediction results of top-k links predicted by our method (COS) and common-neighbors (CN).

where ẑi,u(t) is the predicted ith latent feature of node
u at time t. The approximated effective distance between
each node pair is then used for computing the predicted
closeness centrality as described in (18). In Fig. 9, we show
the precision values of the top-5, top-10 and top-15 closeness
ranking predictors over time. The precision of the top-k
predictor is defined as the ratio of the number of predicted
top-k nodes that are also actual top-k nodes to the number k.
For the top-15 predictor, the precision is very good, roughly
80%. The precision values of the top-5 predictor, though
not as good as those of the top-15 predictor, are over 60%
for most of the time. In Fig. 10, we also plot the actual
ranking and the predicted ranking for nodes 1, 19 and 52
over time. The rankings of these three nodes are within top-
20 for most of the time. When a node’s ranking is within
top-20, its predicted ranking is quite close to its actual
ranking. However, when a node’s ranking is out of top-
20, the predicted ranking could be quite different from the
actual ranking as shown in Fig. 10. For node 1, its ranking
becomes lower at the end time period (i.e., the time stamp is
approximately 250), and the predicting error also becomes
larger during that period. The same phenomenon can also
be seen for node 52 during the beginning time period. Our
experimental results show that our method is effective in
predicting/tracking important nodes, but its performance
for low-ranked nodes might not be good. Therefore, when
a node’s ranking becomes lower (and this node becomes
less important), the performance of node ranking prediction
for this node will also become worse. This might be due to

Fig. 9. The precision values of the top-5, top-10 and top-15 closeness
ranking predictors over time.

the fact that we use the approximated effective distance that
only captures the behavior of important nodes.

4.2.5 Parameter Settings
In our algorithm, there are two key parameters that need to
be specified: the order of the FIR filter J and the number of
eigenvectors K (i.e., the length of the latent feature vectors
of each node). In Fig. 11, we compare several different
parameter settings for each network by showing the top-
k link prediction results. As shown in this figure, choosing
the proper parameters does affect the performance. The two
parameters J and K in the last two columns of Table 5 are
used for our experiments conducted in Section 4.2.2 and
Section 4.2.3. These values of J and K have not been fine-

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 12

(a) Node 1 (b) Node 19 (c) Node 52

Fig. 10. Comparisons of actual closeness rankings and predicted closeness rankings over time.

(a) J for Haggle (b) J for Infectious (c) J for RM

(d) K for Haggle (e) K for Infectious (f) K for RM

Fig. 11. Comparisons of different values of J and K for each network.

tuned as we simply compare different values and choose a
relative better one for our settings.

In Fig. 11, we can observe that our model does not
need a large J for the FIR filter. There are two insights
for this observation. The first one is if we would like to
predict human behaviors, we do not need to know too much
information in the past. More recent historical data have
larger impacts. The second is the cycles (periodic patterns)
of human behaviors might be rather short. As such, we do
not need a large J (i.e., many parameters) to model a single
behavior (e.g., contact with each other) of human beings. In
general, human behaviors are too complex to predict, but
for certain periodic routines (as shown in the three datasets)
they can be captured by using simple models like ours.
Furthermore, choosing a large J might cause overfitting and
that reduces the prediction accuracy.

The problem of selecting a proper K depends on the
network structure. From the results, different networks need
different values of K . Choosing a very small K might
not have enough information to characterize the network
structure. On the other hand, if we choose a large K , then
we need to track a lot of eigenvectors and that might lead to
large tracking errors. As shown in Fig. 11, using the largest

K do not have the best performance.

5 CONCLUSION

In this paper, we proposed an effective framework to track,
model, and predict the dynamic network structures. Instead
of tracking the adjacency matrices of the networks, our
framework tracks the evolution of network structure by
tracking the latent feature vector of each node obtained
from the eigendecomposition of the Laplacian matrices. To
learn the dynamic of the networks, we applied the FIR filter
to model the evolution of the latent feature vector of each
node. Once the dynamic of the networks is learned, it can
then be used for predicting the future network structures,
including community detection, link prediction, and node
ranking. Our experimental results for both the synthetic
datasets and the three real-world datasets show that our
framework is very effective in tracking latent feature vectors
and predicting future network structures. In particular, our
experimental results for the three real-world datasets also
suggested that human behaviors are related to their recent
actions and one can select a proper order J of the FIR filter
to obtain good prediction results for different networks and
different scenarios. As inspired by [69], [70], one possible

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 13

extension for our framework is to deploy the distributed
filters to track the latent features for different users.

