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Abstract—It is well known that output-buffered switches have
better performance than other switch architectures. However,
output-buffered switches also suffer from the notorious scalabil-
ity problem, and direct constructions of large output-buffered
switches are difficult. In this paper, we study the problem of
constructing scalableswitches that have comparable performance
(in the sense of 100% throughput and first-in first-out (FIFO)
delivery of packets from the same flow) to output-buffered
switches. For this, we propose a new concept, calledquasi-output-
buffered switch. Like an output-buffered switch, a quasi-output-
buffered switch is a deterministic switch that achieves 100%
throughput and delivers packets from the same flow in the FIFO
order. Using the three-stage Clos network, we show that one can
recursivelyconstruct a larger quasi-output-buffered switch with
a set of smaller quasi-output-buffered switches. By recursively
expanding the three-stage Clos network, we obtain a quasi-
output-buffered switch with only 2 × 2 switches. Such a switch
is called apacket-pair switchin this paper as it always transmits
packets in pairs. By computer simulations, we show that packet-
pair switches have better delay performance than most load-
balanced switches with comparable construction complexity.

Index Terms—Delay performance, load-balanced switches,
output-buffered switches, packet-pair switches, quasi-output-
buffered switches.

I. I NTRODUCTION

It is well known that output-buffered switches achieve
100% throughput and have the best delay performance among
all switch architectures. However, this is at the cost ofN
times speedup for anN × N output-buffered switch. The
required speedup makes it difficult to construct a large output-
buffered switch. There are several studies in the literature that
achieve exact emulation of an output-buffered switch, such
as the crosspoint-buffered switch [1], the parallel-buffered
switch [2], and the combined input/output-buffered switch[3],
[4]. However, all of these switches either have non-scalable
hardware complexity or have computation and communication
overheads.

One of the key problems in high speed switching is whether
one can constructscalableswitches with comparable perfor-
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mance to output-buffered switches. Recent advances in load-
balanced switches (see e.g., [5]–[9]) have shed some light
on that problem. A typical load-balanced switch consists of
two stages: the first stage is for load balancing that converts
incoming traffic into uniform traffic, and the second stage is
for switching of the uniform traffic. Moreover, the connection
patterns for the crossbar switches in the two stages of a load-
balanced switch aredeterministicand periodic. It is shown
that various load-balanced switches have comparable perfor-
mance to output-buffered switches. As such, they can achieve
100% throughput withO(1) computation and communication
overheads.

One of the main contributions of this paper is to identify
the key ingredients in load-balanced switches that enable us to
construct large switches with comparable performance (in the
sense of 100% throughput and first-in first-out (FIFO) delivery
of packets from the same flow) to output-buffered switches.
For this, we propose a new concept, calledquasi-output-
buffered switch. Like an output-buffered switch, a quasi-
output-buffered switch is adeterministicswitch thatachieves
100% throughputand delivers packets from the same flow in
the FIFO order. Using the three-stage Clos network [10], we
show that one canrecursivelyconstruct a larger quasi-output-
buffered switch with a set of smaller quasi-output-buffered
switches. To the best of our knowledge, such a result on
quasi-output-buffered switches seems to be the first resultthat
allows recursive constructionsof switches with comparable
performance (in the sense of 100% throughput and FIFO
delivery of packets from the same flow) to output-buffered
switches. Analogous to the construction of a Benes network
[11], we recursively expand the three-stage Clos network to
obtain a quasi-output-buffered switch with only2×2 switches.
Such a switch is called apacket-pair switchin this paper as
it always transmits packets in pairs. The packet-pair switches
have several nice features: 100% throughput, FIFO deliveryof
packets from the same flow, deterministic connection patterns
of all 2× 2 switches, self-routing of packets, and no need for
computation and communication. By computer simulations,
we also show that packet-pair switches have better delay per-
formance than most load-balanced switches with comparable
construction complexity.

The key theory behind our constructions of quasi-output-
buffered switches is a refinedcalculus based on a traffic
characterization in [12]. Such a traffic characterization allows
us to describe a flow of packets by a single “rate.” We show
that the aggregated flow has a rate equal to the sum of the
rates of individual flows. Round-robin splitting of a flow yields
several subflows with smaller rates. Moreover, a departing flow
has the same rate as that of the arriving flow provided that the
system is “stable.” Unlike the theory of effective bandwidth
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(see e.g., [13] and the references therein), the refined calculus
does not need theindependenceassumption on the flows.

The paper is organized as follows. In Section II, we intro-
duce the traffic characterization and its associated calculus.
We also define the concept of a quasi-output-buffered switch
in Section II. Then we propose a three-stage construction ofa
quasi-output-buffered switch in Section III and introducethe
packet-pair switches in Section IV. Section V concludes this
paper.

II. QUASI-OUTPUT-BUFFEREDSWITCHES

In this paper, we only consider the discrete-time setting and
we make the following assumptions: (i) Time is slotted and
synchronized in every link. (ii) Packets are of the same size
and each packet can be transmitted within a time slot. Aflow is
commonly known as a sequence of packets that have the same
source-destination pair in a switch (or a network of switches).

In Section II-A, we first give the traffic characterization for
the flows of packets considered in this paper, and show that
such flows possess three useful properties: the superposition
property, the splitting property, and the departure property. In
Section II-B, we review the definition of an output-buffered
switch and show that output-buffered switches have the uni-
versal stability property under a no overbooking conditionfor
the input traffic flows. By extracting and preserving some key
properties in output-buffered switches, we then formally define
a quasi-output-buffered switch in Section II-C, and show in
Section II-D that the key properties of quasi-output-buffered
switches can be preserved through a feedforward network if
the total “mean” arrival rate at every output link of every
quasi-output-buffered switch in the feedforward network does
not exceed its capacity. Such a result will be useful in the
three-stage construction of a quasi-output-buffered switch in
Section III.

A. Traffic Characterization

In most switching papers, traffic characterizations for flows
in a switch (or a network of switches) are usually assumed to
follow certain traffic models, e.g., Bernoulli arrival processes
and Markov processes. However, these traffic models are
too specific for our constructions of quasi-output-buffered
switches in this paper. Instead, we will use a much more
general traffic characterization for flows of packets as in [12].
Throughout this paper, for a flowA, we denoteA(t) as the
cumulative number of packets from flowA that arrive by time
t for t ≥ 0.

Definition 1 (λ-moment generating function bounded from
above (λ-m.b.f.a.) flows)

(i) A stochastic process{Q(t), t ≥ 0} is said to have afinite
moment generating functionif there exists a real numberθ > 0
such that

sup
t≥0

E[eθQ(t)] < ∞. (1)

(ii) We say that a flowA is λ-moment generating function
bounded from above (λ-m.b.f.a.) if the stochastic process

{Q(t), t ≥ 0} defined in (2) below has a finite moment
generating function for everyǫ > 0:

Q(t) = max
0≤s≤t

[A(t)−A(s) − (λ+ ǫ)(t− s)]. (2)

With Q(0) = 0, we note thatQ(t) in (2) is in fact the
recursive expansion of the Lindley equation [14]

Q(t) = max[0, Q(t− 1) + a(t)− (λ + ǫ)], (3)

where a(t) = A(t) − A(t − 1) is the number of packets
from flow A that arrive at timet. In view of (3), Q(t) is
simply the number of packets stored in the system at timet
when we feed flowA to a work conserving link with capacity
λ+ ǫ. It is known from the Loynes construction [15] that the
stochastic process{Q(t), t ≥ 0} converges in distribution to
a steady state random variableQ(∞) if the stochastic process
{a(t), t ≥ 1} is stationary and ergodic with a mean rate not
greater thanλ.

However, traffic characterization by the mean rate of a
stationary and ergodic process is not strong enough to guaran-
tee that the steady state random variableQ(∞) has a finite
moment generating function. For this, we need a stronger
condition in [16]. Forθ > 0, let

a∗(θ) = lim sup
t→∞

1

θt

[

sup
s≥0

logE[eθ(A(t+s)−A(s))]

]

(4)

be the minimum envelope rate (MER) with respect toθ (note
that a∗(θ) is also known as the effective bandwidth function
in the literature, see e.g., [13]). Forǫ > 0, let

Qθ(t) = max
0≤s≤t

[A(t)−A(s) − (a∗(θ) + ǫ)(t− s)].

