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Abstract

Analysis of networked data has received a lot of attention lately from many researchers in various fields, including
physicists, mathematicians, computer scientists, biologists, and sociologists. As researchers from various research
disciplines, they have different viewpoints and thus it is important to have a unified framework for the analysis of
networked data. For this, we introduce in the tutorial the recently developed probabilistic framework for the analysis of
networked data, including centrality analysis, community detection and clustering. The key insight of this probabilistic
framework is to model networked data as a graph and sample the graph to obtain a probability measure for further
analysis. In particular, the centrality of a node can be defined by the marginal probability that this node is sampled and
a community can be defined as a set of nodes that are more likely to be sampled together. Each sampling method
provides a unique viewpoint to a graph and that leads a unique definition of centrality and a unique definition of
community for that graph.

In this probabilistic framework, the modularity of a partition of a graph is defined as the average community strength
of a randomly selected node. As such, the community detection problem that aims to find a good partition of a graph
can be tackled by looking for algorithms that yield large modularity. In this tutorial, we introduce four commonly used
modularity maximization algorithms for community detection: (i) the spectral modularity maximization algorithm, (ii) the
hierarchical agglomerative algorithm, (iii) the partitional algorithm, and (iv) the fast unfolding algorithm.

Clustering problems and community detection problems are closely related. For a clustering problem, there is a
set of data points (or objects) and a similarity (or dissimilarity) measure that measures how similar two data points are.
The aim of a clustering algorithm is to cluster these data points so that data points within the same cluster are similar
to each other and data points in different clusters are dissimilar. Our approach for clustering is to embed data points
into a graph so that it can be treated as a community detection problem. In this tutorial, we introduce the exponentially
twisted sampling technique to embed data points in a metric (resp. semi-metric) space to a graph. By doing so, the
community detection algorithms based on modularity maximization can also be applied to clustering data points in a
metric (resp. semi-metric) space. Unlike the other modularity maximization algorithms, the K-sets algorithm (resp. the
K-sets+ algorithm) is a partitional algorithm that clusters data points in a metric (resp. semi-metric) space to maximizes
the normalized modularity. The K-sets algorithm converges in the same way as a sequential version of the classical
kernelK-means algorithm. However, the key difference is that its input matrix does not need to be positive semi-definite.
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clustering
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1 OVERVIEW

Analysis of networked data has received a lot of attention lately from many researchers in various
fields, including physicists, mathematicians, computer scientists, biologists, and sociologists.
As these researchers are from different fields and published their papers in different areas of
journals, the terminology and the viewpoints of their works could be quite different. In particular,
physicists put more emphasis on the discovery of new physical insights such as phase transition
and percolation, while mathematicians stress the importance of the mathematical proofs for these
newly discovered phenomenons. For computer scientists, the efficiency, in terms of computational
complexity, of the algorithms that lead to these new findings is the main interest of their research.
On the other hand, biologists and sociologists apply the algorithms to the networks from their
data and seek meaningful explanations for their findings. In order for researchers from various
research disciplines to carry out their scientific research, it is thus essential to have a framework
for the analysis of networked data [1].

The aim of this tutorial is to introduce a unified framework for the analysis of networked data,
including centrality analysis, community detection and clustering. Centrality analysis [2], [3] has
been one of the most important research topics in social network analysis. As networked data
are commonly modelled by graphs, there are various notions of centralities defined for ranking
the importance of nodes in a graph, including the degree centrality, the eigenvector centrality,
the Katz centrality, PageRank, the closeness centrality and the betweenness centrality (see e.g.,
the book [4]). Among them, PageRank [5], proposed by Google, is perhaps one of the most
famous centrality measures for ranking web pages. The key idea behind PageRank is to model
the behavior of a web surfer by a random walk (the random surfer model) and then use that to
sample the probability for a web surfer to visit a specific web page. The higher the probability for
a web surfer to visit a specific web page is, the more important that web page is.

The goal of community detection is to find a partition of a graph so as to discover and understand
the large-scale structure of a network. However, people have different opinions on what a
good community should look like. There are several notions for this in the literature: (i) a good
community should have more edges within the community than the edges going outside the
community (see e.g., [6], [7]) and thus conductance might be a good measure (see e.g., [8], [9],
[10]), (ii) a good community should be well connected and thus it should be dense [11] and have
a high clustering coefficient [12] or lots of k-cliques [13], (iii) a graph with a good community
structure should behave quite differently from random graphs and thus modularity and the
null model [14], [15] can be used for measuring how well a graph is partitioned, (iv) a good
community should be cohesive and cannot be easily divided into disconnected components [16],
[17], [18], (v) a good community should have a high probability to trap a random walker inside the
community for a certain period of time and thus one can use either data compression techniques
for describing the path of the random walker inside the community [19], [20] or stability [21],
[22] for measuring how well a graph is partitioned, and (vi) rumors are spread fast within a
good community [23]. Based on these notions of communities, many algorithms (see the review
papers in [11] and [24]) have been developed in the literature and they might be classified as
follows: (i) divisive algorithms (betweenness, spectral partitioning, sweep) [25], [6], [26], [27],
[28], [18], (ii) agglomerative algorithms [14], [29], [30], (iii) statistic and machine learning methods
(spectral learning [31], kernel-based clustering algorithms [32], [33], exponential families [34],
[35]), (iv) data compression algorithms [19], [20] and (v) clique percolation methods [13]. Various
comparison studies of these algorithms can be found in [36], [37], [17].

Clustering is one of the most fundamental problems in data analysis and it has a lot of
applications in various fields, including Internet search for information retrieval, social network
analysis for community detection, and computation biology for clustering protein sequences. The
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problem of clustering has been studied extensively in the literature (see e.g., the books [38], [39]
and the historical review papers [40], [41]). For a clustering problem, there is a set of data points
(or objects) and a similarity (or dissimilarity) measure that measures how similar two data points
are. The aim of a clustering algorithm is to cluster these data points so that data points within the
same cluster are similar to each other and data points in different clusters are dissimilar.

Clustering problems and community detection problems are closely related. In some sense,
community detection can be viewed as a clustering problem when data points are in a graph. On
the other hand, one can also transform a clustering problem into a community detection problem
by embedding data points into a graph. Like community detection algorithms, clustering algo-
rithms can also be divided into two groups: hierarchical and partitional. Hierarchical algorithms
can further be divided into two subgroups: agglomerative and divisive. Agglomerative hierarchical
algorithms, starting from each data point as a sole cluster, recursively merge two similar clusters
into a new cluster. On the other hand, divisive hierarchical algorithms, starting from the whole
set as a single cluster, recursively divide a cluster into two dissimilar clusters. As such, there is a
hierarchical structure of clusters from either a hierarchical agglomerative clustering algorithm or a
hierarchical divisive clustering algorithm. On the other hand, partitional algorithms do not have
a hierarchical structure of clusters. Instead, they find all the clusters as a partition of the data
points. The K-means algorithm is perhaps the simplest and the most widely used partitional
algorithm for data points in a Euclidean space, where the Euclidean distance serves as the natural
dissimilarity measure and the centroid of a cluster is selected to represent a cluster. For data
points that are in a non-Euclidean space, the K-medoids algorithm (see e.g., [42], [38], [43], [44])
is used as a refinement of theK-mean algorithm. Both theK-means algorithm and theK-medoids
algorithm are quite sensitive to the initial choice of the partition. There are some recent works
that provide various methods for selecting the initial partition that might lead to performance
guarantees [45], [46], [47], [48], [49]. Instead of using the iterative method as in the K-means
algorithm, one can also formulate a clustering problem as an optimization problem with respect
to a certain objective function and then solve the optimization problem by other methods. This
then leads to kernel and spectral clustering methods (see e.g., [50], [51], [52], [53], [54] and [55],
[56] for reviews of the papers in this area). Solving the optimization problems formulated from
the clustering problems are in general NP-hard and one has to resort to approximation algorithms
[57]. In [57], Balcan et al. introduced the concept of approximation stability that assumes all the
partitions (clusterings) that have the objective values close to the optimum ones are close to the
target partition. Under such an assumption, they proposed efficient algorithms for clustering
large datasets.