ACKNOWLEDGMENTS

This work was supported by Ministry of Science and Tech-
nology, Taiwan, R.O.C., under grant numbers MOST 104-
2221-E-002-081-MY3 and 105-2221-E-007-037-MY3.

REFERENCES

[1] L. C. Freeman, “A set of measures of centrality based on between-
ness,” Sociometry, pp. 35–41, 1977.

[2] ——, “Centrality in social networks conceptual clarification,” So-
cial Networks, vol. 1, no. 3, pp. 215–239, 1979.

[3] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” Computer Networks and ISDN Systems, vol. 30,
no. 1, pp. 107–117, 1998.

[4] M. E. Newman, “Fast algorithm for detecting community structure
in networks,” Phys. Rev. E, vol. 69, no. 6, p. 066133, 2004.

[5] R. Lambiotte, “Multi-scale modularity in complex networks,” in
Proc. IEEE Symp. Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks (WiOpt), 2010, pp. 546–553.

[6] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona, “Stability of
graph communities across time scales,” Proceedings of the National
Academy of Sciences, vol. 107, no. 29, pp. 12 755–12 760, 2010.

[7] D. Liben-Nowell and J. Kleinberg, “The link prediction problem
for social networks,” in Proc. ACM Int. Conf. Information and
Knowledge Management, 2003, pp. 556–559.

[8] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction
using matrix and tensor factorizations,” ACM Trans. Knowledge
Discovery from Data, vol. 5, no. 2, 2011.

[9] P. Sarkar, D. Chakrabarti, and M. Jordan, “Nonparametric link
prediction in dynamic networks,” arXiv preprint arXiv:1206.6394,
2012.

[10] L. Zhu, D. Guo, J. Yin, G. Ver Steeg, and A. Galstyan, “Scalable
temporal latent space inference for link prediction in dynamic
social networks,” IEEE Trans. Knowledge and Data Engineering,
vol. 28, no. 10, pp. 2765–2777, 2016.

[11] C. C. Bilgin and B. Yener, “Dynamic network evolution: Models,
clustering, anomaly detection,” IEEE Networks, 2006.

[12] Y. Chi, S. Zhu, X. Song, J. Tatemura, and B. L. Tseng, “Structural
and temporal analysis of the blogosphere through community fac-
torization,” in Proc. ACM SIGKDD Int. Conf. Knowledge Discovery
and Data Mining, 2007, pp. 163–172.

[13] N. P. Nguyen, T. N. Dinh, Y. Shen, and M. T. Thai, “Dynamic social
community detection and its applications,” PLOS ONE, vol. 9,
no. 4, p. e91431, 2014.

[14] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clus-
tering,” in Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and
Data Mining, 2006, pp. 554–560.

[15] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng, “On evolu-
tionary spectral clustering,” ACM Trans. Knowledge Discovery from
Data, vol. 3, no. 4, p. 17, 2009.

[16] D. Greene, D. Doyle, and P. Cunningham, “Tracking the evo-
lution of communities in dynamic social networks,” in Proc.
IEEE Int. Conf. Advances in Social Networks Analysis and Mining
(ASONAM’10), 2010, pp. 176–183.

[17] P. Bródka, S. Saganowski, and P. Kazienko, “Ged: the method
for group evolution discovery in social networks,” Social Network
Analysis and Mining, vol. 3, no. 1, pp. 1–14, 2013.

[18] M. Takaffoli, R. Rabbany, and O. R. Zaı̈ane, “Community evolution
prediction in dynamic social networks,” in Proc. IEEE Int. Conf.
Advances in Social Networks Analysis and Mining (ASONAM’14),
2014, pp. 9–16.

[19] S. Saganowski, B. Gliwa, P. Bródka, A. Zygmunt, P. Kazienko, and
J. Koźlak, “Predicting community evolution in social networks,”
Entropy, vol. 17, no. 5, pp. 3053–3096, 2015.

