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Temporal Matrix Factorization for Tracking
Concept Drift in Individual User Preferences
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Abstract—The matrix factorization (MF) technique has been
widely adopted for solving the rating prediction problem in
recommender systems. The MF technique utilizes the latent
factor model to obtain static user preferences (user latent vectors)
and item characteristics (item latent vectors) based on historical
rating data. However, in the real world user preferences are not
static but full of dynamics. Though there are several previous
works that addressed this time varying issue of user preferences,
it seems (to the best of our knowledge) that none of them is
specifically designed for tracking concept drift in individual user
preferences. Motivated by this, we develop a Temporal Matrix
Factorization approach (TMF) for tracking concept drift in each
individual user latent vector. There are two key innovative steps
in our approach: (i) we develop a modified stochastic gradient
descent method to learn an individual user latent vector at each
time step, and (ii) by the Lasso regression we learn a linear model
for the transition of the individual user latent vectors. We test
our method on a synthetic dataset and several real datasets. In
comparison with the original MF, our experimental results show
that our temporal method is able to achieve lower root mean
square errors (RMSE) for both the synthetic and real datasets.
One interesting finding is that the performance gain in RMSE is
mostly from those users who indeed have concept drift in their
user latent vectors at the time of prediction. In particular, for
the synthetic dataset and the Ciao dataset, there are quite a few
users with that property and the performance gains for these
two datasets are roughly 20% and 5%, respectively.

keywords: Recommender systems, Rating prediction, Ma-
trix factorization, Temporal dynamics, Concept drift

I. INTRODUCTION

With the accelerated growth of the Internet and a wide
range of web services such as electronic commerce and online
video streaming, people are easily overwhelmed by massive
amounts of information and therefore recommender systems
are indispensable tools to alleviate the information overload
problem. At the heart of each recommender system, there is
an algorithm that handles the rating prediction task and the
accuracy of the rating prediction algorithm is the foundation
of the system. The most successful and widely used approach
to implement such an algorithm is collaborative filtering with
matrix factorization (MF). Such an approach has the advantage
of high accuracy, robustness and scalability, and it is thus more
favorable than the other approaches, such as the neighborhood-
based approach and the graph-based approach [1], [2]. The MF
approach proved its success in the Netflix Prize competition
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[3] as the winning submission of this competition was heavily
relied on it to predict unobserved ratings. The MF approach
decomposes a user-item rating matrix into two low-rank ma-
trices which directly profile users and items to the latent factor
space respectively and these representative latent factors form
the main basis for further prediction in the future.

Although MF is the state-of-the-art approach that can
successfully process the relational rating data, its capability
of capturing the temporal dynamics of users’ preferences is
quite limited. As we are facing the fast-moving business
environment, the real world is not static but full of dynamics.
There are a great variety of sources that can cause the changes
of users’ behavior, including shifting trends in the community,
the arrival of new products, the changes in users’ social
networks, and so on. Recent research in [4] considered the
aspect of personal development and pointed out that user’s
expertise may change from amateurs to connoisseurs as they
become more experienced. To satisfy users’ current taste and
need, a key building block for recommender systems is to
accurately model such user preferences as they evolve over
time.

The need to model the temporal dynamics of user pref-
erences raises some fundamental challenges. First of all, the
amount of available data is significantly reduced in a specific
time step and the sparsity problem of recommender systems is
more severe in this situation. In addition, how can we generally
incorporate the temporal dimension and further capture the
evolution of preferences at the individual level for every time
step? Finally, what is the principled method to model this kind
of transition for every user in order to make more accurate
predictions in the future? Toward this end, we propose a
general and principled temporal dynamic model for tracking
concept drift in each individual user latent vector. Such an
approach can further effectively and efficiently achieve a lower
RMSE than that of MF.

The main contributions of this paper include:
• We propose a Temporal Matrix Factorization approach

(TMF) for tracking concept drift in each individual user
latent vector. Such a method not only breaks the limit of
using static decompositions in the original MF approach,
but also provides a tool for recommender systems to
better serve “valuable” customers in the future.

• We develop a modified stochastic gradient descent
method to learn an individual user latent vector at each
time step by using both the overall rating logs and the
rating logs within the specific time step.

• By using the Lasso regression for the user latent vector
at every time step, we learn a linear system model that
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TABLE I
LIST OF NOTATIONS

M The number of users
N The number of items
T T − 1 training periods and prediction at time T
D The number of latent factors
R = (Ri,j) The M ×N rating matrix
R̂i,j The prediction of Ri,j via a prediction algorithm
P The D ×M user latent matrix
Pi The ith user latent vector
Pi(t) The “learned” ith user latent vector at time

t = 1, 2, . . . , T − 1
Pi(T ) The predicted ith user latent vector at time T
Q The D ×N item latent matrix
Qj The jth item latent vector
Ai The transition matrix of user i in (15)
bi The bias vector of user i in (15)
b
(k)
i The kth element of bi
I The identity matrix with an appropriate dimension
Iij The indicator function in (1) that is equal to 1

if user i rated item j and equal to 0 otherwise
Ãi The “modified” transition matrix with Ãi = A− I
Zi(t) Zi(t) = Pi(t)− Pi(t− 1)

Z
(k)
i (t) The kth element of Zi(t)

α The learning rate of the (modified) SGD method
ei,j The prediction error in (3) and (9)
λ The regulator parameter for the Lasso regression

can be used for modelling the transition pattern at the
individual level.

• We conduct comprehensive experiments on a synthetic
dataset and four real datasets, Ciao, Epinions, Flixster
and MovieLens. In comparison with the original MF, our
experimental results show that our TMF approach is able
to achieve lower root mean square errors (RMSE) for
both the synthetic and real datasets. In particular, there is
roughly a 17-26% improvement on the synthetic dataset
and a 5% improvement on the Ciao dataset. Such an
improvement is quite significant.

• Our experiments also reveal one interesting finding. The
performance gain in RMSE is mostly from those users
who indeed have concept drift in their user latent vectors
at the time of prediction. In particular, for the synthetic
dataset and the Ciao dataset, there are quite a few users
with that property and the performance gains for these
two datasets are more significant than those for the other
datasets.

The rest of paper is organized as follows. In Section 2,
we provide a review of related work. We define the rating
prediction problem in Section 3 and propose the method
of incorporating temporal dynamics including capturing and
predicting the user preferences in Section 4. In Section 5,
we conduct experiments on both synthetic and several real
datasets to validate our proposed temporal method. Finally, we
conclude our work and point out the future research directions
in Section 6.

In Table I, we provide a list for the notations that are used
in the paper.