In Section 2, we first introduce the probabilistic framework in our previous works [58], [59] for
centrality analysis and community detection for networked data. In social network analysis,
centralities [2], [3], [4] have been widely used for ranking the importance of nodes. For instance,
movie stars who have a lot of fans can be easily identified as important nodes in social networks
by using the degree centrality. However, we generally do not consider movie stars important
persons to us. On the contrary, family members or friends are much more important to us. In
view of this, we extend the concept of centrality and incorporate the concept of relative centrality
into the structural analysis of networks. In the probabilistic framework, relative centrality is a
(probability) measure that measures how important a set of nodes in a network is with respect
to another set of nodes, and it is a generalization of centrality that only measures (or ranks) how
important a set of nodes in a network is with respect to the whole set of nodes in the network. A set
(of nodes) that has a much larger relative centrality with respect to itself than its centrality can
thus be viewed as a community.

People have different views. As such, centrality and community can only be formally defined
on top of a specific viewpoint. To obtain a viewpoint of a network, one typical method is to
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“sample” the network, e.g., edge sampling, random walks, diffusion [15], or random gossiping
[23]. Mathematically, each sampling method renders a (probability) measure for a network that
enables us to carry out further analysis. In the probabilistic framework, we model a network as a
graph G and “sample” the graph to generate a bivariate distribution p(·, ·) for a pair of two nodes.
The bivariate distribution can be viewed as a normalized similarity measure [60] between a pair
of two nodes. A graph G associated with a bivariate distribution p(·, ·) is then called a sampled
graph.

In Section 2, we consider the case that the bivariate distribution is symmetric first for undirected
networks. Under this assumption, the two marginal distributions of the bivariate distribution are
the same and they represent the probability that a particular node is selected in the sampled
graph. As such, the marginal distribution can be used for defining the centrality of a set as the
probability that a selected node is in this set. The larger the centrality of a node is, the larger
probability the node is selected. Such a probability measure recovers various centrality measures
in the literature as special cases, including the degree centrality and the Katz centrality [61], as
they simply correspond to various methods of sampling a graph.

An an extension of centrality, the concept of relative centrality of a set of nodes S1 with respect
to another set of nodes S2 in the probabilistic framework is formally defined as the conditional
probability that one node of the selected pair of two nodes is in the set S1 given that the other node
is in the set S2. When the set S2 is taken to be the whole set of nodes in the graph, then the relative
centrality of S1 with respect to S2 is simply reduced to the centrality of S1, which is the probability
that one node of the selected pair of two nodes is in the set S1. Thus, our view for a community
is a group of people (nodes) who consider themselves much more important to themselves than
to random people on the street, and the community strength for a set of nodes S is defined as the
difference between its relative centrality with respect to itself and its centrality. Moreover, a set
of nodes with a nonnegative community strength is called a community. With such a definition of
community, there are several mathematically equivalent statements of a community that can be
intuitively explained by their social meanings. There are also several interesting interpretations
of the community strength. In particular, the community strength for a certain sampled graph is
related to conductance that is commonly used for measuring the strength of a small community
[8], [9], [10]. Also, for a certain sampled graph, it is related to the probability that a random walker
is trapped inside the community for a certain period of time [19], [20].

The original modularity in [25] is a measure to quantify the strength of community structure
in a partition of a graph and such a measure has been widely accepted for analyzing community
structure in the literature. One of the well-known problems of Newman’s modularity is its
resolution limit in detecting communities [62]. As such, there are other measures, such as stability
in [21], [22], that were proposed for quantifying the strength of community structure in a partition
of a graph. However, when the communities in a network span a wide range of sizes, it is not
possible to find an optimal value of the resolution parameter to identify simultaneously all the
communities in a network [63], [64]. In the framework, the (generalized) modularity for a partition
of a sampled graph is defined as the average community strength of the community to which a
randomly selected node belongs. As such, a high modularity for a partition of a graph implies
that there are communities with strong community strengths. The original modularity in [25] and
stability in [21], [22] are simply special cases of the (generalized) modularity for certain sampled
graphs.

In Section 3, we introduce community detection algorithms. As the modularity for a partition
of a network is the average community strength of a randomly selected node, a good partition
of a network should have a large modularity. In view of this, one can then tackle the community
detection problem by looking for algorithms that yield large modularity. However, the modularity
maximization problem is known to be NP-hard [65] and one has to resort to heuristic algorithms.
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In this section, we introduce four commonly used modularity maximization algorithms for
community detection in undirected networks: (i) the spectral modularity maximization algorithm
[66], (ii) the hierarchical agglomerative algorithm [14], (iii) the partitional algorithm [67], and (iv)
the fast unfolding algorithm [68]. Under the probabilistic framework, the last three algorithms
converge in a finite number of steps, and the outputs of the hierarchical agglomerative algorithm
and the fast unfolding algorithm are guaranteed to be communities. Moreover, the partitional
algorithm is a linear time algorithm for large sparse graphs.

We summarize the logic flow of using sampled graphs for centrality analysis and community
detection of networked data in Figure 1. First, we model the networked data by a graph G =
(Vg, Eg), where Vg is the set of vertices and Eg is the set of edges. Then we provide a viewpoint
by sampling the graph with the bivariate distribution p(·, ·). This results in a sampled graph.
Based on this sampled graph, we can then define the notions of relative centrality and centrality.
The notions of community and modularity are built upon the notions of relative centrality and
centrality. Ranking algorithms and community detection algorithms can then be developed and
written in codes by using sampled graphs as inputs. If one is not satisfied with the community
detection result from a sampled graph, e.g., the resolution, one has the freedom to choose another
viewpoint for the graph and try out the analysis again. There is no need to rewrite the codes for
the community detection algorithm.

Fig. 1. The logic flow of using sampled graphs for structural analysis and community detection.

In Section 4, we extend the probabilistic framework from undirected networks to directed
networks, where the sampling bivariate distributions could be asymmetric. As pointed out in
the recent survey [69], this is important as many networks in sociology, biology, neuroscience
and computer science, are directed networks. The key insight is that we can relax the assumption
from symmetric bivariate distributions to bivariate distributions that have the same marginal
distributions in [70]. By using such a weaker assumption, the notions of centrality, relative
centrality, community and modularity can be defined in the same manner as before.