From Theorem 3.8 in [16], we know that

sup
t≥0

E[eθQθ(t)] < ∞.

Therefore, it follows from Definition 1 that flowA is a∗(θ)-
m.b.f.a. for anyθ > 0. One can further choose the best traffic
characterization by lettingρ = infθ>0 a

∗(θ) so that flowA is
ρ-m.b.f.a.

We note that for many arrival processes, the valueρ is
simply the “mean” arrival rate, as illustrated in the following
example for the Bernoulli arrival process.

Example 2 Consider the Bernoulli arrival process with mean
arrival rate ρ, i.e., with probabilityρ there is an arriving
packet in a time slot and this is independent of everything
else. For such an arrival process, it is easy to see that

a∗(θ) =
1

θ
log(ρeθ + (1− ρ)),

and

inf
θ>0

a∗(θ) = lim
θ→0

a∗(θ) = ρ.

Therefore, the Bernoulli arrival process with mean arrivalrate
ρ is ρ-m.b.f.a.

In view of Example 2, our traffic characterization is only
slightly stronger than the traffic characterization by the mean
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arrival rate. The additional assumption on the bounded mo-
ment generating functions leads to the following three im-
portant properties: the superposition property, the splitting
property, and the departure property.

We first derive the superposition property for two flows in
the following lemma.

Lemma 3 (Superposition)
(i) If two stochastic processes{Q1(t), t ≥ 0} and

{Q2(t), t ≥ 0} have finite moment generating functions,
then the superposition{Q(t), t ≥ 0} of the two stochastic
processes{Q1(t), t ≥ 0} and {Q2(t), t ≥ 0}, defined by
Q(t) = Q1(t) + Q2(t) for t ≥ 0, also has a finite moment
generating function.

(ii) If flow A1 is λ1-m.b.f.a. and flowA2 is λ2-m.b.f.a., then
the superpositionA1+A2 of the two flowsA1 andA2, defined
by (A1 + A2)(t) = A1(t) + A2(t) for t ≥ 0, is (λ1 + λ2)-
m.b.f.a.

Proof. See Appendix A for a proof.
We note that the proof of Lemma 3 is based on Cauchy-

Schwartz inequality, and the two stochastic processesQ1(t)
and Q2(t) in Lemma 3(i) and the two flowsA1 and A2

in Lemma 3(ii) need not be independent (see the proof of
Lemma 3 in Appendix A for details). As discussed before,
if we view λ1 as the “mean” rate of flowA1 andλ2 as the
“mean” rate of flowA2, then the aggregated flowA1 + A2

has a “mean” rate equal toλ1 + λ2.
In the following lemma, we show the splitting property for

a flow that is splitted into several subflows in a round-robin
fashion.

Lemma 4 (Round-robin splitting) Suppose that a flowA
is splitted intop subflowsA1, A2, . . . , Ap in a round-robin
fashion such that

Am(t) =

⌈

A(t)−m+ 1

p

⌉

, m = 1, 2, . . . , p. (5)

If flow A is λ-m.b.f.a., then subflowAm is λ/p-m.b.f.a. for
m = 1, 2, . . . , p.

Proof. See Appendix B for a proof.
The intuition of Lemma 4 is quite obvious. If we viewλ as

the “mean” rate of flowA, then subflowAm has a “mean” rate
equal toλ/p as it is obtained from flowA via the round-robin
splitting.

Finally, we give the departure property in the following
lemma.

Lemma 5 (Departure) Suppose that a flowA is fed into a
system (possibly along with other flows) that is initially empty
at time 0. Let flowB be the departure flow of flowA, namely,
B(t) is the cumulative number of packets from flowA that
depart from the system by timet. Also, letQ(t) be the total
number of packets (including packets from flowA and other
flows) stored in the system at timet. If flow A is λ-m.b.f.a.
and {Q(t), t ≥ 0} has a finite moment generating function,
then flowB is alsoλ-m.b.f.a.

Proof. See Appendix C for a proof.
The departure property shows that if flowA has a “mean”

rate equal toλ, then flowB, the departure flow of flowA,
also has a “mean” rate equal toλ provided that the system is
“stable” (in the sense that the total number of packets stored in
the system has a finite moment generating function). We note
that it is difficult to obtain the departure property in Lemma5
if one uses weaker traffic characterizations, such as stationarity
and ergodicity. On the other hand, it is possible to obtain such
a departure property by using stronger traffic characterizations,
such as the(σ, ρ)-deterministic traffic characterization in the
network calculus [17]. However, such a deterministic traffic
characterization cannot be used for stochastic analysis needed
in our later development.

As we shall see later, the superposition property, the split-
ting property, and the departure property provide us with a
simple calculus for our traffic characterization in a network of
switches.

B. Output-Buffered Switches

A switch that hasM input links andN output links is called
an M × N switch. A (local) flow in anM × N switch is a
sequence of packets that arrive from the same input link and
destined for the same output link. As there areM input links
andN output links, there areMN flows in anM×N switch.

Let flow Ai,j be the flow from input linki to output link
j and letAi,j(t) be the cumulative number of packets from
flow Ai,j that arrive by timet for i = 1, 2, . . . ,M and j =
1, 2, . . . , N . Let Bj(t) be the cumulative number of packets
that depart from output linkj by time t for j = 1, 2, . . . , N .
In anM×N output-buffered switch as defined below, packets
are stored at the output links and we letQj(t) be the number
of packets stored in the buffer at output linkj at time t for
j = 1, 2, . . . , N .

Definition 6 (Output-buffered switches)An M × N switch
is called anM × N output-buffered switchif it satisfies the
following two properties when it is started from an empty
system at time 0.

(i) Packets destined for the same output link depart in the
FIFO order.

(ii) For j = 1, 2, . . . , N , Qj(t) is given by

Qj(t) = max

[

0, Qj(t− 1) +

M
∑

i=1

ai,j(t)− 1

]

, (6)

whereai,j(t) = Ai,j(t) − Ai,j(t − 1) is the number of
packets from flowAi,j that arrive at timet.

We note that the Lindley equation in (6) says that all of the
packets that arrive at timet from flowsA1,j , A2,j , . . . , AM,j

are sent to the buffer at output linkj at the same time. If
there are packets in the buffer at output linkj at time t, then
one packet will depart from output linkj at time t. We note
that there might be packets arriving from all of theM flows
A1,j , A2,j , . . . , AM,j at the same time in the worst case, and
in that case the buffer at output linkj is required to have the
capability of receivingM packets at the same time. As such,
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each output buffer needs to speed up (at least)M times and
that causes the notorious scalability problem for an output-
buffered switch.

By recursively expanding the Lindley equation in (6) with
Qj(0) = 0 yields

Qj(t) = max
0≤s≤t

[

M
∑

i=1

(Ai,j(t)−Ai,j(s))− (t− s)

]

, (7)

for j = 1, 2, . . . , N . SinceQj(t) =
∑M

i=1 Ai,j(t) − Bj(t), it
then follows that

Bj(t) = min
0≤s≤t

[

M
∑

i=1

Ai,j(s) + (t− s)

]

, (8)

for j = 1, 2, . . . , N . Note that from (8) and the FIFO property
of an output-buffered switch, the departure of a packet at time
t is uniquely determined by all of the packets that arrive by
time t. Therefore, if the arrival times of all of the packets are
delayed byc time slots, then the departure times of all of the
packets are also delayed byc time slots.

To ensure the stability of an output-buffered switch, we need
the following no overbooking condition.

Definition 7 (No overbooking condition)The input traffic
of an M × N switch is said to satisfy theno overbooking
condition if flow Ai,j is λi,j-m.b.f.a. fori = 1, 2, . . . ,M and
j = 1, 2, . . . , N , and

M
∑

i=1

λi,j < 1, for j = 1, 2, . . . , N. (9)

Intuitively, the no overbooking condition in (9) says that the
total “mean” rate to a particular output link cannot exceed 1.
Under the no overbooking condition, we show in Lemma 8
below that an output-buffered switch is stable in the sense
that the total number of packets stored in the switch has a
finite moment generating function. Such a stability property
in Lemma 8 is called theuniversal stability property.

Lemma 8 (Universal stability) Suppose that anM × N
output-buffered switch is started from an empty system at time
0, and its input traffic satisfies the no overbooking condition
in Definition 7. Then we have

(i) {Qj(t), t ≥ 0} has a finite moment generating function
for j = 1, 2, . . . , N .