II. RELATED WORK

In this section, we first briefly review the MF approach
for recommender systems and several recent approaches that
intend to incorporate temporal dynamics with MF, including
time-dependent collaborative filtering, tensor factorization, and
collaborative Kalman filter.

A. Matrix Factorization

Matrix Factorization (MF) performs well in the rating
prediction task and has attracted considerable attention. The
rationale behind the MF approach is to characterize each user
and item by a series of latent factors that can be used for
representing or approximating the interactions between users
and items from the historical rating logs. Specifically, given
an M × N rating matrix R = (Ri,j) with M users and N
items, the MF approach considers the following optimization
problem:

min
P,Q

1

2

M∑
i=1

N∑
j=1

Iij
(
Rij −QT

j · Pi

)2
+
λ

2

(
‖P‖2 + ‖Q‖2

)
,

(1)
where P and Q are the latent matrices which record the latent
factors of users and items respectively. Also, Pi is the ith

column of P , Qj is the jth column of Q, and Iij is an indicator
function that is equal to 1 if user i rated item j and equal to 0
otherwise. The vector Pi, called the user latent vector of user
i, is commonly used for representing (latent) user preferences,
and the vector Qj , called the item latent vector of item j, is
commonly used for representing (latent) item characteristics.
The regularization terms are added in the optimization problem
to prevent overfitting.

We can also view MF from a probabilistic perspective.
Probabilistic Matrix Factorization (PMF) [5], [6] defines the
following conditional distribution over the observed ratings
based on the linear model with Gaussian observation noise:

p
(
R|P,Q, σ2

)
=

M∏
i=1

N∏
j=1

[
N
(
Rij |QT

j · Pi, σ
2
)]Iij

, (2)

where N
(
x|µ, σ2

)
denotes the probability density function

of the Gaussian distribution with mean µ and variance σ2.
With placing zero-mean spherical Gaussian priors on the latent
factors, the problem of maximizing the log-posterior with the
fixed variance is equivalent to the optimization problem in (1).

Note that both Pi and Qj are unknowns in (1) and the
objective function is not convex [7]. Simon Funk [8] popu-
larized a stochastic gradient descent (SGD) algorithm which
loops through all ratings in the training set to find the latent
matrices P and Q. For each training example Rij , one first
computes the associated prediction error

eij = Rij −QT
j · Pi. (3)

One then updates Pi and Qj in the opposite direction of the
gradient as follows:

Pi ← Pi + α (eijQj − λPi) , (4)
Qj ← Qj + α (eijPi − λQj) , (5)
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where α is the learning rate and λ is the regulator parameter.
This incremental and iterative approach provides a practical
way to scale the MF method to large datasets.

B. Time-dependent Collaborative Filtering

In order to provide recommendations that fit users’ present
preferences, time-dependent collaborative filtering (CF) [2]
employs the availability of temporal information (time
stamps) associated with user-item rating logs to put more
emphasis on the recent ratings. Such an approach is based
on the plausible assumption that recent logs have bigger
influence on future events than old and obsolete logs. There are
many prior works on time-dependent collaborative filtering,
including neighborhood-based CF [9], [10], social influence
analysis [11], [12], [13], temporal bipartite projection [14] and
timeSVD++ [15]. Among all these prior works, timeSVD++
[15] is perhaps the most related work to MF. In [15], Koren
proposed adding a time-varying rating bias for each user and
each item to the estimate from the original MF. As such, the
temporal dynamics of user latent vectors are only modelled by
a simple sum of three factors, the stationary portion, a possible
gradual change with linear equation of a deviation function,
and a day-specific parameter for sudden drift. Even so, it was
reported in [15] that timeSVD++ significantly outperforms
SVD and SVD++ [16] (that considered implicit feedback).

Although these methods improve the accuracy of the predic-
tion compared to the baseline MF estimator, there are some
difficulties in the time-dependent CF approach. The system
model in timeSVD++ for the user latent vectors is too simple
to have any structural characterizations or constraints on their
parameters. As such, these parameters (in various aspects and
time steps) have to be learned individually and need lots of
efforts on fine tuning. Thus, timeSVD++ maybe too data-
specific to be used as a general model. Also, the assumption
that claims recent ratings are always more important than old
data may be oversimplified.

C. Tensor Factorization

Tensor factorization (TF) extends MF into a three-dimen-
sional tensor by incorporating the temporal features into the
prediction model. The underlying physical meaning of TF is
that the given ratings not only depend on the user prefer-
ences and the item characteristics but also the current trend.
There are two kinds of popular tensor factorization models
in CF [17]: the CANDECOMP/PARAFAC (CP) model that
decomposes the tensor into same rank of latent factors, and
the Tucker model that considers the problem as the higher-
order PCA.

There are some works that adopt the TF model for ex-
ploiting temporal information associated with user-item in-
teractions. The Bayesian Probabilistic Tensor Factorization
(BPTF) [18] extended PMF to CANDECOMP/PARAFAC
tensor factorization that models each rating as the inner
product of the latent factors of user, item, and time slice as
well. It also imposes constraints that the adjacent time slices
should share similar latent factors. The advantage of BPTF
is its almost parameter-free probabilistic tensor factorization

algorithm with a fully Bayesian treatment derivation while
the drawback is it is not sensitive enough to capture the local
changes of preferences compared with timeSVD++. Recently,
Rafailidis and Nanopoulos [19] modeled continuous user-item
interactions over time and defined a new measure of user
preference dynamics to capture the shifting rate for each
user. In a broader sense, recommendation can be regarded
as a bipartite link prediction problem that aims to infer
new interactions between users and items which are likely
to occur in the near future. Based on this idea, Dunlavy
et al. [20] considered bipartite graphs that evolve over time
and demonstrated that tensor-based methods are effective for
temporal data with varying periodic patterns. Apart from
incorporating the temporal information, tensor factorization is
a popular approach to integrate further information such as the
context of implicit feedback in content-based recommender
systems. For instance, Moghaddam et al. [21] added review
as the third dimension based on the Tucker tensor model to
address the problem of personalized review quality prediction
and Shi et al. [22] directly trained the tensor model for creating
an optimally ranked list of items for individual users in the
context-aware recommender systems.

Tensor factorization provides a principled and well-struc-
tured approach to incorporate the temporal dynamics in rec-
ommender systems; however, the structure also limits the
flexibility of the model so that it is hard to process and
solve the decomposition especially for a large-scale and sparse
tensor. Given the same amount of rating data, the higher order
the tensor model is, the more severe the sparsity problem
is. The sparsity problem leads to time-consuming computing,
high space complexity and the convergence issues in the
decomposition procedure.