Another point that needs to be addressed in [69] is algorithm design and evaluation of com-
munity detection algorithms in directed networks. Since the bivariate distribution could be
asymmetric, these community detection algorithms for undirected networks cannot be directly
applied. For this, one needs to symmetrize the bivariate distribution. Such a symmetrization
process not only preserve modularity but also preserve sparsity (of the sampled graph). As such,
the computational complexity of these community detection algorithms for directed networks
remains the same as that of their undirected counterparts.
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The further extension to the setting with general bivariate distributions is possible. However,
the results are not as elegant as the setting with bivariate distributions that have the same
marginal distributions. The good news is that the notions of community and modularity can be
extended in the same manner. Moreover, the hierarchical agglomerative algorithm, the partitional
algorithm, and the fast unfolding algorithm can also be extended to the setting with some minor
modifications.

In Section 5, we introduce several commonly used datasets for benchmarking community
detection algorithms, including the stochastic block model, the LFR model, the six cluster model
and the Stanford Network Analysis Project Collection (SNAP) [71]. To see how the community
detection algorithms perform, we consider two methods for sampling a directed network with a
bivariate distribution that has the same marginal distributions: (i) PageRank and (ii) random
walks with self-loops and backward jumps. Though PageRank [5] has been very successful
in ranking nodes in directed networks, the experimental results show that its performance in
community detection is not as good as sampling by a random walk with self-loops and backward
jumps. This might be due to the fact that PageRank adds weak links in a network and that
changes the topology of the network and thus affects the results of community detection. In [72],
the authors pointed out a similar problem for the original PageRank and provided various ways
to modify PageRank to tackle this problem.

In Section 6, we consider attributed networks. An attributed network is a generalization of a
network (graph). In addition to the set of nodes and the set of edges in a (underlining) network,
an attributed network could have node attributes and edge attributes that specify the “features”
of nodes and edges. For instance, a signed network is an attributed network, where each edge is
labelled with either a positive sign or a negative sign to indicate the friendship/enemy relation-
ship between the two ends of an edge. Another typical example of an attributed network is that
every node in the network represents a person with different ratings/interests on various topics.

The centrality analysis in attributed networks is to rank the importance of nodes in attributed
networks. For this, we extend the probabilistic framework by using the exponentially twisted
sampling technique. Like PageRank [5], the probabilistic framework requires a sampling method
of a network, called a viewpoint. The sampling method of a network is characterized by a
probability measure for randomly selecting a path r in the network. In order to take the at-
tributes of nodes and edges into account, one needs a biased viewpoint as previously discussed in
Personalized PageRank [73], [74]. As such, the sampling method in an attributed network (and the
corresponding probability measure) needs to be a twisted probability measure of its underlining
network. For this, we use a path measure f(r) that maps every path r in an attributed network
to a real-valued vector. By specifying the average values of a path measure, we then have a set
of constraints for the twisted sampling probability measure. This then leads to the exponentially
twisted probability measure [75], [76], [77] that minimizes the Kullback-Leibler distance between
the twisted probability measure and the original probability measure under the set of constraints
from the average values of the path measure.

Each path measure with specified average values leads to a method of ranking nodes in an
attributed network and that method is in general different from the original ranking method in
its underlining network. In Section 6, we introduce three path measures in attributed networks
and that leads to three new notions of centralities in attributed networks. For signed networks
that have both positive edges and negative edges, we demonstrate how the influence centralities
can be defined by using a path measure derived from opinions dynamics and how the trust
centralities can be defined by using a path measure derived from a chain of trust. In particular,
we demonstrate that one may vary the specified average value of the path measure in a signed
network so that the influence centrality is turned into positive degree ranking, negative degree
ranking and total degree ranking. For attributed networks with node attributes, we also demon-
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strate how advertisement-specific influence centralities can be defined by using a specific path
measure that models influence cascades in such networks.

In Section 7, we give a brief introduction of the clustering problem. For a clustering problem,
there is a set of data points (or objects) and a similarity (or dissimilarity) measure that measures
how similar two data points are. The aim of a clustering algorithm is to cluster these data
points so that data points within the same cluster are similar to each other and data points
in different clusters are dissimilar. In this section, we briefly review several commonly used
clustering algorithms, including the K-means algorithm for clustering data points in a Euclidean
space, the K-medoids algorithm for clustering data points in a non-Euclidean space, and the
spectral clustering algorithm for clustering data points with a similarity measure.

In Section 8, we address the clustering problem for data points in a metric/semi-metric space by
using the probabilistic framework. For this, we consider a set of n data points, Ω = {x1, x2, . . . , xn}
and a distance measure d(x, y) for any two points x and y in Ω. The distance measure d(·, ·) is
said be a semi-metric if it satisfies the following three properties: (i) d(x, y) ≥ 0, (ii) d(x, x) = 0,
and (iii) d(x, y) = d(y, x). If, furthermore, the distance measure satisfies the triangular inequality,
then the distance measure is said to be a metric. The key idea of sampling the data points in a
semi-metric space is to consider a complete graph with n nodes and n self edges and then maps
each data point in Ω to a node in the graph with the edge weight between two nodes being the
distance between the corresponding two points in Ω. By doing so, the problem of clustering in a
semi-metric space is transformed to a community detection problem of a weighted graph.

In this section, we are particularly interested in the exponentially twisted sampling technique
in which one can specify the desired average distance from the sampling distribution to detect
clusters with various resolutions. The exponentially twisted sampling technique leads to a new
cohesion measure in terms of the distance measure. Using the cohesion measure, a cluster is
defined as a set of points that are cohesive to themselves. For such a definition, there are various
equivalent statements and these statements can be explained intuitively. The cohesion measure
enables us to develop a partitional algorithm, called the K-sets algorithm, that repeatedly assigns
every data point to the closest set in terms of the triangular distance. Moreover, the K-sets
algorithm converges in a finite number of iterations. In particular, for K = 2, the K-sets algorithm
returns two clusters when the algorithm converges.

One interesting property of the cohesion measure is the duality result between a distance metric
and a cohesion measure. There is a general definition of a cohesion measure. For each cohesion
measure, there is an induced distance metric, called the dual distance metric. On the other hand,
there is also an induced cohesion measure, called the dual cohesion measure, for each distance
metric. The dual distance metric of a dual cohesion measure of a distance metric is the distance
metric itself. Such a duality result leads to a dual K-sets algorithm for clustering a set of data
points with a cohesion measure. The dual K-sets algorithm converges in the same way as a
sequential version of the classical kernel K-means algorithm. The key difference is that a cohesion
measure does not need to be positive semi-definite.

For data points in a semi-metric space, the distance measure does not necessarily satisfy the
triangular inequality. Without the triangular inequality, the K-sets algorithm may not converge at
all. Even if it converges, there is no guarantee that the output of the K-sets algorithm are clusters.
To tackle this technical challenge, we introduce the K-sets+ algorithm for clustering in a semi-
metric space in [78]. In the K-sets+ algorithm, we need to modify the original definition of the
triangular distance so that the nonnegativity requirement of the triangular distance can be lifted.
For this, we introduce the adjusted triangular distance such that the K-sets+ algorithm converges
in a finite number of iterations. Moreover, the K-sets+ algorithm outputs K disjoint sets such that
any two sets of these K sets are two disjoint clusters when they are viewed in isolation.