(ii) Let Q(t) =
∑N

j=1 Qj(t) be the total number of packets
stored in the switch at timet. Then{Q(t), t ≥ 0} has a finite
moment generating function.

Proof. (i) As flow Ai,j is λi,j-m.b.f.a. fori = 1, 2, . . . ,M and
j = 1, 2, . . . , N , it follows from the superposition property in
Lemma 3(ii) that the aggregated flow

∑M
i=1 Ai,j to output link

j is
∑M

i=1 λi,j-m.b.f.a. forj = 1, 2, . . . , N .
Since

∑M
i=1 λi,j < 1 for j = 1, 2, . . . , N , it then follows

from (7) and Definition 1(ii) that{Qj(t), t ≥ 0} has a finite
moment generating function forj = 1, 2, . . . , N .

(ii) As Q(t) =
∑N

j=1 Qj(t), it is clear from Lemma 8(i) and
the superposition property in Lemma 3(i) that{Q(t), t ≥ 0}
has a finite moment generating function.

C. Definition of Quasi-Output-Buffered Switches

As discussed before, output-buffered switches do not scale
due to the needed speedup. As a result, it is difficult to
construct a large output-buffered switchdirectly. A natural
question is then whether one can construct a larger switch
using a set of smaller switches. We will show in this paper that
this is possible by extracting and preserving some key prop-
erties in output-buffered switches. The switches that satisfy
these key properties are called quasi-output-buffered switches
as defined in Definition 9 below, namely, they behave like
output-buffered switches but they are not exactly the same as
output-buffered switches.

Definition 9 (Quasi-output-buffered switches)An M × N
switch is called anM × N quasi-output-buffered switchif
it satisfies the following three properties when it is started
from an empty system at time 0.

(P1) Deterministic mapping: The departure time of every
packet is a deterministic function of the arrival times
of all of the packets. This implies that if the arrival
times of all of the packets are delayed byc time slots,
then a quasi-output-buffered switch can be operated
in such a way (by shifting the starting time of the
switch) that the departure times of all of the packets
are also delayed byc time slots.

(P2) FIFO delivery: Packets of the same flow depart in
the FIFO order.

(P3) Universal stability: LetQ(t) be the total number
of packets stored in the switch at timet. If the
input traffic of the switch satisfies the no overbooking
condition in Definition 7, then{Q(t), t ≥ 0} has a
finite moment generating function.

From the discussions in Section II-B and Lemma 8, it
is clear that an output-buffered switch is a quasi-output-
buffered switch. It follows that the switches that achieve
exact emulation of output-buffered switches (see e.g., [1]–
[4]) are quasi-output-buffered switches. Various versions of
load-balanced Birkhoff-von Neumann switches, including the
Uniform Frame Spreading (UFS) in [6], the Padded Frame
(PF) in [8], and the Contention and Reservation (CR) switch in
[9], preserve the FIFO delivery of packets from the same flow
and are shown to have a constant bound when compared to the
total number of packets in the corresponding output-buffered
switch. Thus, they are also quasi-output-buffered switches.
However, it is not clear whether an input-buffered switch with
maximum weight matching (MWM) [18] is a quasi-output-
buffered switch as the universal stability property in (P3)of
Definition 9 has not been proved in the literature yet. We also
note that switches that use randomized algorithms (see e.g.,
[19]) are not quasi-output-buffered switches as they fail to
satisfy the deterministic mapping property.

D. Feedforward Networks of Quasi-Output-Buffered Switches

In this section, we show that the key properties of quasi-
output-buffered switches can be preserved through a feed-
forward network. To illustrate this, consider a feedforward
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network interconnected byK switches that are indexed from
1 to K. Suppose that thekth switch in the feedforward
network hasIk output links that are indexed from 1 toIk
for k = 1, 2, . . . ,K. Also suppose that there areF end-to-end
flows that are indexed from 1 toF in the feedforward network.
As the network is feedforward, we assume without loss of
generality that every end-to-end flow traverses through the
network in the increasing order of the indices of the switches.
For f = 1, 2, . . . , F , j = 1, 2, . . . , Ik, andk = 1, 2, . . . ,K,
let D(k)

f,j be the routing variable for thef th end-to-end flow at

output link j of the kth switch, i.e.,D(k)
f,j = 1 if the f th end-

to-end flow traverses through output linkj of the kth switch
andD(k)

f,j = 0 otherwise.

Theorem 10 Suppose that theK switches in the feedfor-
ward network are quasi-output-buffered switches and they
are started from an empty system at time 0. Assume that
the f th end-to-end flow isλf -m.b.f.a. when it arrives at the
feedforward network forf = 1, 2, . . . , F , and assume that
the total “mean” arrival rate at every output link of every
quasi-output-buffered switch does not exceed its capacity, i.e.,

F
∑

f=1

D
(k)
f,jλf < 1, (10)

for j = 1, 2, . . . , Ik and k = 1, 2, . . . ,K.
(i) Let Q(k)(t) be the total number of packets stored in the

kth switch at timet for k = 1, 2, . . . ,K. Then{Q(k)(t), t ≥ 0}
has a finite moment generating function fork = 1, 2, . . . ,K.

(ii) The f th end-to-end flow isλf -m.b.f.a. at every link
traversed by the flow forf = 1, 2, . . . , F .

(iii) Let Q(t) =
∑K

k=1 Q
(k)(t) be the total number of

packets stored in the feedforward network at timet. Then
{Q(t), t ≥ 0} has a finite moment generating function.

Proof. Consider the first quasi-output-buffered switch. Note
that there is only external traffic to the first switch. As
∑F

f=1 D
(1)
f,jλf < 1 for j = 1, 2, . . . , I1, the input traffic

of the first switch satisfies the no overbooking condition,
and it follows from the universal stability property in (P3)
of Definition 9 that {Q(1)(t), t ≥ 0} has a finite moment
generating function. Assume that thef th end-to-end flow
traverses the first switch. Since thef th end-to-end flow isλf -
m.b.f.a. when it arrives at the first switch and we just showed
that{Q(1)(t), t ≥ 0} has a finite moment generating function,
it then follows from the departure property in Lemma 5 that
the f th end-to-end flow is alsoλf -m.b.f.a. when it departs
from the first switch. Therefore, (i) and (ii) hold for the first
switch.

Now we consider the second quasi-output-buffered switch.
The input traffic of the second switch is either external or from
the output links of the first switch. As

∑F
f=1 D

(2)
f,jλf < 1

for j = 1, 2, . . . , I2, the input traffic of the second switch
satisfies the no overbooking condition, and hence we can show
that (i) and (ii) hold for the second switch by using the same
argument for the first switch. It should be clear that by using
∑F

f=1 D
(k)
f,jλf < 1 for j = 1, 2, . . . , Ik andk = 1, 2, . . . ,K,

and repeating the same argument for the first switch forK

times, we can show that (i) and (ii) hold for theK switches
in the feedforward network.

As Q(t) =
∑K

k=1 Q
(k)(t), it is clear from Theorem 10(i)

and the superposition property in Lemma 3(i) that{Q(t), t ≥
0} has a finite moment generating function.

As shown in Theorem 10, the key condition in (10) is to
make sure that the total “mean” arrival rate at every output
link of every quasi-output-buffered switch does not exceedits
capacity. This will be done by load balancing in the three-stage
construction of a quasi-output-buffered switch in SectionIII.

III. A T HREE-STAGE CONSTRUCTION OF A

QUASI-OUTPUT-BUFFEREDSWITCH

A. Operation Rules for the Three-Stage Construction
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Fig. 1. A three-stage construction of anN×N quasi-output-buffered switch,
whereN = p × q.

In this section, we show how one can construct a larger
quasi-output-buffered switch by using a set of smaller quasi-
output-buffered switches. In Figure 1, we show a three-stage
construction of anN×N quasi-output-buffered switch, where
N = p× q. In the first stage, there areq p× p input-buffered
switches. Each input buffer at an input link of a switch in the
first stage hasN virtual output queues (VOQ). In the second
stage, there arep q×q quasi-output-buffered switches. Finally,
in the third stage, there are alsoq p×p input-buffered switches.
Each input buffer at an input link of a switch in the third stage
hasp VOQs. As in a standard Clos network [10], the switches
in the first stage and those in the second stage are connected
by the perfect shuffle exchange, i.e., form = 1, 2, . . . , p and
ℓ = 1, 2, . . . , q, output linkm of theℓth switch in the first stage
is connected to input linkℓ of the mth switch in the second
stage. Similarly, the switches in the second stage and those
in the third stage are also connected by the perfect shuffle
exchange, i.e., form = 1, 2, . . . , p andℓ = 1, 2, . . . , q, output
link ℓ of the mth switch in the second stage is connected to
input link m of the ℓth switch in the third stage.