D. Collaborative Kalman Filter

Inspired by the success of PMF that places Gaussian priors
on the latent factors and formulates the matrix factoriza-
tion problem as an optimization problem for obtaining the
Maximum-a-Posteriori (MAP) estimate, there are some recent
works that compute the MAP optimally by using the Kalman
filter [23]. Considering the observed measurements over time
with noise and uncertainties, the Kalman filter is the optimal
linear estimator of unknown variables. Its recursive structure
also allows new measurements to be processed as they arrive.
The Kalman filter can be conceptualized in two phases: the
predict phase is called a priori estimate which produces an
estimation without the observation at the current time step,
and the update phase is known as a posteriori estimate
which refines the estimation with the current observation. The
refinements of the state and covariance estimates are based on
the optimal Kalman gain computed at every time step.

The paper [24] by Lu et al. might be the first paper to
use the Kalman filter in recommender systems. In that paper,
they exploited the Kalman filter to model the change of user
preferences in its temporal component. Though they provided
a new perspective on the recommender systems, their approach
is still not general enough as the transition matrix used in
the Kalman filter was only modeled by an identity matrix.



4

As such, one can only capture the drifts of user preferences.
In another recent paper [25], Gultekin and Paisley proposed
the collaborative Kalman filter (CKF) approach that used a
geometric Brownian motion to model the dynamically evolv-
ing drift of each latent factor. The dynamic state space model
proposed by [26], [27] is most related to our work. To solve
the system identification problem for the linear system in the
Kalman filter, they develop an EM algorithm that performs the
Kalman filter and the RTS smoother. The EM algorithm is an
iterative two-pass algorithm that yields estimates for the model
parameters by using all observations in the expectation step,
and then refines the estimates of the model parameters in the
maximization step. Although the model is comprehensive and
provides better results compared to the SVD and timeSVD++
approaches, there are some limitations in practice: (i) it makes
a very strong assumption that assumes the transition matrix is
homogeneous for all users. Such a homogeneous assumption is
needed to simplify the model (as otherwise it is very difficult,
if not impossible, to determine all their parameters from the
EM algorithm [27]), and (ii) it is not suitable for large datasets
due to the tractability and runtime performance.

In this paper, we will remove the assumption that the
transition matrix is homogeneous for all users. By doing so,
we allow our system to track concept drift in each individual
user latent vector. Our experiments further verify that users do
have different transition matrices. Some of them are simply
governed by the identity matrix and have no concept drift
in their latent vectors. On the other hand, some of them have
significant changes of their latent vectors and the improvement
of the rating for those users is the key factor for lowering
RMSE in our temporal approach.

III. PROBLEM DEFINITION

In this paper, we study the rating prediction problem with
time-stamped logs. Specifically, there are M users, indexed
from i = 1, 2, . . ., M , and N items, indexed from j =
1, 2, . . . , N . For these users and items, we are given a set
of time-stamped logs, where each log is represented by the
four-tuple:

(user, item, rating, time).

We assume that every rating is a real-valued number and each
item can be rated by a user at most once. If we neglect the
time stamps of these logs, then the ratings of these logs can
be represented by an M ×N matrix R = (Rij), where Rij is
the rating of user i on item j if item j has been rated by user
i. On the other hand, if item j has not been rated by user i,
then Rij is said to be missing. In practice, the matrix R is a
sparse matrix and there are many missing values. The rating
prediction problem is then to predict the missing values in the
matrix R.

To evaluate the performance of a rating prediction algo-
rithm, the rating logs are partitioned into two sets: the training
set and the testing set. The training set is given to a rating
prediction algorithm to “learn” the needed parameters for
rating prediction. On the other hand, the testing set is not
revealed to a rating prediction algorithm and is only available
for testing the accuracy of a rating prediction algorithm.

Though there are many metrics for evaluating the performance
of rating prediction algorithms, in this paper we adopt the root
mean square error (RMSE) that can be computed as follows:

RMSE =

√√√√∑(i,j)∈Testing Set

(
Rij − R̂ij

)2
|Testing Set|

, (6)

where R̂ij is the prediction for Rij via a rating prediction
algorithm. The RMSE has been widely used in the literature,
including the competition for the Netflix Prize. Although the
range of RMSE might be quite small, there is evidence (see
e.g., [16]) that small improvement in RMSE can have a sig-
nificant impact on the quality of the top few recommendations
from a rating prediction algorithm.

The original MF does not use the information of time stamps
and simply decomposes the matrix R approximately into a
product of two matrices: the user latent matrix and the item
latent matrix. Though the item latent matrix could be quite
stationary with respect to time, it is a general belief (see e.g.,
[15], [24], [26], [27]) there might be concept drift in the user
latent matrix as users tend to change their mind over time. In
view of this, our aim is to develop a temporal dynamic model
for tracking concept drift in each individual user latent vector
by using the time stamps of rating logs. By doing so, we can
effectively and efficiently achieves a lower RMSE than that of
MF.

IV. TEMPORAL MATRIX FACTORIZATION

For the rating prediction problem described in the previous
section, we propose a Temporal Matrix Factorization (TMF)
approach that is capable of tracking concept drift in each
individual user latent vector. Our approach is based on the
following assumptions that were previously used in the liter-
ature (see e.g., [15], [24], [26], [27]):

(i) Like the original MF, there are a user latent matrix
P ∈ RD×M and an item latent matrix Q ∈ RD×N

that can be used for approximating the rating matrix
R. The ith column of the user latent matrix P ,
denoted by Pi, is called the user latent vector of
user i, i = 1, 2, . . . ,M , that can be viewed as
the preferences of user i for the D latent factors.
Similarly, the jth column vector of the item latent
matrix Q, denoted by Qj , is called the item latent
vector of item j, j = 1, 2, . . . , N . The rating for user
i on item j is then predicted by the inner product of
Pi and Qj .

(ii) There is concept drift in each individual user latent
vector as people might change their preferences over
time. Though it is arguable whether user preferences
can be predicted or tracked, in particular sudden and
random changes of user preferences, in this paper
we assume that the changes of user preferences are
rather smooth and can be tracked. For this, we denote
by P (t) the user latent matrix at time t, and Pi(t) the
user latent vector of user i at time t, i = 1, 2, . . . ,M .

(iii) As the characteristics of items are stationary, we
assume that the item latent matrix Q is invariant with
respect to time.
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In view of these assumptions, the key ingredient of our TMF
approach is to use the training data set to capture the dynamics
of the concept drift in each individual user latent vector. For
this, our approach consists of the following steps:

(i) Use the rating logs in the training data set to
construct a time series of M × N rating matrices,
{R(t), t = 1, 2, . . . , T − 1}.