One can further extend the applicability of the K-sets+ algorithm from data points in a semi-
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TABLE 1
List of Notations

Network notations
G(Vg, Eg) A graph with the vertex set Vg and the edge set Eg
n The number of vertices (nodes) in a graph
m The number of edges (links) in a graph
m+ The number of positive edges in a signed network
m− The number of negative edges in a signed network
A The adjacency matrix of a graph
Avw (or avw) The indicator variable for the edge (v, w)
kv The degree of vertex v
koutv The outgoing edges of vertex v
kinv The incoming edges of vertex v
p(r) The probability of sampling the path r in a graph
p(v, w) The bivariate distribution of a sampled graph
pV (v) The marginal distribution of the first variable in p(v, w)
pW (w) The marginal distribution of the second variable in p(v, w)
C(S) The centrality of the set S
C(S1|S2) The relative centrality of S1 with respect to S2

Str(S) = C(S|S)− C(S) The community strength of a set S
q(v, w) = p(v, w)− pV (v)pV (w) The correlation measure between two nodes v and w
q(S1, S2) =

∑
v∈S1

∑
w∈S2

q(v, w) The correlation measure between two sets S1 and S2

q0(v, w) The correlation measure between two nodes v and w with q0(v, v) = 0

Q(P)) =
∑K
k=1 q(Sk, Sk) The modularity for a partition P = {S1, S2, . . . , SK} of a graph

πv The steady state probability for a Markov chain to visit state v
pv,w The transition probability from state v to state w
φ(S) The conductance of the set S in a graph
hV (u) The attribute of node u in an attributed network
hE(e) The attribute of edge e in an attributed network
f(r) The path measure of a path r in an attributed network
Clustering notations
Ω = {x1, x2, . . . , xn} The set of all data points
n The total number of data points
d(x, y) The distance metric (or semi-metric) between two points x and y
d̄(S1, S2) The average distance between two sets S1 and S2 in (164)
pλ(x, y) The exponentially twisted distribution in (150)
pλ(x) The marginal distribution of the bivariate distribution pλ(x, y)
γλ(x, y) = pλ(x, y)− pλ(x)pλ(y) The correlation between two points x and y in (155)
γλ(S1, S2) =

∑
x∈S1

∑
y∈S2

γλ(x, y) The correlation measure between two sets S1 and S2

γ(x, y) The cohesion measure (or semi-cohesion measure, similarity measure) between x and y
γ(S1, S2) =

∑
x∈S1

∑
y∈S2

γ(x, y) The cohesion measure (or semi-cohesion measure) between two sets S1 and S2

∆(x, S) = 2d̄({x}, S)− d̄(S, S) The triangular distance (or the ∆-distance) from a point x to a set S
∆a(x, S) The adjusted ∆-distance from a point x to a set S in (196)
Q(P) =

∑K
k=1 γ(Sk, Sk) The modularity for a partition P = {S1, S2, . . . , SK} of Ω

Qnor(P) =
∑K
k=1 γ(Sk, Sk)/|Sk| The normalized modularity for a partition P = {S1, S2, . . . , SK} of Ω

metric space to data points that only have a symmetric similarity measure. A similarity measure
is generally referred to as a bivariate function that measures how similar two data points are.
There is a natural mapping from a symmetric similarity measure to a distance measure in a
semi-metric space and the K-sets+ algorithm that uses this distance measure converges to the
same partition as that using the original symmetric similarity measure. Such an extension leads
to great reduction of computational complexity for the K-sets+ algorithm.

For the clarity of the presentation, all the mathematical proofs are deferred to the end of this
tutorial in Section 9. In Table 1, we provide a list of notations used in this tutorial.
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(a) The graph (b) The adjacency matrix

Fig. 2. A graph with 4 nodes and 5 edges.

2 THE PROBABILISTIC FRAMEWORK FOR UNDIRECTED NETWORKS

2.1 Sampling a network
In the literature, an undirected network is commonly modelled by an undirected graph G(Vg, Eg),
where Vg denotes the set of vertices (nodes) in the graph and Eg denotes the set of edges (links)
in the graph. Let n = |Vg| be the number of vertices in the graph and index the n vertices from
1, 2, . . . , n. Then the graph G(Vg, Eg) can also be characterized by an n × n adjacency matrix A,
where

Avw =

{
1, if vertices v and w are connected,
0, otherwise. (1)

Let m = |Eg| be the number of edges in the graph and kv be the degree of vertex v. From the
adjacency matrix, we then have

m =
1

2

n∑
v=1

n∑
w=1

Avw, (2)

and

kv =

n∑
w=1

Avw. (3)

In Figure 2, we show a graph with 4 nodes and 5 edges.
The main idea of the probabilistic framework is to sample a network by randomly selecting two

nodes V and W according to a specific bivariate distribution p(·, ·). Specifically, for a network
with the set of nodes {1, 2, . . . , n}, we have

P(V = v,W = w) = p(v, w). (4)

Let pV (v) (resp. pW (w)) be the marginal distribution of the random variable V (resp. W ), i.e.,

pV (v) =

n∑
w=1

p(v, w), (5)

and

pW (w) =

n∑
v=1

p(v, w). (6)

If p(v, w) is symmetric, then pV (v) = pW (v) for all v, and pV (v) is the probability that a randomly
selected node is v.
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Definition 1. (Sampled graph) A graph G(Vg, Eg) that is sampled by randomly selecting two
nodes V and W according to a specific bivariate distribution p(·, ·) in (4) is called a sampled
graph and it is denoted by the two tuple (G(Vg, Eg), p(·, ·)).

In the following, we introduce several methods to generate sampled graphs by specifying the
needed bivariate distributions.

Example 2. (Uniform edge sampling) One simple method is to generate V and W as the two end
nodes of a uniformly selected edge from the graph G(Vg, Eg). For this edge sampling method,
we have

P(V = v,W = w) =
1

2m
Avw, (7)

where m is the number of edges in the graph G(Vg, Eg). In particular, if we use the edge
sampling for the graph in Figure 2, we have the following bivariate distribution (written in the
4× 4 matrix form): 

0 1
10

1
10

1
10

1
10

0 1
10

0
1
10

1
10

0 1
10

1
10

0 1
10

0

 .
The problem of using the uniform edge sampling is its limited visibility to “see” more than one

step and that might cause a serious problem in community detection (known as the resolution
limit [62]). To see the intuition behind this, let us consider the illustrating example in Figure 3.
In the figure, there are two clearly separated “communities” A and B. But it is difficult to see
whether vertex C should be classified to community A by considering paths with length not
greater than 1 (as vertex C has exactly one path with length 1 to each community). However, if
we consider paths with length 2, then it is obvious that we should classify vertex C to community
A.

Fig. 3. An illustrating example for vertices that are difficult to classify by considering paths with length not greater than 1.

In view of Figure 3, we seek a more general method is to generate the needed bivariate
distribution by randomly selecting the two ends of a path. Specifically, let Rv,w be the set of
paths from v to w and R = ∪v,w∈VgRv,w be the set of paths in the graph G(Vg, Eg). According to
a probability mass function p(·), called the path sampling distribution, a path r ∈ R is selected at
random with probability p(r). Let V (resp. W ) be the starting (resp. ending) node of a randomly
select path by using the path sampling distribution p(·). Then the bivariate distribution

p(v, w) = P(V = v,W = w) =
∑
r∈Rv,w

p(r) (8)
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is the probability that the ordered pair of two nodes (v, w) is selected. As such, p(v, w) can be
viewed as a similarity measure between node v and node w.