The main idea of the three-stage construction is to accumu-
late packets in the first stage to form a frame ofp packets.
Then use the uniform frame spreading (UFS) scheme in [6] to
distribute the packets in a frameevenlyto thep quasi-output-
buffered switches in the second stage. Finally, packets in a
frame are “re-assembled” in the third stage.

To do this, the connection patterns of thep× p switches in
the first stage and the third stage are specified by thep × p
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symmetric TDM switch in [20]. Recall that ap×p symmetric
TDM switch implements the following periodic connection
patterns: input linki of thep×p switch is connected to output
link j of the p× p switch at timet if and only if

(i+ j) mod p = (t+ 1) mod p. (11)

In other words, for any positive integerf , input link i is
connected to output link 1 at timei + (f − 1)p, to output
link 2 at timei+(f−1)p+1, . . ., and to output linkp at time
i + fp − 1. Also, it is clear from (11) that every connection
pattern in a symmetric TDM switch issymmetric(as input link
i is connected to output linkj if and only if input link j is
connected to output linki). As such, output linki is connected
to input link 1 at timei + (f − 1)p, to input link 2 at time
i+ (f − 1)p+ 1, . . ., and to input linkp at time i+ fp− 1.

Now we specify the operation rules in these three stages.
(R1) Uniform frame spreading (UFS) for the symmetric

TDM switches in the first stage:There areN VOQs at every
input link of everyp × p symmetric TDM switch in the first
stage. When a packet destined for (external) output linkj,
where 1 ≤ j ≤ N , arrives at an input link of a switch in
the first stage, it is placed in thej th VOQ at that input link.
The switches in the first stage are operated in a frame-based
manner as in the UFS scheme in [6]. Every frame consists of
p consecutive time slots. However, the beginning time slots of
frames are different for differentinputs. Specifically, thef th

frame of input linki of a switch in the first stage begins at the
f th time when input linki of that switch is connected to the
first output link of that switch, i.e., when input linki of that
switch is connected to the first quasi-output-buffered switch
in the second stage. As such, we have from the connection
patterns of ap × p symmetric TDM switch in (11) that the
f th frame of input linki of a switch in the first stage consists
of time slotsi + (f − 1)p, i + (f − 1)p + 1, . . . , i + fp − 1
for i = 1, 2, . . . , p. If there are at leastp packets in a VOQ
at an input link of a switch in the first stage, then we call
that VOQ afull-framed VOQ. Consider a switch in the first
stage and consider a frame of an input link, say input linki,
of the switch. If input linki of the switch has at least one full-
framed VOQ at the beginning of the frame, then the switch
selects one full-framed VOQ from input linki and sends the
first p packets from the selected full-framed VOQ during the
frame so that thosep packets are distributed evenly to thep
quasi-output-buffered switches in the second stage. Otherwise,
the switch does nothing during the frame.

(R2) Time shifted operations for the quasi-output-
buffered switches in the second stage:From the UFS scheme
in the operation rule (R1), we know that if there is a packet
destined for (external) output linkj, where1 ≤ j ≤ N , that
arrives at input linki of the first switch in the second stage
at time t, then there is also a packet destined for output link
j that arrives at input linki of the mth switch in the second
stage at timet +m − 1 for m = 2, 3, . . . , p. In other words,
the arrival process to themth switch in the second stage is
simply a time shifted version of that to the first switch in
the second stage form = 2, 3, . . . , p. Therefore, they can be
made to beidentical if we run the clock in themth switch by
the new timet′ = t − m + 1 for m = 2, 3, . . . , p. As it is

easy to see that there is auniquerouting path from an input
link of a switch in the second stage to an (external) output
link, it then follows from the deterministic mapping property
in (P1) of Definition 9 that the departure process from the first
switch in the second stage and that from themth switch in the
second stage are alsoidentical with respect to the new clock
for m = 2, 3, . . . , p. As such, if there is a packet destined for
(external) output linkj, where1 ≤ j ≤ N , that arrives at
the first input of the⌈ j

p⌉th switch in the third stage at timet

(note that the⌈ j
p⌉th switch in the third stage contains (external)

output link j), then there is also a packet destined for output
link j that arrives at input linkm of the ⌈ j

p⌉th switch in the
third stage at timet+m− 1 for m = 2, 3, . . . , p.

(R3) Inverse uniform frame spreading for the symmetric
TDM switches in the third stage: There arep VOQs at
every input link of everyp× p symmetric TDM switch in the
third stage. When a packet destined for (external) output link
j, where1 ≤ j ≤ N , arrives at an input link of the⌈ j

p⌉th

switch in the third stage, it is placed in the(j− (⌈ j
p⌉− 1)p)th

VOQ at that input link. The switches in the third stage are
operated in a frame-based manner as that for the switches in
the first stage. Every frame consists ofp consecutive time slots.
However, the beginning time slots of frames are different for
differentoutputs. Specifically, thef th frame of output linki of
a switch in the third stage begins at thef th time when output
link i of that switch is connected to thefirst input link of that
switch, i.e., when output linki of that switch is connected
to the first quasi-output-buffered switch in the second stage.
As such, we have from the connection patterns of ap × p
symmetric TDM switch in (11) that thef th frame of output
link i of a switch in the third stage consists of time slots
i + (f − 1)p, i + (f − 1)p + 1, . . . , i + fp − 1. Consider a
switch in the third stage and consider a frame of an output
link of the switch, say thef th frame of output linki of the
switch. From the time shifted operations in the operation rule
(R2), we know that if theith VOQ of the first input link of
the switch is not empty at timei + (f − 1)p, then theith

VOQ of input link m of the switch is also not empty at time
i + (f − 1)p + m − 1 for m = 2, 3, . . . , p, and every input
link of the switch sends the head-of-line packet from itsith

VOQ to output linki of the switch during the frame. On the
other hand, if theith VOQ of the first input link of the switch
is empty at timei+ (f − 1)p, then theith VOQ of input link
m of the switch is also empty at timei + (f − 1)p+m− 1
for m = 2, 3, . . . , p, and the switch does nothing during the
frame.

In the following theorem, we show the main result of this
paper.

Theorem 11 Suppose that the three-stage construction in
Figure 1 is started from an empty system at time 0, and
its input traffic satisfies the no overbooking condition in
Definition 7 (with M = N ), i.e., flow Ai,j is λi,j -m.b.f.a.
for i = 1, 2, . . . , N and j = 1, 2, . . . , N , and

N
∑

i=1

λi,j < 1, for j = 1, 2, . . . , N. (12)
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Then under the operation rules (R1)–(R3), the three-stage
construction in Figure 1 can be operated as anN ×N quasi-
output-buffered switch.

We note there are several early works in the literature (see
e.g., [21], [22]) that also used the three-stage Clos network
to construct a larger switch. To the best of our knowledge, it
seems that Theorem 11 on quasi-output-buffered switches is
the first result that allowsrecursive constructionsof switches
with comparable performance (in the sense of 100% through-
put and FIFO delivery of packets from the same flow) to
output-buffered switches.

Clearly, as the switches in the first stage and the third
stage are symmetric TDM switches, they are deterministic. As
the quasi-output-buffered switches in the second stage satisfy
the deterministic mapping property in (P1) of Definition 9,
the three-stage construction in Figure 1 also satisfies the
deterministic mapping property. Furthermore, as the quasi-
output-buffered switches in the second stage satisfy the FIFO
delivery property in (P2) of Definition 9, it then follows from
the UFS scheme in (R1) and the inverse UFS scheme in (R3)
that packets of the same flow depart in the FIFO order in the
three-stage construction. Thus, the three-stage construction in
Figure 1 also satisfies the FIFO delivery property. It remains
to show the three-stage construction in Figure 1 satisfies the
universal stability property in (P3) of Definition 9. This will
be done in the following section.