(ii) Use the time series of rating matrices {R(t), t =
1, 2, . . ., T − 1} to learn a time series of D × 1
user latent vectors, {Pi(t), t = 1, 2, . . . , T − 1}, i =
1, 2, . . . ,M .

(iii) For each user i, use the time series of user latent
vectors, {Pi(t), t = 1, 2, . . . , T − 1} to learn the
dynamics of the concept drift in the user latent vector.

(iv) Use the dynamics of the concept drift in each in-
dividual user latent vector to predict the user latent
vector at time T , i.e., P (T ). Then use the product
of P (T ) and the item latent matrix Q to predict the
missing values in the testing data set.

A. Construction of a time series of rating matrices

The simplest way to construct a time series of rating
matrices {R(t), t = 1, 2, . . . , T − 1} is to partition rating logs
into equally spaced time slices according to their time stamps.
But, as the original rating matrix in a real data set might have
already been very sparse, further partitioning of the rating logs
might yield a time series of extremely sparse rating matrices
that might not have any statistical significance at all. In view
of the sparsity problem, the number of time slices T cannot
be too large. To further mitigate the sparsity problem, one can
consider a sliding window approach that merges the rating logs
in several consecutive time slices into a single step. By doing
so, there are overlapping rating logs in such a time series
of rating matrices. Such an approach can not only mitigate
the sparsity problem but also ensure smooth change of rating
matrices so that prediction could be possible.

B. Learning a time series of user latent vectors

To learn a time series of user latent vectors for each user,
we first perform MF for the rating matrix R to obtain the user
latent matrix P and the item latent matrix Q. As we assume
that the item latent matrix Q is invariant with respect to time,
one might expect that

Ri(t) = QT · Pi(t), (7)

where Ri(t) is the rating vector for user i on the N items
(that can be extracted from the rating matrix R(t)). In view
of this, a näive way to learn a time series of D×1 user latent
vectors, {Pi(t), t = 1, 2, . . . , T − 1}, is to simply compute
the Moore-Penrose pseudoinverse of QT from (7). It is well-
known that the Moore-Penrose pseudo inverse computes a
“best fit,” i.e., the least squared solution to a system of linear
equations and its uniqueness follows from the SVD theorem in
matrix algebra. Such an approach works fine if all the entries in
the vector Ri(t) are known. In reality, there are many missing
values in the vector Ri(t) and thus make a direct computation

of the Moore-Penrose pseudo inverse infeasible. One way to
remedy this is to pad the missing values in Ri(t) with the
predicted values of user i by MF, i.e., QT · Pi. In particular,
one can generate another vector R̃i(t) as a linear combination
of these two vectors, i.e.,

R̃i(t) = βRi(t) + (1− β)QT · Pi. (8)

If β is small, the padded values in R̃i(t) are all from the
vector QT · Pi. As such, the vectors R̃i(t), t = 1, 2, . . . , T −
1, are all very similar and the corresponding Moore-Penrose
pseudo inverse vectors also very similar. As a result, there is
basically no change of the user latent vectors and that defeats
the purpose of tracking the dynamics of user latent vectors. On
the other hand, if β is large, then we basically ignore all the
missing values in Ri(t) and that causes great fluctuation of the
user latent vectors which makes it extremely difficult to track
the dynamics of user latent vectors. Also, as there are many
missing values in Ri(t), it is not clear whether the user latent
vectors obtained this way possess any statistical significance.

The key insight to tackle this problem is that the user
preferences at a specific time step are not only related to the
ratings during that specific time step but also related to his/her
overall behavior. In view of this, we first set Pi(t) as the
original user latent vector Pi. Then we use the observed ratings
during that time step to “learn” Pi(t). Specifically, we propose
the following modified stochastic gradient descent method:

eij(t) = Rij(t)−QT
j · Pi(t), (9)

Pi(t)← Pi(t) + α [eij(t)Qj − λPi(t)] . (10)

Unlike the standard stochastic gradient descent method for
MF in (3)–(5), here we only update the latent vector Pi(t) for
every rating provided by user i at time t (as the item matrix
Q is stationary). By doing so, the user latent vector Pi(t) only
updates his/her preferences for those items rated during time
t and thus retains his/her overall behavior for those items not
rated during time t. Such an approach not only overcomes the
obstacle of data sparsity but also possesses meaningful user
preferences in the temporal setting.

C. Learning the dynamics of the concept drift in the user
latent vector

To track concept drift in the user latent vector, we need to
identify a system model for the dynamics of the time series of
the user latent vectors. Such a problem is known as the system
identification problem in the literature [28]. One of the most
commonly used models for system identification problems
is the linear system model. As such, we consider the linear
system model for the latent vector of each user. Specifically,
we consider Pi(t) as the state vector at time t and model the
evolution of the state vector by

Pi(t) = Ai · Pi(t− 1) + bi, (11)

where Ai is a D × D matrix and bi is a D × 1 vector. The
matrix Ai is called the transition matrix for user i and bi is
called the bias vector of user i.
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We note that such a linear system model is not capable of
detecting/tracking sudden and random changes of user prefer-
ences. However, as we use the sliding window approach (with
overlapping rating logs) in Section IV-A to construct the time
series of rating matrices and the modified stochastic gradient
descent method in Section IV-B to learn the latent vectors, we
believe the latent vectors learned this way should be relatively
smooth and could be tracked by using the simple linear system
model in (11). On the other hand, it is possible to approximate
a more complicated nonlinear system by combining various
linear systems that switch between the critical points of the
original nonlinear system. However, as the number of time
slices in our datasets is rather small, it would be difficult to
use a set of linear systems and select the most appropriate
linear system when a sudden change of user preference is
detected.

It seems plausible to assume that the user latent vectors
do not vary a lot in each time step. As such, we replace the
transition matrix Ai by

(
I + Ãi

)
in (11). This then leads to

Zi(t) = Ãi · Pi(t− 1) + bi, (12)

where
Zi(t) = Pi(t)− Pi(t− 1). (13)

By doing so, we expect that the matrix Ãi is sparse and it only
contains a small number of nonzero entries. It is known [29]
that the Lasso regression provides parameter shrinkage and
variable selection that limit the number of nonzero elements
in the parameters. As such, we apply the Lasso regression to
estimate Ãi and bi in (12) from the T − 2 “observations” of
the output {Zi(t), t = 2, . . . , T −1} with the input {Pi(t), t =
2, . . . , T −1}. Specifically, for each factor k, k = 1, 2, . . . , D,
we let A(k)

i be the kth row of Ai, b
(k)
i be the kth element

in bi, Z
(k)
i (t) be the kth element in Zi(t) and consider the

following optimization problem:

min
Ã

(k)
i ,b

(k)
i

1

2(T − 2)

T−1∑
t=2

(
Z

(k)
i (t)− Ã(k)

i · Pi(t)− b(k)i

)2
+λ‖Ãi

(k)‖1, (14)

where ‖Ãi
(k)‖1 is the L1-norm of the vector Ãi

(k)
and λ is

a nonnegative regulator parameter for the Lasso regression.
As λ increases, the number of nonzero elements in the vector
Ãi

(k)
decreases. In our experiments, we will use the Matlab

tool [30] to solve the above Lasso regression.