One way of randomly selecting the two ends of a path is by mapping the adjacency matrix.
Specifically, one can first choose a (matrix) function f that maps an adjacency matrix A to another
nonnegative matrix f(A). Then one can define a bivariate distribution from f(A) by

P(V = v,W = w) =
1

||f(A)||1
f(A)vw, (9)

where ||f(A)||1 =
∑

v

∑
w |f(A)vw| is usual ”entrywise” matrix norm of the matrix f(A).

Example 3. (A random selection of a path with length not greater than 2) Consider a graph with
an n× n adjacency matrix A and

f(A) = λ0I + λ1A+ λ2A
2, (10)

where I is the n × n identity matrix, and λ0, λ1, and λ2 are three nonnegative constants. Then
the two random variables V and W in (9) represent the two ends of a randomly selected path
with length not greater than 2. To see this, note that there are n paths with length 0 (for the n
vertices), ||A||1 paths with length 1, and ||A2||1 paths with length 2. Since

||f(A)||1 = λ0||I||1 + λ1||A||1 + λ2||A2||1,

a path with length ` is selected with probability λ`/||f(A)||1 for ` = 0, 1, and 2.

As described in [60], randomly selecting the two ends of a path by mapping the adjacency
matrix can also be viewed as a way to compute the ”similarity” score between a pair of two
nodes v and w. In fact, if there is a bounded similarity measure sim(v, w) that gives a high score
for a pair of two ”similar” nodes v and w, then one can map that similarity measure to a bivariate
distribution p(v, w) as follows:

p(v, w) =
sim(v, w)−MINsim∑n

x=1

∑n
y=1

(
sim(x, y)−MINsim

) , (11)

where
MINsim = min

1≤x,y≤n
sim(x, y), (12)

is the minimum value of all the similarity scores. As such, one can view a sampled graph
(G(Vg, Eg), p(·, ·)) as a graph G(Vg, Eg) associated with a normalized similarity measure p(·, ·).

Another approach to generate a bivariate distribution from the adjacency matrix A from a graph
is to consider a random walk on a graph (see e.g., [76]).

Example 4. (A random walk on a graph) Consider a graph with an n× n adjacency matrix A. As
in (2) and (3), let m be the total number of edges and kv be the degree of vertex v. A random
walker on a graph hops from nodes to nodes with respect to time. When a random walker is at
node i at time t, it selects uniformly at random one of the neighbors of node i and hops to that
neighbor at time t+ 1. A random walk on such a graph can then be characterized by a Markov
chain with the n× n transition probability matrix (pv,w), where

pv,w =
1

kv
Avw (13)

is the transition probability from vertex v to vertex w. The stationary probability that the Markov
chain is in vertex v, denoted by πv, is kv/2m. Let β` be the probability that we select a path with
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length `, ` = 1, 2, . . .. Then the probability of selecting a random walk (path) with vertices
v = v1, v2, . . . , v` = w is

β`πv1

`−1∏
i=1

pvi,vi+1
. (14)

From this, we then have the bivariate distribution

p(v, w) = πv

∞∑
`=1

β`
∑
v2

. . .
∑
v`−1

`−1∏
i=1

pvi,vi+1
. (15)

Since A is a symmetric matrix, it is easy to see that

πvpv,w =
1

2m
Av,w =

1

2m
Aw,v = πwpw,v

for all v and w, and the Markov chain is thus a reversible Markov chain [79]. This implies that

πv1

`−1∏
i=1

pvi,vi+1
= πv`

`−1∏
i=1

pvi+1,vi

and p(v, w) = p(w, v) is thus a symmetric bivariate distribution.

2.2 Centralities and relative centralities
In social network analysis, centralities [2], [3], [4] have been widely used for ranking the impor-
tance of nodes in a network. Intuitively, an important node in a graph has a higher probability
of being “spotted” than an arbitrary node. Since V and W are two randomly selected nodes in a
sample graph (G(Vg, Eg), p(·, ·)) via the bivariate distribution p(·, ·), it seems plausible to define the
centrality of a node as the probability that a node is selected. This leads us to define the centrality
of a set of nodes in a sampled graph in Definition 5 below.
Definition 5. (Centrality) For a sampled graph (G(Vg, Eg), p(·, ·)) with a symmetric bivariate dis-

tribution p(·, ·), the centrality of a set of nodes S, denoted by C(S), is defined as the probability
that a node in S is selected, i.e.,

C(S) = P(V ∈ S) = P(W ∈ S). (16)

Note that
P(W ∈ S) = P(W ∈ S|V ∈ Vg). (17)

Another way to interpret the centrality of a set of nodes S is the conditional probability that the
randomly selected node W is inside S given that the random selected node V is inside the whole
set of nodes in the graph. As p(·, ·) can be viewed as a normalized similarity measure, such an
observation leads us to define the relative centrality of a set of nodes S1 with respect to another set
of nodes S2 as the conditional probability that the randomly selected node W is inside S1 given
that the random selected node V is inside S2. Intuitively, a node w is relatively important to a set
of node S2 if the node w has a high probability of being ”spotted” from the set of nodes in S2.
Such a definition is formalized in Definition 6 below.
Definition 6. (Relative centrality) For a sampled graph (G(Vg, Eg), p(·, ·)) with a symmetric bi-

variate distribution p(·, ·), the relative centrality of a set of nodes S1 with respect to another set
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of nodes S2, denoted by C(S1|S2), is defined as the conditional probability that the randomly
selected node W is inside S1 given that the random selected node V is inside S2, i.e.,

C(S1|S2) = P(W ∈ S1|V ∈ S2). (18)

In particular, when S2 = Vg is the set of all the nodes in the graph, the relative centrality of a set
of nodes S1 with respect to Vg is reduced to the centrality of the set of nodes S1, i.e.,

C(S1|Vg) = P(W ∈ S1|V ∈ Vg) = P(W ∈ S1) = C(S1). (19)

Note that

C(S1|S2) = P(W ∈ S1|V ∈ S2) =
P(V ∈ S2,W ∈ S1)

P(V ∈ S2)

=

∑
v∈S2

∑
w∈S1

p(v, w)∑
v∈S2

pV (v)
, (20)

where pV (v) is the marginal distribution of V in (5). Also,

C(S1) = P(W ∈ S1) =
∑
w∈S1

P(W = w) =
∑
w∈S1

pW (w), (21)

where pW (w) is the marginal distribution of W in (6). Since we assume that p(·, ·) is symmetric,
we also have

C(S1) = P(V ∈ S1) =
∑
w∈S1

pV (w). (22)

As relative centrality is defined as the conditional probability, there are several properties of
relative centrality that can be induced from a probability measure. This is shown in the following
proposition and its proof is given in Section 9.1.
Proposition 7. For a sampled graph (G(Vg, Eg), p(·, ·)) with a symmetric bivariate distribution p(·, ·),

the following properties for the relative centrality defined in Definition 6 hold.
(i) 0 ≤ C(S1|S2) ≤ 1 and 0 ≤ C(S1) ≤ 1. Moreover, C(Vg|S2) = 1 and C(Vg) = 1.
(ii) (Additivity) If S1 and S ′1 are two disjoint sets, i.e., S1 ∩S ′1 is an empty set, then C(S1 ∪S ′1|S2) =
C(S1|S2) + C(S ′1|S2) and C(S1 ∪ S ′1) = C(S1) + C(S ′1).