B. Proof of the Universal Stability Property

In this section, we show the universal stability property for
the three-stage construction in Section III-A.

Note that the switches in the first stage are operated under
the UFS scheme. Using the arguments in [6] and [9], we show
in the following proposition that the number of packets stored
in an input buffer of a switch in the first stage in Figure 1 is
bounded above by a finite constant.

Proposition 12 The total number of packets stored in an input
buffer of a switch in the first stage in Figure 1 is bounded
above byN(p− 1) + p.

Proof. See Appendix D for a proof.
It is clear from Proposition 12 that the universal stability

property is satisfied for the switches in the first stage. Now we
show the universal stability property for the switches in the
second stage. As the switches in the second stage are quasi-
output-buffered switches, the key step is then to verify that the
no overbooking condition is satisfied for every quasi-output-
buffered switch in the second stage.

For i = 1, 2, . . . , N and j = 1, 2, . . . , N , let flow B
(1)
i,j

be the departure flow of flowAi,j from the first stage. As
flow Ai,j is λi,j-m.b.f.a., it then follows from the departure
property in Lemma 5 and Proposition 12 that flowB(1)

i,j is also
λi,j -m.b.f.a.

For i = 1, 2, . . . , N , j = 1, 2, . . . , N , andm = 1, 2, . . . , p,
let A(2)

i,j,m(t) be the cumulative number of packets from flow
Ai,j that arrive at themth switch in the second stage by timet.
As the switches in the first stage are operated under the UFS

scheme in (R1), the packets from flowB(1)
i,j are distributed

in a round-robin fashion to the switches in the second stage.
Thus, we have

A
(2)
i,j,m(t) =

⌈

B
(1)
i,j (t)−m+ 1

p

⌉

.

As flow B
(1)
i,j is λi,j-m.b.f.a., it then follows from the splitting

property in Lemma 4 that flowA(2)
i,j,m is λi,j/p-m.b.f.a.

For k = 1, 2, . . . , q, ℓ = 1, 2, . . . , q, andm = 1, 2, . . . , p,
let flow B

(2)
k,ℓ,m be the local flow of packets that traverse from

input link k of the mth switch in the second stage to output
link ℓ of that switch. Clearly, flowB(2)

k,ℓ,m is the aggregated

flow of the set of flowsA(2)
i,j,m, i = (k − 1)p + 1, (k −

1)p + 2, . . . , kp, j = (ℓ − 1)p + 1, (ℓ − 1)p + 2, . . . , ℓp.
As flow A

(2)
i,j,m is λi,j/p-m.b.f.a., we have from the super-

position property in Lemma 3(ii) that the local flowB(2)
k,ℓ,m

is (
∑kp

i=(k−1)p+1

∑ℓp
j=(ℓ−1)p+1 λi,j/p)-m.b.f.a. From (12), we

have
q

∑

k=1

kp
∑

i=(k−1)p+1

ℓp
∑

j=(ℓ−1)p+1

λi,j

p

=

N
∑

i=1

ℓp
∑

j=(ℓ−1)p+1

λi,j

p
=

1

p

ℓp
∑

j=(ℓ−1)p+1

N
∑

i=1

λi,j

<
1

p

ℓp
∑

j=(ℓ−1)p+1

1 = 1,

for ℓ = 1, 2, . . . , q and m = 1, 2, . . . , p. As such, the
no overbooking condition for themth quasi-output-buffered
switch in the second stage is satisfied form = 1, 2, . . . , p. We
then have the following proposition on the universal stability
property for the switches in the second stage.

Proposition 13 (i) Let Q(2)
m (t) be the total number of packets

stored in themth quasi-output-buffered switch in the second
stage at timet for m = 1, 2, . . . , p. Then{Q(2)

m (t), t ≥ 0} has
a finite moment generating function form = 1, 2, . . . , p.

(ii) Let Q(2)(t) =
∑p

m=1 Q
(2)
m (t) be the total number of

packets stored in the second stage at timet. Then{Q(2)(t), t ≥
0} also has a finite moment generating function.

Proof. (i) As the no overbooking condition for themth quasi-
output-buffered switch in the second stage is satisfied form =
1, 2, . . . , p, it follows from the universal stability property in
(P3) of Definition 9 that{Q(2)

m (t), t ≥ 0} has a finite moment
generating function form = 1, 2, . . . , p.

(ii) As Q(2)(t) =
∑p

m=1 Q
(2)
m (t), it is clear from Proposi-

tion 13(i) and the superposition property in Lemma 3(i) that
{Q(2)(t), t ≥ 0} has a finite moment generating function.

Now we show the universal stability property for the
switches in the third stage. Fori = 1, 2, . . . , N , j =

1, 2, . . . , N , andm = 1, 2, . . . , p, let A(3)
i,j,m(t) be the cumula-

tive number of packets from flowAi,j that arrive at input link
m of the ⌈ j

p⌉th switch in the third stage by timet (note that
the ⌈ j

p⌉th switch in the third stage contains (external) output
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link j). Since flowA
(3)
i,j,m is simply the departure flow of flow

A
(2)
i,j,m and flow A

(2)
i,j,m is λi,j/p-m.b.f.a., we have from the

departure property in Lemma 5 and Proposition 13(ii) that
flow A

(3)
i,j,m is alsoλi,j/p-m.b.f.a. Forj = 1, 2, . . . , N and

m = 1, 2, . . . , p, let flow A
(3)
j,m be the aggregated flow of the

set of flowsA(3)
i,j,m, i = 1, 2, . . . , N . Then we have from the

superposition property in Lemma 3(ii) that the aggregated flow
A

(3)
j,m is (

∑N
i=1 λi,j/p)-m.b.f.a.

For j = 1, 2, . . . , N andm = 1, 2, . . . , p, letQ(3)
j,m(t) be the

total number of packets destined for (external) outputj that
are stored in themth input buffer of the⌈ j

p⌉th switch in the

third stage at timet, and letC(3)
j,m(t) be the cumulative number

of time slots that input linkm of that switch is connected to
(external) outputj by time t. As the connection pattern of the
switches in the third stage is periodic with periodp, we have

C
(3)
j,m(t)− C

(3)
j,m(s) ≥

⌊

t− s

p

⌋

>
t− s

p
− 1.

Moreover, we have from the Lindley equation (with
Q

(3)
j,m(0) = 0) that

Q
(3)
j,m(t) = max[0, Q

(3)
j,m(t− 1) +A

(3)
j,m(t)−A

(3)
j,m(t− 1)

−(C
(3)
j,m(t)− C

(3)
j,m(t− 1))]

= max
0≤s≤t

[A
(3)
j,m(t)−A

(3)
j,m(s)− (C

(3)
j,m(t)− C

(3)
j,m(s))]

≤ max
0≤s≤t

[

A
(3)
j,m(t)−A

(3)
j,m(s)− 1

p
(t− s)

]

+ 1.

Since the aggregated flowA(3)
j,m is

∑N
i=1 λi,j/p-m.b.f.a. and

we have from the no overbooking condition in (12) that
∑N

i=1 λi,j/p < 1/p, it then follows from Definition 1 that
{Q(3)

j,m(t), t ≥ 0} has a finite moment generating function.
Using the superposition property in Lemma 3(i), we then have
the following proposition on the universal stability property for
the switches in the third stage.

Proposition 14 Let Q(3)(t) =
∑N

j=1

∑p
m=1 Q

(3)
j,m(t) be the

total number of packets in the third stage at timet. Then
{Q(3)(t), t ≥ 0} has a finite moment generating function.

Finally, let Q(t) be the total number of packets inside
the three-stage construction at timet. From Proposition 12,
Proposition 13, Proposition 14, and the superposition property
in Lemma 3(i), we then conclude that{Q(t), t ≥ 0} also has
a finite moment generating function. Therefore, the universal
stability property in (P3) of Definition 9 is satisfied for the
three-stage construction in Figure 1.

IV. PACKET-PAIR SWITCHES

A. Packet-Pair Switches Via Recursive Expansions of the
Three-Stage Construction

In this section, we assume thatN is a power of 2. In this
case, we can recursively construct anN × N quasi-output-
buffered switch by the three-stage construction in Figure 1
(as in the construction of a Benes network [11]). To do this,
we first note that forN = 2 we can simply choosep = 2

and q = 1 in the three-stage construction in Figure 1. Since
a 1 × 1 switch can be simply replaced by a single link, the
three-stage construction for this is equivalent to the (two-stage)
load-balanced Birkhoff-von Neumann switch with the UFS
scheme. For such a switch, the frame size is 2 and packets are
transmitted in pairs under the UFS scheme. Now we define
packet-pair switches recursively as follows.