D. Rating prediction

Once we obtain the transition matrix Ai and the bias vector
bi, we can use the system dynamic in (11) to predict the latent
vector of user i at time T by the following equation:

Pi(T ) = Ai · Pi(T − 1) + bi. (15)

As in the original MF, the missing values in the testing data
set are then predicted by using the product of the user latent
vector and the item latent matrix, i.e.,

Ri(T ) = QT · Pi(T ). (16)

ALGORITHM 1: The Temporal Matrix Factorization
(TMF) approach
Input: A collection of time-stamped rating logs

(user, item, rating, time) with M users and N
items.

(0) (Matrix Factorization) Ignore the time stamps and
represent the rating logs by an M ×N rating matrix
R = (Ri,j), where Ri,j is the rating of user i on item j
if item j has been rated by user i. Perform the matrix
factorization by using LIBMF [31], [32] to obtain the
D ×M user latent matrix P and the D ×N item latent
matrix Q.

(1) (Construction of a time series of rating matrices)
Construct a time series of rating matrices
{R(t), t = 1, 2, . . . , T − 1} by using the sliding window
approach in Section IV-A.

(2) (Learning a time series of user latent vectors) Set
Pi(t) as the original user latent vector Pi (the ith

column of P ). Use the modified stochastic gradient
descent method in (9) and (10) to “learn” Pi(t):

eij(t) = Rij(t)−QT
j · Pi(t),

Pi(t)← Pi(t) + α [eij(t)Qj − λPi(t)] .

The latent vector Pi(t) is only updated for every rating
provided by user i at time t. See the pseudo-code in
Algorithm 2.

(3) (Learning the dynamics of the user latent vectors) For
each user i, solve the Lasso regression in (14) to find
the D ×D transition matrix Ai and the D × 1 bias
vector bi for the linear system model

Pi(t) = Ai · Pi(t− 1) + bi.

(4) (Rating prediction) Predict the latent vector of user i
at time T by

Pi(T ) = Ai · Pi(T − 1) + bi.

Predict the (missing) rating of user i at time T by

Ri(T ) = QT · Pi(T ).

The complete learning procedure of our TMF method is
outlined in Algorithm 1 and a pseudo-code of the modified
stochastic gradient descent method is given in Algorithm 2.

V. EXPERIMENTAL RESULTS

In this section, we perform various experiments to evaluate
the performance and efficiency of our temporal method via a
synthetic dataset and four real datasets. All our experiments are
implemented in MATLAB and executed on a server equipped
with an Intel Core i7 (4.2GHz) processor and 64G memory
on the Linux system.

A. Experiments on the Synthetic Dataset
We first conduct our experiments on synthetic data. The

main reason for doing this is to test our method in a control-
lable environment so that we can gain insights of the effects
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ALGORITHM 2: A pseudo-code of the modified stochas-
tic gradient descent method

function P (t) = modifiedSGD(ratingLogs, P , Q, D, T ,
iterations, α, λ)

for t = 1 : T − 1
P (t)← P ;
for iter = 1:iterations

for index = 1:size(ratingLogs, 1)
i← ratingLogs(index,1,t);
j ← ratingLogs(index,2,t);
Rij(t)← ratingLogs(index,3,t);
eij(t)← Rij(t)−QT

j · Pi(t);
for d = 1 : D

Pi,d(t)← Pi,d(t) + α ∗
(
eij(t)∗

Qj,d − λ ∗ Pi,d(t)
)

;

end
end

end
end

of various parameters and thus better understand when our
method could be effective.

To generate the synthetic data, we set M = 10, 000 and
N = 10, 000, i.e., there 10,000 users and 10,000 items. The
density of the rating matrix R is set to 1%, and that gives
1,000,000 ratings. We generate all the entries in both the
initial user latent matrix P (1) and the item latent matrix Q by
uniformly distributed random variables over (0, 1). To model
the evolution of the user latent vector for each user i, the
transition matrix Ai is generated by the sum of the identity
matrix and a random matrix R′ with all its entries generated
from a uniform distribution. The entries in the bias vector bi
are also generated from a uniform distribution. Various ranges
of the entries in R′ and bi are specified in our experiments
(see Table II). The number of steps T is set to 10 and the
rating logs are then generated according to equations (7) and
(11).

In Table II, we report the RMSE for both the original
MF (implemented by the LIBMF library [31], [32]) and our
method for various parameter settings. The parameters that
we choose for MF are the learning rate α= 0.02, the regulator
parameter λ = 0.02, and the number of latent factors D = 30.
We run 50 iterations of SGD to obtain the latent factors in the
original MF. The learning rate α and the regulator parameter λ
in equation (10) for computing the user latent vector at every
time step in our method are set to be the same as those for
MF. As can be seen from this table, our method consistently
and significantly outperforms MF in all the parameter settings.
The improvement depends on the transition matrix and the
bias vector that are selected to control the concept drift in
the user latent vector. A more careful examination reveals
that the improvement for our method is relatively small if
the range of the entries in the random matrix R′ is small,
e.g., (−0.01, 0.01). This is because the transition matrix in

TABLE II
THE RMSE RESULTS ON THE SYNTHETIC DATASET FOR VARIOUS

PARAMETER SETTINGS.

Range of R′ Range of bi MF TMF Improvement
(-0.01, 0.01)

(-0.01, 0.01)

0.4566 0.4246 7.01%
(-0.05, 0.05) 0.8468 0.6758 20.19%
(-0.1, 0.1) 1.2667 0.9790 22.71%
(-0.3, 0.3) 1.7007 1.3780 18.97%
(-0.5, 0.5) 1.8046 1.4967 17.06%

(-0.01, 0.01)

(-0.1, 0.1)

0.5763 0.5124 11.09%
(-0.05, 0.05) 0.9645 0.7660 21.20%
(-0.1, 0.1) 1.2985 0.9539 26.54%
(-0.3, 0.3) 1.7092 1.3673 19.96%
(-0.5, 0.5) 1.8091 1.4787 18.26%

such a scenario is very close to the identity matrix and there
is almost no change of the user latent vectors. As such, MF
performs well and yields a low RMSE. On the other hand, if
such a range is large, the prediction accuracy of MF is low as
MF relies on the assumption of stationary user preferences.
As our method is capable of tracking the concept drift in
the user latent vector, our method achieves roughly 17-26%
improvement in terms of RMSE.