(iii) (Monotonicity) If S1 is a subset of S ′1, i.e., S1 ⊂ S ′1, then C(S1|S2) ≤ C(S ′1|S2) and C(S1) ≤
C(S ′1).

(iv) (Reciprocity)
C(S1)C(S2|S1) = C(S2)C(S1|S2).

As a result, C(S1) ≥ C(S2) if and only if C(S2|S1) ≤ C(S1|S2).

We note that the reciprocity in Proposition 7(iv) implies the following weaker version of
reciprocity

C(S)C(Sc|S) = C(Sc)C(S|Sc). (23)

Such a weaker version will be used for directed networks.
Now we provide several illustrating examples for relative centrality, including the degree

centrality, the Katz centrality, and the continuous-time random walk.

Example 8. (Degree centrality) Consider the bivariate distribution in (7), i.e.,

p(v, w) = P(V = v,W = w) =
1

2m
Avw. (24)
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Thus, we have from (20) and (24) that

C(S1|S2) =

∑
v∈S2

∑
w∈S1

Av,w∑
v∈S2

kv
. (25)

In particular, when S1 contains a single node w and S2 = Vg is the set of all the nodes in the
graph, the centrality of w, i.e., C({w}), is simply P(W = w). From (24), we have

C({w}) = P(W = w) =
kw
2m

. (26)

Thus, C({w}) is the usual (normalized) degree centrality that counts the number of edges
connected to the node w.

As another illustrating example, we show that Katz’s centrality can also be derived as a special
case of the sampled graph.

Example 9. (Katz centrality) For an undirected graphG(Vg, Eg), Katz centrality [61] is based on the
assumption that the importance of a vertex is the sum of a fixed constant and the “discounted”
importance of vertices it connects to. Specifically, let xv be the Katz centrality of vertex v. Then

xv =

n∑
w=1

λAvwxw + 1, (27)

where λ is the discount factor. Let x = (x1, x2, . . . , xn)T be the vector of Katz centralities and
1 = (1, 1, . . . , 1)T be the n-vector of all 1’s. Then we can write (27) in the matrix form x = λAx+1
and solve for x to yield

x = (I− λA)−1 · 1, (28)

where I is the n × n identity matrix. To show that the Katz centrality is the centrality of a
particular sampled graph, we choose

f(A) =

∞∑
i=0

(λA)i = (I− λA)−1 (29)

in (9) and thus we have the bivariate distribution

p(v, w) =
1

||(I− λA)−1||1
(I− λA)−1. (30)

The matrix (I− λA)−1 in (29) is called the “Katz similarity” in [4] and the bivariate distribution
in (30) can thus be viewed as the normalized Katz similarity. Since A is the adjacency matrix of
an undirected graph, we have A = AT and thus p(v, w) is symmetric. This then leads to

C({w}) = pW (w) = pV (w) =
eTw

||(I− λA)−1||1
(I− λA)−1 · 1, (31)

where ew is the column vector that has 1 in its wth element and 0 otherwise. Thus, C({w}) is the
(normalized) Katz centrality of node w. For this example, we also have from the symmetry of
A, (20), and (30) that

C(S1|S2) =
eTS2
· (I− λA)−1 · eS1

eTS2
· (I− λA)−1 · 1

, (32)

where eS is the column vector that has 1 in the elements of the set S and 0 otherwise.
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Example 10. (Continuous-time random walk on an undirected graph) In Example 4, we consider
a random walk on an undirected graph that takes one unit of time to hop from one node
to another node. A continuous-time random walk, as a generalization of the random walk
in Example 4, takes a random amount of time to hop from one node to another node. The
times between two successive hops (the inter-hop times) are independent and exponentially
distributed with mean 1. Thus, a continuous-time random walk on an undirected graph G =
(Vg, Eg) can be characterized by a continuous-time Markov process with the transition rate
Avw/kv from vertex v to vertex w. Let γv(t) be the probability that the continuous-time random
walk is at vertex v at time t when the walk is started from vertex w at time 0. Since that the
transition rate from vertex v to vertex w is Avw/kv, it then follows that

dγv(t)

dt
=

n∑
w=1

Awv
kw

γw(t)− γv(t) =

n∑
w=1

Avw
kw

γw(t)− γv(t), (33)

where we use A = AT in the last equality. Let πv be the steady probability that the continuous-
time random walk is at vertex v. In view of (33),

πv = lim
t→∞

γv(t) =
kv
2m

. (34)

Let γ(t) = (γ1(t), . . . , γn(t))T and L = (Lv,w) be the normalized graph Laplacian, i.e.,

Lv,w =
Avw
kw
− δv,w. (35)

We can rewrite (33) in the matrix form as follows:

dγ(t)

dt
= Lγ(t). (36)

This then leads to
γ(t) = etLγ(0). (37)

Since we start from vertex w at time 0, i.e., γw(0) = 1, we then have

γv(t) = (etL)vw. (38)

Now we choose the two nodes V and W as the two ends of a path of length t in a stationary
continuous-time random walk. Specifically,

p(v, w) = P(V = v,W = w) = P(W = w)P(V = v|W = w)

= πwγv(t) = (etL)vw
kw
2m

, (39)

where we use (38) and (34) in the last identity. Since a stationary continuous-time random walk
is a reversible Markov process, we also have

p(v, w) = P(V = v,W = w) = P(V = w,W = v) = p(w, v).

For this example, we then have

C(S1|S2) =

∑
v∈S2

∑
w∈S1

(etL)vw
kw
2m∑

v∈S2

kv
2m

, (40)

C(S1) =
∑
w∈S1

kw
2m

. (41)
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2.3 Community and community strength
Intuitively, a community in a social network includes a group of people who consider themselves
much more important to themselves than to random people on the street. In view of this, one
might consider a community as a group of nodes that have high relative centralities to each other
than to random nodes. As such, we propose the following definition of community strength based
on relative centrality.
Definition 11. (Community strength) For a sample graph (G(Vg, Eg), p(·, ·)) with a symmetric

bivariate distribution p(·, ·), the community strength of a subset set of nodes S ⊂ Vg, denoted by
Str(S), is defined as the difference of the relative centrality of S with respect to itself and its
centrality, i.e.,

Str(S) = C(S|S)− C(S). (42)

In particular, if a subset set of nodes S ⊂ Vg has a nonnegative community strength, i.e.,
Str(S) ≥ 0, then it is called a community.

To understand the definition of the community strength, let us consider the continuous-time
random walk in Example 10. Let X(t) be the node that the continuous-time random walk visits
at time t. Then

C(S|S)− C(S)

= P(W ∈ S|V ∈ S)− P(W ∈ S)

= P(X(t) ∈ S|X(0) ∈ S)− P(X(t) ∈ S). (43)

The first term in (43) is the conditional probability that the continuous-time random walk is
”trapped” in the set S given that it is started from that set, while the second term is the steady
state probability that the random walk is in the set S. In view of (43), the continuous-time random
walk is more likely being ”trapped” in a set with a strong community strength. Of course, the
large the set is, the more likely the random walk will be ”trapped” in that set. As such, the
community strength has to take into account the steady state probability that the random walk is
in the set. By so doing, for the whole set of nodes in the graph, i.e., Vg, the community strength is
normalized to 0 as it should not contain any information for the strength of this trivial community.