Definition 15 (Packet-pair switches)
(i) A 2 × 2 packet-pair switch is the2 × 2 load-balanced

Birkhoff-von Neumann switch with the UFS scheme.
(ii) An N×N packet-pair switch is constructed by the three-

stage construction in Figure 1 withp = 2 and q = N/2, i.e.,
there areN/2 2× 2 input-buffered switches in the first stage,
two N

2 × N
2 packet-pair switches in the second stage, andN/2

2× 2 input-buffered switches in the third stage.

By recursively expanding theN×N packet-pair switch, we
have a multistage network of2 log2 N stages with each stage
consisting ofN/2 2 × 2 switches. In Figure 2, we show an
8× 8 packet-pair switch.
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Fig. 2. An 8× 8 packet-pair switch.

The operations of a packet-pair switch can also be specified
in details by recursively expanding the operations in (R1) and
(R3). In rules (R4) and (R5) below, we describe the detailed
operations of anN×N packet-pair switch withN = 2n. Note
that for ease of presentation of rules (R4) and (R5), we index
the (external) input links and (external) output links from0 to
2n − 1 (instead of from 1 to2n). Also, theN/2 switches at
each stage are indexed from 0 to2n−1 − 1 (instead of from 1
to 2n−1).

(R4) Uniform frame spreading (UFS) for the first n
stages: For k = 1, 2, . . . , n, there are2n−k+1 VOQs, in-
dexed from 0 to2n−k+1 − 1, at every input link of every
2 × 2 switch in the kth stage. Fork = 1, 2, . . . , n and
m = 0, 1, . . . , 2n−1 − 1, the connection patterns of themth

2× 2 switch in thekth stage are periodic with period 2. It is
set to the “bar” state when

t+

k
∑

ℓ=2

⌊

m mod 2n−ℓ+1

2n−ℓ

⌋

is an odd number and to the “cross” state otherwise. Suppose
that a packet destined for (external) output linkj arrives at an
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input link of a switch in thekth stage, where0 ≤ j ≤ 2n − 1
and1 ≤ k ≤ n. Let bnbn−1 . . . b1 be the binary representation
for j, i.e., j =

∑n
ℓ=1 bℓ2

ℓ−1. Then the packet is routed to the
j th
k VOQ of that input link, wherejk =

∑n−k+1
ℓ=1 bℓ+k−12

ℓ−1.
For k = 1, 2, . . . , n, a VOQ at an input link of a switch in
the kth stage is called a full-framed VOQ if there are at least
two packets in that VOQ. When an input link of a switch is
connected to output link 0 of that switch at timet, if there are
full-framed VOQs at that input link, then the switch selects
a full-framed VOQ from that input link and sends the first
two packets (packet-pair) from the selected full-framed VOQ
at timet andt+1. Otherwise, the switch does nothing at time
t and t+ 1.

(R5) Self-routing for the last n stages:For k = n +
1, n+ 2, . . . , 2n, there are two VOQs, indexed by 0 and 1, at
every input link of every2 × 2 switch in thekth stage. For
k = n + 1, n + 2, . . . , 2n and m = 0, 1, . . . , 2n−1 − 1, the
connection patterns of themth 2 × 2 switch in thekth stage
are the same as those of themth switch in the(2n+ 1− k)th

stage. Suppose that a packet destined for (external) outputlink
j arrives at an input link of a switch in thekth stage, where
0 ≤ j ≤ 2n − 1 andn + 1 ≤ k ≤ 2n. Let bnbn−1 . . . b1 be
the binary representation forj, i.e., j =

∑n
ℓ=1 bℓ2

ℓ−1. Then
the packet is routed to thej th

k VOQ of that input link, where
jk = b2n−k+1. When a switch is in the “bar” state at time
t, VOQ 0 (resp., VOQ 1) at input link 0 (resp., input link 1)
of the switch is selected and its head-of-line packet (if any)
is transmitted at timet. Otherwise, VOQ 1 (resp., VOQ 0) at
input link 0 (resp., input link 1) of the switch is selected and
its head-of-line packet (if any) is transmitted at timet.

Note that the2×2 switches in the firstn stages of theN×N
packet-pair switch is operated under the UFS scheme with
frame size 2. From Proposition 12 (withp = 2), we know that
the total number of packets in an input buffer of a switch in the
kth stage is bounded above by2n−k+1+2 for k = 1, 2, . . . , n.
Moreover, we have from the deterministic mapping property
that the arrival process toany input link of a 2 × 2 switch
in the (n + 1)th stage is simply a time shifted version of the
arrival process to input link 0 of the0th switch in the(n+1)th

stage. In view of this, the firstn stages indeed perform load
balancing for the incoming traffic at theN × N packet-pair
switch. We illustrate this by the8 × 8 packet-pair switch in
Figure 2. As the first three stages are operated under the UFS
scheme, the arrival process to switch (2,2) (resp., (2,3), (3,1),
(3,3)) is one time slot later than that to switch (2,0) (resp., (2,1)
(3,0), (3,2)). As the operations are deterministic, the departure
process from switch (2,2) (resp., (2,3), (3,1), (3,3)) is also one
time slot later than that from switch (2,0) (resp., (2,1) (3,0),
(3,2)). As such, the arrival process to switch (3,2) is one time
slot later than that to switch (3,0), and hence the arrival process
to switch (3,3) is two time slots later than that to switch (3,0).
As the arrival process to switch(4,m) is simply the departure
process from switch (3,m) form = 0, 1, 2, 3, we then conclude
that the arrival process to switch (4,2) is one time slot later
than that to switch (4,0), and the arrival process to switch (4,3)
is two time slots later than that to switch (4,0).

Now we consider the Bernoulli arrival traffic in Example 2.
With probability 0 ≤ ρ < 1, there is a packet arriving at an

input link of theN×N packet-pair switch. This is independent
of everything else. With probabilityri,j , an arriving packet at
input link i is destined for output linkj for i = 1, 2, . . . , N and
j = 1, 2, . . . , N . This is also independent of everything else.
For such a model, flowAi,j (the sequence of packets from
input link i to output link j) is a Bernoulli arrival process
with meanρri,j for i = 1, 2, . . . , N and j = 1, 2, . . . , N .
From Example 2, we know that flowAi,j is λi,j-m.b.f.a.,
whereλi,j = ρri,j , for i = 1, 2, . . . , N and j = 1, 2, . . . , N .
To ensure the universal stability, we assume the following no
overbooking condition:

N
∑

i=1

λi,j < 1, for j = 1, 2, . . . , N, (13)

or equivalently,

N
∑

i=1

ri,j <
1

ρ
, for j = 1, 2, . . . , N. (14)

As theN × N packet-pair switch is a quasi-output-buffered
switch, the next theorem then follows from the no overbooking
condition in (13) and the universal stability property in (P3)
of Definition 9.

Theorem 16 For the Bernoulli arrival traffic described above,
there exists aθ > 0 such that

sup
t≥0

E[eθQ(t)] < ∞, (15)

whereQ(t) is the total number of packets stored in theN×N
packet-pair switch at timet.

In summary, the packet-pair switches have the following
nice features:

1) They achieve 100% throughput.
2) They deliver packets of the same flow in the FIFO order.
3) They only contain2 × 2 switches and the connection

patterns of these2 × 2 switches are deterministic and
periodic with period 2.

4) Packets are self-routed through the network of2 × 2
switches.

5) No computation and communication is needed.

We note that the idea of using uniform traffic spreading and
self routing in a buffered Benes network was previously used
in [23], [24]. However, there is no guarantee that packets from
the same flow are delivered in the FIFO order in [23], [24].

B. Delay Analysis of Packet-Pair Switches

To gain some intuition on the delay performance of the
packet-pair switches, let us consider theuniformBernoulli traf-
fic, i.e., ri,j = 1/N for i = 1, 2, . . . , N andj = 1, 2, . . . , N .