Next, we study the effect of the range of bi. In Table II, we
consider two different ranges of bi. The experimental results
show that the values of RMSE are larger when the given range
is larger (under the condition of using the same transition
matrix). Moreover, the performance gain from our method
is also larger. This shows the importance of adding the bias
vectors in our linear system model.

In addition to the prediction results presented above,
we demonstrate the state tracking ability of our temporal
method. Denote by P̂i(t) the user latent vector of user i at
time t (computed by our temporal method) and Pi(t) the
given ground truth in the synthetic dataset. We compute the
dissimilarity measure of these two latent vectors by using the
RMSE metric as follows:

s
(
Pi(t), P̂i(t)

)
=

√√√√∑D
d=1

(
Pid(t)− P̂id(t)

)2
D

, (17)

where D is the dimensions of these two latent vectors. To
compare the tractability of the MF approach and our temporal
method, we measure the average of the dissimilarities among
all the users at a specific time step t and plot the results in
Figure 1. As can be seen from Figure 1, the gain of using our
temporal method to track the user latent vectors increases over
time and at the time for prediction, i.e., the 10th time step,
the gain is near 13%.

To dig further, we examine the rating prediction result for
each user. We observe that our temporal method consistently
obtains better prediction results if the MF approach always
overestimates (or underestimates) all the ratings provided by a
user in the testing dataset. For instance, we show in Table III a
user (user ID 26) who gives extreme high ratings and another
user (user ID 28) who gives extremely low ratings. This is
because the MF approach cannot track the concept drift in
the user latent vector even when there is a distinct downward
(or upward) trend in the evolution of user preferences. On the
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Fig. 1. The average dissimilarities among all users at each time step.

TABLE III
THE RATING PREDICTION RESULTS WITH EXTREME ACTUAL RATINGS.

user ID item ID actual rating MF TMF

26

1139 5 4.51 4.95
1303 5 4.62 5.07
2092 5 3.87 4.26
2200 5 4.22 4.63
2625 5 3.83 4.21
2867 5 4.43 4.86
3515 5 4.69 5.14
6495 5 4.67 5.13
7864 5 3.71 4.07
8693 5 4.21 4.62

28

92 1 2.24 0.88
1440 1 2.44 0.96
1626 1 3.08 1.18
1917 1 3.15 1.27
3234 1 2.95 1.15
3556 1 2.62 0.98
4425 1 2.91 1.10
8990 1 2.23 0.85
9262 1 2.37 0.94
9978 1 2.79 1.09

other hand, if the ratings provided by a user are distributed
over the entire range as shown in Table IV, then the ratings
predicted by our temporal method are not always better
than those from those predicted by the MF. But, the overall
accuracy of our temporal method is still better. In summary,
our temporal method is good at capturing the general trend
and thus yields improvement on the overall performance.

To further understand the effect of the number of latent
factors D, we show in Figure 2 the comparison results on the
synthetic dataset (with both R′ and bi being (−0.1, 0.1) in
Table II) for the three approaches: MF, TMF and CKF [25].
As in the previous experiment, we use the LIBMF library
[31], [32] to implement MF. We are very grateful to Mr. San
Gultekin (one of the authors of [25]) for providing us the
source code for CKF. In order to have a fair comparison of MF
and TMF, we use the same parameter setting for the synthetic
dataset and set the learning rate α = 0.01, the regulator

TABLE IV
THE RATING PREDICTION RESULTS WHEN ACTUAL RATINGS ARE

DISTRIBUTED OVER THE ENTIRE RANGE.

user ID item ID actual rating MF TMF

32

976 3 2.74 3.09
1224 4 2.63 2.98
1379 5 3.17 3.64
1691 2 2.72 3.06
3989 4 2.86 3.25
5079 1 2.62 2.95
6541 2 2.60 2.95
7455 4 2.58 2.93
9691 3 2.46 2.79
9944 3 2.47 2.81

Fig. 2. Comparison results for various values of D with MF, TMF and CKF
on the synthetic dataset.

parameter λ = 0.02 and 50 iterations for each run. We run
CKF by using the default setting in the source code. As shown
in Figure 2, TMF is rather insensitive to the number of latent
factors D and has a lower RMSE than those of MF and CKF
in this range of D.

B. Experiments on the Real Datasets

To validate our temporal method in practical environments,
in this section we conduct our experiments on real datasets.
Motivated by the increasing importance of recommender sys-
tems on electronic commerce and online video streaming
services, we consider Ciao, Epinions, Flixster and MovieLens.
With Web 2.0 technique to gather users’ feedbacks such as
explicit ratings and implicit reviews, Ciao and Epinions are
two of the most popular online-shopping websites. Ciao is
a European-based online-shopping portal with websites and
claims and it reaches an audience of 28.4 million monthly
unique visitors in Europe [33]. Epinions is established in 1999
and now is the largest consumer review site with thousands of
product reports in the world. Another focus is the movie/video
recommendation platform which becomes more popular in our
daily life. For this, we consider Flixster and MovieLens in
our work. Flixster is an American social movie site which
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TABLE V
STATISTICS OF THE REAL DATASETS.

Ciao Epinions Flixster MovieLens

Users 1,947 21,752 114,747 125,041
Items 5,004 242,842 44,439 17,951

Training Ratings 22,068 830,043 7,376,472 18,000,243
Testing Ratings 826 23,621 416,293 353,575

Density 0.23% 0.02% 0.14% 0.80%
Earliest Rating Jun. 2000 Jul. 1999 Dec. 2005 Jan. 1995

Latest Rating Apr. 2011 May 2011 Nov. 2009 Mar. 2015

TABLE VI
THE RMSE RESULTS FOR THE FOUR REAL DATASETS.

Ciao Epinions Flixster MovieLens
MF 1.1099 1.1287 1.1189 0.8170

TMF 1.0540 1.1189 1.1102 0.8150
Improvement 5.04% 0.87% 0.78% 0.24%

also provides applications in Facebook and MySpace for users
to share film reviews and ratings whereas MovieLens is a
recommender system for research of collaborative filtering run
by GroupLens Research. These datasets with the information
of ratings and the associated time stamps are publicly available
in [34], [35], [36] and their statistics information is shown in
Table V.