To further understand the physical meaning of the concept of community strength, we show
how it is related to conductance for a small community. In the literature, conductance has been
widely used for testing whether a community (cut) is good (see e.g., [8], [9], [10]) when the
community (cut) is relatively small comparing to the whole graph. The conductance of a set S,
denoted by φ(S), is defined as ∑

v∈S
∑

w 6∈S Av,w

min[
∑

v∈S kv,
∑

v 6∈S kv]
. (44)

When S is relatively small comparing to the whole graph, we usually have∑
v∈S

kv ≤
∑
v 6∈S

kv

and the conductance of S is reduced to

φ(S) =

∑
v∈S
∑

w 6∈S Av,w∑
v∈S kv

. (45)

In view of (45), a small community S with a small conductance can be viewed as a good
community. Now let us consider the bivariate distribution in (7), where V and W represent
the two ends of a uniformly selected edge. For this case, we have from (26) that

C(S) =

∑
v∈S kv

2m
,
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where m is the total number of edges. For a small community, we expect
∑

v∈S kv << m and
C(S) ≈ 0. Then, we have from (25) in Example 8 that

Str(S) ≈ C(S|S) =

∑
v∈S
∑

w∈S Av,w∑
v∈S kv

= 1−
∑

v∈S
∑

w 6∈S Av,w∑
v∈S kv

= 1− φ(S). (46)

In view of (46), a small community S with a large community strength has a small conductance
and thus can be considered as a good community.

The concept of community strength based on relative centrality enables us to look at the definition
of a community from various perspectives. For instance, we know from (42) that a community is
a set (of nodes) with its relative centrality to itself not less than its centrality. In addition to this,
there are various equivalent statements for a community that can be explained by their social
meanings. These are as shown in Theorem 12 below. Its proof is given in Section 9.2.
Theorem 12. Consider a sample graph (G(Vg, Eg), p(·, ·)) with a symmetric bivariate distribution
p(·, ·), and a set S with 0 < C(S) < 1. Let Sc = Vg\S be the set of nodes that are not in S. The
following statements are equivalent.

(i) The set S is a community, i.e., Str(S) = C(S|S)− C(S) ≥ 0.
(ii) The relative centrality of S with respect to S is not less than the relative centrality of

S with respect to Sc, i.e., C(S|S) ≥ C(S|Sc).
(iii) The relative centrality of Sc with respect to S is not greater than the centrality of Sc,

i.e., C(Sc|S) ≤ C(Sc).
(iv) The relative centrality of S with respect to Sc is not greater than the centrality of S,

i.e., C(S|Sc) ≤ C(S).
(v) The set Sc is a community, i.e., Str(Sc) = C(Sc|Sc)− C(Sc) ≥ 0.
(vi) The relative centrality of Sc with respect to Sc is not less than the relative centrality of

Sc with respect to S, i.e., C(Sc|Sc) ≥ C(Sc|S).

As mentioned before, the social meaning for the first statement in Theorem 12(i) is that a com-
munity is a group of people who consider themselves much more important to themselves than
to random people on the street. The second statement in Theorem 12(ii) says that a community is
a group of people who consider themselves much more important to themselves than to the other
people not in the community. The third statement in Theorem 12(iii) says that the other people
not in a community are much less important to the people in the community than to random
people on the street. The fourth statement in Theorem 12(iv) says that people in a community
are much less important to the other people not in the community than to random people on the
street. The fifth statement in Theorem 12(v) says that the other people not in a certain community
are also a community. Finally, the sixth statement says that the other people not in a community
are much more important to themselves than to the people in a community.

There is a tradeoff between computational complexity and resolution for the choice of a bi-
variate distribution p(·, ·) for community detection. For instance, the bivariate distributions in
Example 9 and Example 10 require the complete knowledge of the adjacency matrix A of the
graph, and its computational complexity in general very high. On other hand, the degree central-
ity in Example 8 only requires the local information that contains the first neighbors of v and w for
computing the needed relative centralities. However, exploring a graph by only looking at the
first neighbors might lead to a very limited view that sometimes prohibits us to tell the difference
among all the first neighbors. For example, as shown in Figure 4, all the three nodes w1, w2 and w3

have the same relative centrality to the node v when the degree centrality in Example 8 is used.
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If we further take the second neighbors into consideration, we see that the three nodes w1, w2 and
v forms a triangle. As such, it seems that w1 and w2 should have larger relative centralities with
respect to v than that of w3. This suggests using random walks with path length not greater than
2 for computing the relative centralities needed for community detection.

Fig. 4. An illustrating example for relative centralities with three nodes.

Example 13. (A random walk with path length not greater than 2) A random walk with path
length not greater than 2 is a special case of the random walk in Example 4 and it can be
generated by the following two steps: (i) with the probability kv/2m, an initial node v is chosen,
(ii) with probability βi, i = 1, 2, a walk from v to w with length i is chosen. Here we add an extra
twist by allowing the random walk to select a path with length 0. Specifically, with probability
β0, a walk will remain the same node. As such, we have from (15) that

p(v, w) =
β0kvδv,w

2m
+

β1

2m
Av,w +

β2

2m

n∑
v2=1

Av,v2Av2,w
kv2

, (47)

where β0 + β1 + β2 = 1 and βi ≥ 0, i = 1, 2, 3. Thus,

C({w}|{v}) = P(W = w|V = v)

=

(
β0kvδv,w + β1Av,w + β2

∑n
v2=1

Av,v2Av2,w
kv2

)
kv

, (48)

and
C({w}) =

kw
2m

. (49)

In view of (48), we know that C({w}|{v}) = 0 if node w is neither a first neighbor nor a second
neighbor of v.
Also, observe that

C(S|S) = P(W ∈ S|V ∈ S) =
P(W ∈ S, V ∈ S)

P(V ∈ S)

=

∑
v∈S
∑

w∈S

(
β0kvδv,w + β1Av,w + β2

∑n
v2=1

Av,v2Av2,w
kv2

)
∑

v∈S kv

= β0 + β1

∑
v∈S
∑

w∈S Av,w∑
v∈S kv

+ β2

∑
v∈S
∑

w∈S
∑n

v2=1

Av,v2Av2,w
kv2∑

v∈S kv
. (50)
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For a small community with C(S) << 1, the community strength of a set S can be represented
by (50), where the first term is simply a constant β0 (for normalizing the community strength),
the second term is equal to β1(1 − conductance) (see (45)), and the third term is related the
clustering coefficient (in terms of the number of triangles) in the set S. In view of this, using
a random walk with path length not greater than 2 to sample a network seems to be a
good compromise between the viewpoint from conductance [8], [9], [10] and the viewpoint
of clustering coefficient [12].
As β0 is only a constant for normalizing the community strength, one can increase the commu-
nity strength of a node by increasing β0. Note that

Str({w}) = C({w}|{w})− C({w}) ≥ β0 −
kw
2m

. (51)

Thus, if we choose β0 ≥ kmax

2m
(with kmax = maxv∈Vg kv being the maximum degree), then

Str({w}) ≥ 0 for every node w in the sampled graph. As such, every single node has a
nonnegative community strength and thus a community by itself.