[20] N. İlhan and Ş. G. Öğüdücü, “Predicting community evolution
based on time series modeling,” in Proc. IEEE/ACM Int. Conf.
Advances in Social Networks Analysis and Mining (ASONAM’15),
2015, pp. 1509–1516.

[21] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explana-
tions,” in Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery
in Data Mining, 2005, pp. 177–187.

[22] H. Tong, S. Papadimitriou, P. S. Yu, and C. Faloutsos, “Fast
monitoring proximity and centrality on time-evolving bipartite
graphs,” Statistical Analysis and Data Mining, vol. 1, no. 3, pp. 142–
156, 2008.

[23] F. Fogelman-Soulié, D. Perrotta, J. Piskorski, and S. Ralf, “Evolving
networks,” Mining Massive Data Sets for Security: Advances in
Data Mining, Search, Social Networks and Text Mining, and Their
Applications to Security, vol. 19, p. 198, 2008.

[24] B. Bringmann, M. Berlingerio, F. Bonchi, and A. Gionis, “Learning
and predicting the evolution of social networks,” IEEE Intelligent
Systems, vol. 25, no. 4, pp. 26–35, 2010.

[25] R. Michalski, P. Kazienko, and D. Król, “Predicting social net-
work measures using machine learning approach,” in Proc. IEEE
Int. Conf. on Advances in Social Networks Analysis and Mining
(ASONAM’12), 2012, pp. 1056–1059.

[26] K. M. Carley, Dynamic network analysis. Citeseer, 2003.
[27] P. Sarkar and A. W. Moore, “Dynamic social network analysis

using latent space models,” SIGKDD Explor. Newsl., vol. 7, no. 2,
pp. 31–40, Dec. 2005.

[28] T. Y. Berger-Wolf and J. Saia, “A framework for analysis of
dynamic social networks,” in Proc. ACM SIGKDD Int. Conf.on
Knowledge Discovery and Data Mining, New York, NY, USA, 2006,
pp. 523–528.

[29] M. Lahiri and T. Y. Berger-Wolf, “Mining periodic behavior in
dynamic social networks,” in Proc. IEEE Int. Conf. on Data Mining,
2008, pp. 373–382.

[30] C. Aggarwal and K. Subbian, “Evolutionary network analysis: A
survey,” ACM Comput. Surv., vol. 47, no. 1, pp. 10:1–10:36, May
2014.

[31] P. D. Hoff, A. E. Raftery, and M. S. Handcock, “Latent space
approaches to social network analysis,” J. American Statistical
Association, vol. 97, no. 460, pp. 1090–1098, 2002.

[32] D. Spielman, “Spectral graph theory,” Lecture Notes, Yale University,
pp. 740–0776, 2009.

[33] M. Newman, Networks: an introduction. OUP Oxford, 2009.
[34] “konect network dataset – konect, october 2016,”

http://konect.uni-koblenz.de/networks/konect.
[35] L. Yao, L. Wang, L. Pan, and K. Yao, “Link prediction based on

common-neighbors for dynamic social network,” Procedia Com-
puter Science, vol. 83, pp. 82–89, 2016.

[36] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[37] S. X. Yu and J. Shi, “Multiclass spectral clustering,” in Proc. IEEE
Int. Conf. Computer Vision, 2003, pp. 313–319.

[38] I. Dhillon, Y. Guan, and B. Kulis, A unified view of kernel k-means,
spectral clustering and graph cuts. Computer Science Department,
University of Texas at Austin, 2004.

[39] R. Johansson, “System modeling and identification,” 1993.
[40] J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel,

“Performance and accuracy of lapack’s symmetric tridiagonal
eigensolvers,” SIAM Journal on Scientific Computing, vol. 30, no. 3,
pp. 1508–1526, 2008.

[41] M. Girvan and M. E. Newman, “Community structure in social
and biological networks,” Proceedings of the National Academy of
Sciences, vol. 99, no. 12, pp. 7821–7826, 2002.

[42] S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3, pp. 75–174, 2010.

[43] M. A. Porter, J.-P. Onnela, and P. J. Mucha, “Communities in
networks,” Notices of the AMS, vol. 56, no. 9, pp. 1082–1097, 2009.

[44] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical Review E, vol. 70, no. 6,
p. 066111, 2004.