All of these platforms provide services for users to rate
items using a 5-point Likert scale while Flixster adopts 10
discrete numbers in the range [0.5,5] with step size 0.5. Each
log in a dataset contains the information of user ID, item ID,
rating and timestamp. First of all, we sort these logs in the
chronological order to form a time series. Note that this setting
is more practical than the traditional approach because we are
only allowed to use the past data to predict future events. We
partition the whole dataset into 10 time slices equally and
leave the last slice as the testing set. In order to have an
enough number of representative ratings and have smooth and
trackable transitions, we apply the sliding window approach to
combine the logs in every 5 consecutive time slices to form a
time step. By doing so, 4 of the slices in each step overlap with
those in the next time step and there are totally 6 time steps (T
= 6) in this setting. Next, we remove new users and new items,
i.e., the users and items appear only once in the testing set,
and focus on tracking the evolution for the latent vectors of
existing users. We adopt the same parameter settings as those
in the synthetic dataset except that we choose the learning rate
α = 0.01 (in (10)) for the Flixster and MovieLens datasets.
The experimental results for RMSE by the MF method and
our method are shown in Table VI.

In comparison with the MF approach, we can see from Table
VI that our temporal method improves the performance in
RMSE in all four real datasets. However, the gain varies from
one to another. In Ciao, we obtain 5% improvement. For the
other three datasets, the improvements are not that significant.
One possible explanation for this is that the temporal effect
depends on the dataset due to its intrinsic properties. We also
observe the improvements in real datasets are not as significant
as those in the synthetic dataset. The main reason is that we

Fig. 3. The evolution of the user latent vector for user 49 in the Ciao dataset.

Fig. 4. The evolution of the user latent vector for user 108 in the Ciao dataset.

purposely construct the synthetic dataset so that it possesses
the desired concept drift in the user latent vector. It is not clear
whether there are concept drifts in the user latent vectors in
the Epinions, Flixster, and MovieLens datasets.

To see whether there is performance gain by tracking con-
cept drift in the latent vector of a user, we further examine the
evolution of various user latent vectors and their corresponding
rating prediction results (see Figures 3–5). An interesting
finding is that users basically can be classified into two types:
one is beneficial to track concept drift in his/her user latent
vector and the predicted latent vector from our method is
substantially different from that from MF, and the other is
worthless to track concept drift in his/her user latent vector as
the predicted latent vector from our method is quite close to
that from MF. In the Ciao dataset, we observe that the majority
of improvement made by the users whose latent vectors evolve
in a consistent direction. A plain example of this case is
that the user latent vector changes in only one step from the
original latent vector. We list the evolution of the first five
latent factors of the latent vector (due to space limitation) and
the corresponding ratings in Table VII. To visualize this case
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Fig. 5. The evolution of the user latent vector for user 339 in the Epinions
dataset.

more clearly, we also plot the factors of the latent vector for the
original Pi (computed by MF and marked in blue), the factors
of the user latent vector at time step T −1 (marked in yellow),
and the factors of the predicted user latent vector Pi(T ) with
T = 6 (marked in red) for user 49 in the Ciao dataset in Figure
3. As can be seen from this figure, the predicted latent vector
from our method is substantially different from that from MF.
For this user, the corresponding ratings in Table VII show that
such a user is beneficial to track concept drift in his/her user
latent vector. On the other hand, we plot in Figure 4 the factors
of the latent vector for the original Pi (computed by MF and
marked in blue), the factors of the user latent vector at time
step t (marked in yellow), and the factors of the predicted user
latent vector Pi(T ) with T = 6 (marked in red) for user 108
in the Ciao dataset. For user 108, the predicted latent vector
by our method is very close to that from MF. As such, the
predicted rating by using our method and MF are also very
close as shown in Table VIII. For such a user, there is little
performance gain to track concept drift in his/her latent vector.

In Epinions, Flixster and MovieLens datasets, we observe
that the latent vectors of most users change smoothly but not
usually in a consistent direction. As such, the predicted Pi(T )
is similar to the original latent factors Pi. The corresponding
latent vectors and the prediction results are shown in Table
IX and Figure 5 for a typical user (user 339) in the Epinions
dataset. In this case, considering the overall ratings without
using the information of time stamps (such as MF) is capable
of yielding good estimations and there is little performance
gain to track concept drift in the user latent vector for most
users.

Now we report the run-time of our temporal method on
these datasets in Table X. The run-time includes learning the
user latent vectors, learning the transition matrices, and further
performing rating prediction which quantify the additional
efforts after obtaining the original latent matrices P and Q
from MF. As we use Matlab to implement our temporal
method (except we use LIBMF [31], [32] in the step for MF),
we also implement MF by using Matlab and report the run-

TABLE VII
THE FIRST FIVE FACTORS OF USER 49 IN THE CIAO DATASET AND THE

CORRESPONDING PREDICTION RESULTS.

Factor 1 2 3 4 5
Pi 0.4592 0.2673 0.2304 0.3172 0.3549

P̂i(1)

0.4592 0.2673 0.2304 0.3172 0.3549P̂i(2)

P̂i(3)

P̂i(4)

P̂i(5) 0.5507 0.3000 0.2411 0.3640 0.4328

P̂i(6) 0.5737 0.3082 0.2438 0.3757 0.4522

user ID item ID actual rating MF TMF

49

36 4 3.13 3.76
138 4 3.50 4.20
711 5 3.11 3.74
712 5 3.80 4.57
713 5 3.78 4.55

TABLE VIII
THE FIRST FIVE FACTORS OF USER 108 IN THE CIAO DATASET AND THE

CORRESPONDING PREDICTION RESULTS.

Factor 1 2 3 4 5
Pi 0.5814 0.5842 0.5738 0.5327 0.4485

P̂i(1) 0.5814 0.5842 0.5738 0.5327 0.4485
P̂i(2) 0.5777 0.4566 0.4518 0.4261 0.3749
P̂i(3) 0.6218 0.4630 0.4285 0.4449 0.3949
P̂i(4) 0.5849 0.4845 0.4855 0.4655 0.4043
P̂i(5) 0.5590 0.5398 0.4818 0.4703 0.4174

P̂i(6) 0.5534 0.5287 0.4588 0.4547 0.4096

user ID item ID actual rating MF TMF

108

122 5 4.16 4.12
251 4 3.57 3.59
447 5 4.47 4.49
469 5 4.83 4.88
531 5 4.49 4.57
768 5 5.01 5.01
823 5 3.78 3.86
1258 5 3.65 3.70
1319 4 4.16 4.13
1320 5 3.74 3.78
1321 5 5.17 5.16
1322 5 4.78 4.82
1323 4 3.72 3.62
1324 5 4.74 4.79
1325 5 4.74 4.77
1326 5 5.03 5.14
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TABLE IX
THE FIRST FIVE FACTORS OF USER 339 IN THE EPINIONS DATASET AND

THE CORRESPONDING PREDICTION RESULTS.