For a2 × 2 switch in thefirst stage, there areN VOQs at
every input link of the2× 2 switch. Recall that the operation
of a 2×2 switch in the first stage is to transmit packets from a
full-framed VOQ (if any) at an input link of the2× 2 switch
when that input link is connected to the first output link of
the 2 × 2 switch. A full-framed VOQ in this case is simply
a VOQ that contains at least two packets. As such, we can
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implement theN VOQs at an input link of a2× 2 switch in
the first stage by two parts: the first part is for storing packets
that have not been “paired,” and the second part is for storing
packets that have been “paired.” For this, there areN queues,
indexed from 1 toN , with buffer size 1 in the first part, and
there are two VOQs (for the two output links of the2 × 2
switch) in the second part. Suppose that a packet destined for
(external) output linkj, where1 ≤ j ≤ N , arrives at an input
of a 2 × 2 switch in the first stage. If thej th queue in the
first part is empty, then the arriving packet is placed in thej th

queue. On the other hand, if thej th queue in the first part is
not empty, then the arriving packet and the packet stored in
the j th queue are “paired” and they are moved to one of the
two VOQs in the second part.

In view of the two-part implementation of theN VOQs
at every input link of every2 × 2 switch in the first stage,
the delay at a2 × 2 switch in the first stage consists of two
parts: (i) the delay for “pairing” and (ii) the queueing delay
for transmitting through the2 × 2 switch. To compute the
pairing delay, note that only the “odd” numbered packets in
a flow need to wait for pairing, and the pairing delay for an
odd numbered packet is simply the interarrival time of the
next packet. Under the uniform Bernoulli traffic, the expected
interarrival time of packets in every flow isN/ρ. Thus, the
expected pairing delay isN/2ρ. For the queueing delay, we
approximate the arrival process to the two VOQs in the second
part by the Bernoulli arrival traffic with arrival rateρ. As the
connection pattern of every2×2 switch is periodic with period
2, this model is a special case of the uniform Bernoulli traffic
model in [5] (withN = 2). Thus, the expected queueing delay
can be approximated by1/2(1− ρ). Adding these two parts
of delay, the expected delay through a2×2 switch in the first
stage can be approximated by

N

2ρ
+

1

2(1− ρ)
.

If we approximate the arrival process to every input of every
2×2 switch in the packet-pair switch by the uniform Bernoulli
traffic with arrival rateρ, then using the same argument as that
for the first stage yields the following approximation for the
expected delay through a2× 2 switch in thekth stage:

N

2kρ
+

1

2(1− ρ)
, k = 1, 2, . . . , n, (16)

1

2(1− ρ)
, k = n+ 1, n+ 2, . . . , 2n, (17)

wheren = log2 N , as there is no “pairing” delay for the last
n stages. Summing up the delays in (16) and (17), we can
approximate the expected delay through theN × N packet-
pair switch by

N − 1

ρ
+

log2 N

(1 − ρ)
. (18)

In Figure ??, we compare our approximation in (18) with
computer simulations. As shown in Figure??, our approx-
imation (APPR) is a conservative estimate of the delay of
the packet-pair (PP) switch. The reason for that is the arrival
process to every input of a2 × 2 switch in the packet-pair

switch isnot the uniform Bernoulli traffic. In fact, it is much
more regular (less random) than the uniform Bernoulli traffic.
This is because “pairing” takes time and it is less likely to
have two consecutive pairs with the same destination.

To reduce the “pairing” delay of the packet-pair switch in
light traffic, we can use the idea proposed in the padded frame
(PF) scheme in [8]. At the beginning of a frame, if there are
no full-framed VOQs in an input buffer of a switch in the
first n stages, we can pad a fake packet to a VOQ with only
one packet to form a padded frame (with frame size 2). Then
the padded frame is transmitted inside the packet-pair switch.
Clearly, it is most beneficial to generate padded frames in the
first stage. The gain starts to diminish as the number of stages
is increased. For this, we define a parametern+ as the number
of stages that allow padded frames to be generated. To ensure
stability, the number of padded frames inside the packet-pair
switch has to be restrained. For this, we only allow padded
frames to be generated when the total number of packets in the
first input buffer of thefirst switch in the(n+1)th stage does
not exceed a thresholdTH . Such an enhancement is called a
packet-pair-plus (PP+) switch in this paper.

C. Simulations

In this section, we perform various simulations for packet-
pair switches. In all of our simulations, the switch sizeN
is chosen to be 64. Each simulation run contains106 time
slots. In Figure 3, we consider the uniform Bernoulli traffic
model and plot the delays of the uniform frame spreading
(UFS) scheme in [6], the padded frame (PF) scheme in [8], the
Contention and Reservation (CR) switch in [9], the packet-pair
(PP) switch, the packet-pair-plus (PP+) switch, and the ideal
output-buffered switch (OB). Certainly, the output-buffered
switch has the best delay performance (at the cost ofN times
speedup). The packet-pair switch outperforms both the UFS
scheme and the PF scheme. It also beats the CR switch in
heavy traffic. However, its delay is higher than that in the CR
switch in light traffic. This is because the CR switch uses the
contention mode in light traffic, while the packet-pair switch
wastes a lot of time to form a frame of two packets in light
traffic. In this simulation, the packet-pair-plus switch isrun
with n+ = 3 and TH = 2, i.e., only the first 3 stages are
allowed to generate padded frames when the total number of
packets in the first input buffer of the first switch in the7th

stage does not exceed 2. The delay of thePP+ switch is
much better than that of the PP switch in light traffic and is
comparable to that of the PP switch in heavy traffic. Similar
results are also shown in Figure 4 for the uniform Pareto traffic
model in [5].

V. CONCLUSION

In this paper, we proposed a new concept, calledquasi-
output-buffered switch. Like an output-buffered switch, a
quasi-output-buffered switch is a deterministic switch that
achieves 100% throughput and delivers packets from the same
flow in the FIFO order. Using the three-stage Clos network,
we showed that one canrecursivelyconstruct a larger quasi-
output-buffered switch with a set of smaller quasi-output-
buffered switches. By recursively expanding the three-stage
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Fig. 3. Delay comparison for the uniform Bernoulli traffic model.

Fig. 4. Delay comparison for the uniform Pareto traffic model.

network, we obtained a packet-pair switch with only2 × 2
switches. By computer simulations, we showed that packet-
pair switches have better delay performance than most load-
balanced switches with comparable construction complexity.

There are several problems that require further study:
(i) As argued in (18), theN × N packet-pair switch has
O(N) delay. It is shown in [25] that it is possible to obtain
O(logN) delay in anN×N input-buffered switch (though this
is at the cost of non-scalable computation and communication
overheads by using Birkhoff-von Neumann decomposition).
It would be of interest to find a scalable switch architecture
that achievesO(logN) delay without any computation and
communication.
(ii) We note that it is possible to replace the deterministic
2×2 switches in a packet-pair switch by fixed interconnecting
networks. As such, one might be able to embed a packet-pair
switch inside a fixed interconnecting network, e.g., a DWDM
network. The problem is then how to do this efficiently.
(iii) A key distinguishing feature of output-buffered switches
lies in the ability to control the departure order of packets
from the switches to achieve performance (e.g., delay and
bandwidth) guarantees for different traffic flows [26]–[29]. A
future direction of investigation along this line is to devise
scheduling schemes for the quasi-output-buffered switches
proposed in this paper so that they are capable of providing
quality-of-service (QoS) guarantees for different trafficflows.

APPENDIX A
PROOF OFLEMMA 3

(i) Since both{Q1(t), t ≥ 0} and{Q2(t), t ≥ 0} have finite
moment generating functions, there existθ1 > 0 and θ2 > 0
such that

sup
t≥0

E[eθiQi(t)] < ∞, i = 1, 2. (19)

Let θ = min[θ1, θ2]/2. It then follows fromQ(t) = Q1(t) +
Q2(t) for t ≥ 0, Cauchy-Schwartz inequality, and (19) that

sup
t≥0

E[eθQ(t)] = sup
t≥0

E[eθ(Q1(t)+Q2(t))]

≤ sup
t≥0

(

E[e2θQ1(t)]
)1/2 (

E[e2θQ2(t)]
)1/2

≤ sup
t≥0

(

E[eθ1Q1(t)]E[eθ2Q2(t)]
)1/2

≤
(

sup
t≥0

E[eθ1Q1(t)] sup
t≥0

E[eθ2Q2(t)]

)1/2

< ∞.