[45] M. Rosvall and C. T. Bergstrom, “Maps of information flow reveal
community structure in complex networks,” Citeseer, Tech. Rep.,
2007.

[46] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
“Fast unfolding of communities in large networks,” J. Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[47] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P.
Onnela, “Community structure in time-dependent, multiscale, and
multiplex networks,” Science, vol. 328, no. 5980, pp. 876–878, 2010.

[48] L. Massoulié, “Community detection thresholds and the weak ra-
manujan property,” in Proc. Ann. ACM Symp. Theory of Computing,
2014, pp. 694–703.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. ?, NO. ?, MONTH YEAR 14

[49] C.-S. Chang, W. Liao, Y.-S. Chen, and L.-H. Liou, “A mathematical
theory for clustering in metric spaces,” IEEE Trans. Network Science
and Engineering, vol. 3, no. 1, pp. 2–16, 2016.

[50] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[51] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[52] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of
careful seeding,” in Proc. Ann. ACM-SIAM symp. Discrete Algo-
rithms, 2007, pp. 1027–1035.

[53] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii,
“Scalable k-means++,” Proceedings of the VLDB Endowment, vol. 5,
no. 7, pp. 622–633, 2012.

[54] R. Jaiswal and N. Garg, “Analysis of k-means++ for separable
data,” in Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques. Springer, 2012, pp. 591–602.

[55] M. Agarwal, R. Jaiswal, and A. Pal, “k-means++ under approxima-
tion stability,” in Theory and Applications of Models of Computation.
Springer, 2013, pp. 84–95.

[56] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem
for social networks,” J. American Society for Information Science and
Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[57] X. Yang, Y. Guo, Y. Liu, and H. Steck, “A survey of collaborative
filtering based social recommender systems,” Comput. Commun.,
vol. 41, pp. 1–10, 2014.

[58] Y. Koren, “Collaborative filtering with temporal dynamics,” Com-
munications of the ACM, vol. 53, no. 4, pp. 89–97, 2010.

[59] J. Kunegis and A. Lommatzsch, “Learning spectral graph trans-
formations for link prediction,” in Proc. ACM Int. Conf. Machine
Learning (ICML’09), June 2009, pp. 561–568.

[60] Y.-Y. Lo, W. Liao, and C.-S. Chang, “Temporal matrix factorization
for tracking concept drift in individual user preferences,” IEEE
Transactions on Computational Social Systems, vol. 5, no. 1, pp. 156–
168, 2018.

[61] H. Liu, Z. Hu, A. Mian, H. Tian, and X. Zhu, “A new user sim-
ilarity model to improve the accuracy of collaborative filtering,”
Knowledge-Based Systems, vol. 56, pp. 156 – 166, 2014.

[62] P. Erdös and A. Rényi, “On random graphs,” Publ. Math. Debrecen,
vol. 6, pp. 290–297, 1959.

[63] A. Saade, F. Krzakala, and L. Zdeborová, “Spectral clustering of
graphs with the bethe hessian,” in Proc. Ann. Conf. Advances in
Neural Information Processing Systems, 2014, pp. 406–414.

[64] L. Z. Aurelien Decelle, Florent Krzakala and P. Zhang. (2012)
Mode-net: Modules detection in networks. [Online]. Available:
http : //modenet.krzakala.org/

[65] Y. Yang, R. N. Lichtenwalter, and N. V. Chawla, “Evaluating link
prediction methods,” Knowledge and Information Systems, vol. 45,
no. 3, pp. 751–782, 2015.

[66] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
“Impact of human mobility on opportunistic forwarding algo-
rithms,” IEEE Trans. on Mobile Computing, vol. 6, no. 6, pp. 606–620,
Jun. 2007.

[67] L. Isella, S. Juliette, A. Barrat, C. Cattuto, J. Pinton, and W. Van den
Broeck, “What’s in a crowd? analysis of face-to-face behavioral
networks,” J. Theoretical Biology, vol. 271, no. 1, pp. 166–180, 2011.

[68] N. Eagle and A. (Sandy) Pentland, “Reality mining: Sensing com-
plex social systems,” Personal Ubiquitous Comput., vol. 10, no. 4,
pp. 255–268, Mar. 2006.