Factor 1 2 3 4 5
Pi 0.4953 0.5479 0.4734 0.5847 0.5540

P̂i(1) 0.4781 0.5194 0.4089 0.6105 0.5400
P̂i(2) 0.4810 0.5245 0.4178 0.6249 0.5505
P̂i(3) 0.4968 0.5065 0.4450 0.6246 0.5427
P̂i(4) 0.4793 0.5483 0.4625 0.6249 0.5398
P̂i(5) 0.4825 0.5496 0.4789 0.5966 0.5512

P̂i(6) 0.4837 0.5571 0.4964 0.5932 0.5540

user ID item ID actual rating MF TMF

339

9188 4 3.57 3.59
9189 1 0.95 0.96
9190 4 3.38 3.39
9191 4 3.93 3.93
9192 4 3.54 3.56
9193 5 3.98 4.11
9194 3 4.02 4.03

TABLE X
THE RUN-TIME FOR OUR TEMPORAL METHOD AND MF ON VARIOUS

DATASETS.

Synthetic Ciao Epinions Flixster MovieLens

TMF 57.60m 3.79m 25.90m 78.42m 143.08m
MF (LIBMF) 2.32s 0.18s 6.85s 20.47s 44.27s
MF (Matlab) 27.61m 0.67m 24.58m 218.75m 532.93m

time for performing MF on these datasets. As shown in Table
X, the run-time of MF by LIBMF is in the order of seconds
and the run-time of TMF and MF by Matlab is in the order
of minutes. The additional efforts of our temporal methods (in
terms of run-time) are comparable to those for performing MF
by using Matlab.

To further understand the effect of the number of latent
factors D, we show in Figure 6 the comparison results on the
Ciao dataset for the three approaches: MF, TMF, and CKF
[25]. For MF and TMF, we set the learning rate α = 0.02, the
regulator parameter λ = 0.02 and 50 iterations for each run.
We run CKF by using the default setting in the source code.
We note that there is a version update of the LIBMF library
[31], [32] and the MF version of this experiment, i.e., the 2016
version, is different from the old version used in Table VI. As
such, the RMSE results for both MF and TMF are slightly
different from those in Table VI.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed a Temporal Matrix Factorization
approach (TMF) for tracking concept drift in each individual
user latent vector. There are two key innovative steps in our
approach: (i) a modified stochastic gradient descent method to
learn an individual user latent vector at each time step, and (ii)
a linear model for the transition of the individual user latent
vectors by the Lasso regression. In comparison with the other
approaches that intend to incorporate temporal dynamics with

Fig. 6. Comparison results for various values of D with MF, TMF, and CKF
on the Ciao dataset.

MF in the literature, there are several distinctive features of
our temporal method:
(i) Our modified stochastic gradient descent method is able
to alleviate the data sparsity problem for learning the user
preferences at a certain time step. This overcomes the data
sparsity problem in tensor factorization.
(ii) Unlike the CKF approach [27], we do not need to assume
the transition matrix is homogeneous. Thus, we are allowed to
track concept drift in each individual user latent vector.

In comparison with the original MF, our temporal method is
able to achieve lower root mean square errors (RMSE) for both
the synthetic and real datasets. One interesting finding is that
the performance gain in RMSE is mostly from those users who
indeed have concept drift in their user latent vectors at the time
of prediction. As our temporal method is specifically designed
for each user, one can save a lot of efforts by only tracking
those users who indeed have concept drift in their user latent
vectors at the time of prediction. However, identifying those
users is not an easy task and might require further study. One
possible approach for this is to examine the transition matrix
for each user. In our experiments, we found that there are
many users whose transition matrices are the identity matrix
and those users are not worth tracking.

Another research direction is to study the effect of cold
start users (who have very few ratings). One might think cold
start users are difficult to predict and then immediately filter
out their ratings in the preprocessing step. However, in our
temporal method, the ratings of cold start users might be
valuable as they contribute to the item latent matrix Q which
in turn affects the accuracy of estimating the time series of
the latent vectors of other users.

As pointed out by one of the reviewers, the effects of user-
biases and item-biases could be important for real datasets.
Such effects are not taken into account in our TMF approach.
To see the effects of user-biases and item-biases, we compare
the MF, the biased MF [7] and the TMF for the synthetic
dataset and the four real datasets. In Table XI, we show the
comparison results for the synthetic dataset by using various
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TABLE XI
THE RMSE RESULTS OF MF, TMF AND BIASED MF FOR THE SYNTHETIC

DATASET UNDER VARIOUS PARAMETER SETTINGS.

Range of R′ Range of bi MF TMF biased MF
(-0.01, 0.01)

(-0.01, 0.01)

0.4566 0.4246 0.4898
(-0.05, 0.05) 0.8468 0.6758 0.9122

(-0.1, 0.1) 1.2667 0.9790 1.3884
(-0.3, 0.3) 1.7007 1.3780 1.9489
(-0.5, 0.5) 1.8046 1.4967 2.1029

(-0.01, 0.01)

(-0.1, 0.1)

0.5763 0.5124 0.7690
(-0.05, 0.05) 0.9645 0.7660 0.9791

(-0.1, 0.1) 1.2985 0.9539 1.4003
(-0.3, 0.3) 1.7092 1.3673 1.9552
(-0.5, 0.5) 1.8091 1.4787 2.0997

TABLE XII
THE RMSE RESULTS OF MF, TMF AND BIASED MF FOR THE FOUR REAL

DATASETS.

Ciao Epinions Flixster MovieLens
MF 1.1099 1.1287 1.1189 0.8170

TMF 1.0540 1.1189 1.1102 0.8150
biased MF 0.9131 1.0564 0.9855 0.7866

parameter settings as in Table II. As there are no user-biases
and item-biases in the synthetic dataset, the RMSE of the
biased MF is even worse than that of MF. This is because
the biased MF has to “learn” additional bias parameters that
are known to be 0 in the synthetic dataset. On the other hand,
we show in Table XII the comparison results for the four real
datasets used in Table VI. The RMSE of the biased MF is
better than that of MF and that of TMF. This suggests that
there are indeed user-biases and item-biases in the four real
datasets and exploiting the effects of user-biases and item-
biases in the real datasets can lead to good performance
improvement. In view of this, one of our future research
directions is to incorporate the user-biases and item-biases into
our TMF approach.
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