Therefore,{Q(t), t ≥ 0} also has a finite moment generating
function.

(ii) For ǫ > 0, let

Q(t) = max
0≤s≤t

[(A1(t) +A2(t))− (A1(s) +A2(s))

−(λ1 + λ2 + ǫ)(t− s)].

Note that

Q(t) = max
0≤s≤t

[

A1(t)−A1(s)−
(

λ1 +
ǫ

2

)

(t− s)

+A2(t)−A2(s)−
(

λ2 +
ǫ

2

)

(t− s)
]

≤ max
0≤s≤t

[

A1(t)−A1(s)−
(

λ1 +
ǫ

2

)

(t− s)
]

+ max
0≤s≤t

[

A2(t)−A2(s)−
(

λ2 +
ǫ

2

)

(t− s)
]

= Q1(t) +Q2(t), (20)

where

Q1(t) = max
0≤s≤t

[

A1(t)−A1(s)−
(

λ1 +
ǫ

2

)

(t− s)
]

,

Q2(t) = max
0≤s≤t

[

A2(t)−A2(s)−
(

λ2 +
ǫ

2

)

(t− s)
]

.

Since flowA1 is λ1-m.b.f.a. and flowA2 is λ2-m.b.f.a., we see
from Definition 1 that both{Q1(t), t ≥ 0} and {Q2(t), t ≥
0} have finite moment generating functions. It then follows
from (20) and Lemma 3(i) that{Q(t), t ≥ 0} also has a finite
moment generating function. Therefore, the aggregated flow
A1 +A2 of the two flowsA1 andA2 is (λ1 + λ2)-m.b.f.a.

APPENDIX B
PROOF OFLEMMA 4

From (5), we have

Am(t)−Am(s) =

⌈

A(t)−m+ 1

p

⌉

−
⌈

A(s)−m+ 1

p

⌉

≤
⌈

A(t)−A(s)

p

⌉

<
A(t)−A(s)

p
+ 1 (21)
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Since flowA is λ-m.b.f.a., we see from Definition 1 that for
everypǫ > 0 there exists aθ/p > 0 such that

sup
t≥0

E
[

e
θ
p
max0≤s≤t[A(t)−A(s)−(λ+pǫ)(t−s)]

]

< ∞. (22)

It follows from (21) and (22) that

sup
t≥0

E
[

eθmax0≤s≤t[Am(t)−Am(s)−(λ/p+ǫ)(t−s)]
]

≤ sup
t≥0

E
[

e
θ
p
max0≤s≤t[A(t)−A(s)+p−(λ+pǫ)(t−s)]

]

= sup
t≥0

eθE
[

e
θ
p
max0≤s≤t[A(t)−A(s)−(λ+pǫ)(t−s)]

]

< ∞.

Therefore, the subflowAm is λ/p-m.b.f.a. form = 1, 2, . . . , p.

APPENDIX C
PROOF OFLEMMA 5

Since the system is initially empty at time 0 and packets
cannot depart from the system before they arrive at the system
(causality), it is clear that

B(t) ≤ A(t). (23)

For packets that have arrived by timet, either they are stored
in the system at timet or they have departed from the system
by time t. As Q(t) is the total number of packets (including
packets from flowA and other flows) stored in the system at
time t, it is also clear that

B(t) +Q(t) ≥ A(t). (24)

From (23) and (24), we have

max
0≤s≤t

[B(t)−B(s)− (λ+ ǫ)(t− s)]

≤ max
0≤s≤t

[A(t) −A(s) +Q(s)− (λ+ ǫ)(t− s)]. (25)

As {Q(t), t ≥ 0} has a finite moment generating function,
there exists aθ1 > 0 such that

c1 = sup
t≥0

E[eθ1Q(t)] < ∞. (26)

Since flowA is λ-m.b.f.a., we see from Definition 1 that for
everyǫ/2 > 0 there exists aθ2 > 0 such that

c2 = sup
t≥0

E[eθ2 max0≤s≤t[A(t)−A(s)−(λ+ǫ/2)(t−s)]] < ∞. (27)

Let θ = min[θ1, θ2]/2. Then we have from (25) that

E[eθmax0≤s≤t[B(t)−B(s)−(λ+ǫ)(t−s)]]

≤ E[eθmax0≤s≤t[A(t)−A(s)+Q(s)−(λ+ǫ)(t−s)]]

= max
0≤s≤t

E[eθ(A(t)−A(s)+Q(s)−(λ+ǫ)(t−s))]

≤
t

∑

s=0

E[eθ(A(t)−A(s)+Q(s)−(λ+ǫ)(t−s))]

=
t

∑

s=0

e−θǫ(t−s)/2E[eθQ(s)eθ(A(t)−A(s)−(λ+ǫ/2)(t−s))].

(28)

From Cauchy-Schwartz inequality,θ = min[θ1, θ2]/2, (26),
and (27), we have

E[eθQ(s)eθ(A(t)−A(s)−(λ+ǫ/2)(t−s))]

≤
(

E[e2θQ(s)]
)1/2 (

E[e2θ(A(t)−A(s)−(λ+ǫ/2)(t−s))]
)1/2

≤
(

E[eθ1Q(s)]
)1/2 (

E[eθ2(A(t)−A(s)−(λ+ǫ/2)(t−s))]
)1/2

≤ √
c1c2. (29)

As such, we have from (28) and (29) that

sup
t≥0

E[eθmax0≤s≤t[B(t)−B(s)−(λ+ǫ)(t−s)]]

≤ sup
t≥0

t
∑

s=0

e−θǫ(t−s)/2√c1c2

= sup
t≥0

t
∑

s=0

e−θǫs/2√c1c2

=
√
c1c2

∞
∑

s=0

e−θǫs/2 =

√
c1c2

1− e−θǫ/2
< ∞.

This shows that flowB is alsoλ-m.b.f.a.

APPENDIX D
PROOF OFPROPOSITION12

To prove Proposition 12, we introduce the concept of work
conserving modes in [9] for queues that haveat most one
packet departurein a time slot.

Definition 17 [9] (WC(K,D) queues)A queue is in the work
conserving (WC) mode if there is one departure in each
time slot whenever the queue is nonempty. A queue is work
conserving with response workloadK and response delayD
(denoted byWC(K,D)) if it has the following property: when
the queue length is smaller thanK at timet− 1 and becomes
longer than or equal toK at time t, this queue begins to be
in the WC mode not later than timet + D. Moreover, this
mode must continue until the queue length becomes smaller
thanK again.

Clearly, each output buffer of an output-buffered switch is
in the work conserving mode at every time slot. It is shown in
[9] that there is a bound between the queue length of aWC
queue and that of aWC(K,D) queue.

Lemma 18 [9] Let QWC(t) (resp., QWC(K,D)(t)) be the
number of packets in aWC (resp.,WC(K,D)) queue at time
t. Suppose that both queues are subject to the same arrival
process and they both are empty at time 0. Then

QWC(K,D)(t) ≤ QWC(t) +K +D − 1. (30)

We have the following work conserving property for the
input buffers of a switch in the first stage in Figure 1.

Lemma 19 Each input buffer of a switch in the first stage in
Figure 1 is work conserving with response workloadN(p −
1) + 1 and response delayp− 1.
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Proof. Note that if there are more thanN(p − 1) packets
in an input buffer of a switch in the first stage in Figure 1,
then there is at least one full-framed VOQ in that input buffer.
As such, that input buffer will send outp packets during the
next frame and it will continue to do so until there are no full-
framed VOQs in that input buffer, at which point of time there
are at mostN(p− 1) packets in that input buffer. Therefore,
each input buffer of a switch in the first stage in Figure 1 is
work conserving with response workloadN(p − 1) + 1. As
the time it takes to the beginning time slot of the next frame
is at mostp− 1, we see that the response delay isp− 1.
Proof. (Proof of Proposition 12) Note that there is at most one
packet arrival at an input buffer of a switch in the first stage
in Figure 1 at any time. If we put the same arrival process
to a work conserving queue, then the number of packets in
that work conserving queue is at most 1. Thus, we have from
Lemma 18 and Lemma 19 that the total number of packets
in an input buffer of a switch in the first stage in Figure 1 is
bounded above by

1 + (N(p− 1) + 1) + (p− 1)− 1 = N(p− 1) + p.

The proof is completed.
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