[69] T. Wang, J. Qiu, S. Fu, and W. Ji, “Distributed fuzzy H∞ filtering
for nonlinear multirate networked double-layer industrial pro-
cesses,” IEEE Transactions on Industrial Electronics, vol. 64, no. 6,
pp. 5203–5211, 2017.

[70] T. Wang, J. Qiu, H. Gao, and C. Wang, “Network-based fuzzy
control for nonlinear industrial processes with predictive compen-
sation strategy,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 2017.

Tsunghan Wu received the BS degree in com-
puter science and MS degree in electronics en-
gineering from the National Taiwan University,
Taipei, Taiwan, in 2006 and 2009, respectively.
He is currently working toward the PhD degree in
computer science at National Taiwan University.
His research interests are in evolving networks,
predictive models, and data analysis.

Cheng-Shang Chang (S’85-M’86-M’89-SM’93-
F’04) received the B.S. degree from National
Taiwan University, Taipei, Taiwan, in 1983, and
the M.S. and Ph.D. degrees from Columbia Uni-
versity, New York, NY, USA, in 1986 and 1989,
respectively, all in electrical engineering.

From 1989 to 1993, he was employed as a
Research Staff Member with the IBM Thomas
J. Watson Research Center, Yorktown Heights,
NY, USA. Since 1993, he has been with the
Department of Electrical Engineering, National

Tsing Hua University, Taiwan, where he is a Tsing Hua Distinguished
Chair Professor. He is the author of the book Performance Guarantees in
Communication Networks (Springer, 2000) and the coauthor of the book
Principles, Architectures and Mathematical Theory of High Performance
Packet Switches (Ministry of Education, R.O.C., 2006). His current re-
search interests are concerned with network science, big data analytics,
mathematical modeling of the Internet, and high-speed switching.

Dr. Chang served as an Editor for Operations Research from 1992 to
1999, an Editor for the IEEE/ACM TRANSACTIONS ON NETWORKING
from 2007 to 2009, and an Editor for the IEEE TRANSACTIONS ON
NETWORK SCIENCE AND ENGINEERING from 2014 to 2017. He is
currently serving as an Editor-at-Large for the IEEE/ACM TRANSAC-
TIONS ON NETWORKING. He is a member of IFIP Working Group
7.3. He received an IBM Outstanding Innovation Award in 1992, an IBM
Faculty Partnership Award in 2001, and Outstanding Research Awards
from the National Science Council, Taiwan, in 1998, 2000, and 2002,
respectively. He also received Outstanding Teaching Awards from both
the College of EECS and the university itself in 2003. He was appointed
as the first Y. Z. Hsu Scientific Chair Professor in 2002. He received the
Merit NSC Research Fellow Award from the National Science Council,
R.O.C. in 2011. He also received the Academic Award in 2011 and the
National Chair Professorship in 2017 from the Ministry of Education,
R.O.C. He is the recipient of the 2017 IEEE INFOCOM Achievement
Award.

Wanjiun Liao (S’96-M’97-SM’06-F’10) received
her Ph.D. degree in Electrical Engineering from
the University of Southern California, USA, in
1997. She is a Distinguished Professor of Elec-
trical Engineering Department, National Taiwan
University (NTU), Taipei, Taiwan, where she was
the Department Chair. She is the Director Gen-
eral of the Engineering and Technologies De-
partment, Ministry of Science and Technology
(MOST), Taiwan, and also an Adjunct Research
Fellow of the Research Center for Information

Technology Innovation, Academia Sinica, Taiwan. Her research is fo-
cused on the design and analysis of wireless networking, green com-
munications, cloud networking and network virtualization.

Dr. Liao was an Associate Editor of IEEE Transactions on Wireless
Communications and IEEE Transactions on Multimedia, and is on the
Steering Committee of the IEEE Transactions on Mobile Computing.
She was an IEEE Communications Society (ComSoc) Distinguished
Lecturer, IEEE ComSoc Fellow Evaluation Committee, and IEEE Fellow
Committee. She helped organize many IEEE conferences, including
serving as the symposium Co-Chair of the IEEE GLOBECOM and the
IEEE ICC, and the TPC CoChair of the IEEE VTC 2010 Spring and the
IEEE PIMRC 2015. She received many awards and recognitions from
government and different organizations. She is a Fellow of the IEEE.