Fig. 5. The network of American football games between Division IA colleges during regular season Fall 2000.

To provide insights of community strength, we consider the dataset from the American football
games in the following example.

Example 14. (College football games) In this example, we use the random walk with path
length not greater than 2 in Example 13 to sample the network from the American football
games between Division IA colleges during regular season Fall 2000 [80]. We use the following
coefficients in (47): β2 = 0.25, β0 = kmax / 2m, and β1 = 1 − β0 − β2, where kmax = maxv∈Vg kv is
the maximum degree. In Figure 5, nodes represent teams and edges represent regular-season
games between two teams. The teams are divided into 12 conferences. As shown in Figure
5, the competitions (edges) in the same conference are more intense than those between two
different conferences. We compute the community strengths of these 12 conferences to see how
strong these conferences (as communities) are. These results are shown in the second column
of Table 2 and there are several conferences that have small community strengths, in particular
conference 5 only has the community strength 0.04.
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(a) conference 5 (b) conference 10 (c) conference 11

Fig. 6. Edges within conferences 5,10, and 11 of American football games.

To further understand this, we plot the edges within conference 5 in Figure 6 (a). There is only
one edge between two teams in this conference! We also plot the edges within conferences 10
and 11 in Figure 6 (b) and Figure 6 (c), respectively. These two conferences also have relative
low community strengths. As shown in Figure 6 (b), Conference 10 is formed by a single edge
between a clique of four nodes and another clique of three nodes. As for conference 11, there is
one team that did not play any games with any other teams in the same conference.

TABLE 2
The community strengths of the 12 conferences in the network of the American football games.

conference 0 1 2 3 4 5 6 7 8 9 10 11
strength 0.63 0.54 0.57 0.60 0.46 0.04 0.59 0.52 0.60 0.61 0.24 0.43

2.4 Modularity
In [14], Newman proposed using modularity as a metric that measures the quality of a division
of a network from the global perspective. Such an index has been widely accepted for analyzing
community structure in the literature. By using community strength, we propose a (generalized)
modularity index that recovers the original Newman’s modularity and stability in [21], [22] as
special cases. Since community strength is a metric that measures the quality of the structure of a
community from the perspective of the nodes inside the community, it seems reasonable to define
modularity as the average community strength of the community to which a randomly selected
node belongs.
Definition 15. (Modularity) Consider a sampled graph (G(Vg, Eg), p(·, ·)) with a symmetric bivari-

ate distribution p(·, ·). Let P = {Sc, c = 1, 2, . . . , C}, be a partition of {1, 2, . . . , n}, i.e., Sc ∩ Sc′
is an empty set for c 6= c′ and ∪Cc=1Sc = {1, 2, . . . , n}. The modularity Q(P) with respect to the
partition P = {Sc, c = 1, 2, . . . , C} is defined as the weighted average of the community strength
of each subset with the weight being the centrality of each subset, i.e.,

Q(P) =

C∑
c=1

C(Sc) · Str(Sc). (52)
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As the centrality of a set Sc is the probability that a randomly selected node is in the set Sc,
the modularity index Q in (52) is the average community strength of the community to which a
randomly selected node belongs. Note that

Q(P) =

C∑
c=1

C(Sc) · Str(Sc) =

C∑
c=1

(
P(V ∈ Sc,W ∈ Sc)− P(V ∈ Sc)P(W ∈ Sc)

)
=

C∑
c=1

∑
v∈Sc

∑
w∈Sc

(p(v, w)− pV (v)pW (w)). (53)

It is easy to see that the (generalized) modularity in Definition 15 is in fact a generalization of the
original modularity index in [14] by choosing the bivariate distribution p(v, w) in (7), i.e.,

P(V = v,W = w) =
1

2m
Avw. (54)

For such a choice, the modularity index Q in (52) is

C∑
c=1

∑
v∈Sc

∑
w∈Sc

( 1

2m
Avw −

kv
2m

kw
2m

)
. (55)

One of the well-known problems of using Newman’s modularity in (55) is its resolution limit
in detecting communities [62] smaller than a certain scale. This motivated many researchers to
propose multi-scale methods, including the stability in [21], [22]. In the following example, we
show that stability can also be derived as a special case of a sampled graph.

Example 16. (Stability in [21], [22]) If we choose the bivariate distribution p(v, w) as in (39), i.e.,

p(v, w) = p(w, v) = (etL)vwπw = (etL)vw
kw
2m

, (56)

then the modularity index Q in (52) is simply the stability previously defined in [21], [22], i.e.,

C∑
c=1

∑
v∈Sc

∑
w∈Sc

(
(etL)vw

kw
2m
− kv

2m

kw
2m

)
. (57)

Since V and W in this example are the two ends of a randomly selected path via a continuous-
time random walk with time t, the parameter t serves as a multi-scale resolution parameter for
the size of the communities. Intuitively, a large (resp. small) resolution parameter t tends to
identify large (resp. small) communities. Also, it is further illustrated in [21], [22] that stability
is in fact a generalization of other multi-scale methods in [81], [82].
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3 COMMUNITY DETECTION ALGORITHMS

As the modularity for a partition of a network is the average community strength of a randomly
selected node, a good partition of a network should have a large modularity. In view of this,
one can then tackle the community detection problem by looking for algorithms that yield large
modularity. However, the modularity maximization problem is known to be NP-hard [65] and
one has to resort to heuristic algorithms. In this section, we introduce four commonly used
modularity maximization algorithms for community detection in undirected networks: (i) the
spectral modularity maximization algorithm [66], (ii) the hierarchical agglomerative algorithm
[14], (iii) the partitional algorithm [67], and (iv) the fast unfolding algorithm [68]. For this, we
define the correlation measure below.
Definition 17. (Correlation) For a sampled graph (G(Vg, Eg), p(·, ·)) with a symmetric bivariate

distribution p(·, ·), the correlation measure between two nodes v and w is defined as follows:

q(v, w) = p(v, w)− pV (v)pV (w)

(58)

Define the modularity matrix Q = (q(v, w)) be the n × n matrix with its (v, w)th element being
q(v, w). For any two sets S1 and S2, define the correlation measure between these two sets as

q(S1, S2) =
∑
v∈S1

∑
w∈S2

q(v, w). (59)

The two sets S1 and S2 are said to be positively correlated (resp. negatively correlated) if
q(S1, S2) ≥ 0 (resp. q(S1, S2) < 0).

Since p(v, w) is symmetric, the correlation measure q(v, w) is also symmetric. Moreover, we have
n∑
v=1

q(v, w) =

n∑
w=1

q(v, w) = 0. (60)

With this correlation measure, we have from (53) that the modularity for the partition P = {Sc, c =
1, 2, . . . , C} is

Q(P) =

C∑
c=1

q(Sc, Sc). (61)

Moreover, a set S is a community if and only if q(S, S) ≥ 0.

3.1 The spectral modularity maximization algorithm
The spectral modularity maximization algorithm in [66] tackles the modularity maximization
problem by dividing a graph into two groups S1 and S2. Let sv = 1 (resp. -1) if node v is assigned
to group 1 (resp. 2). Note that 1

2
(svsw + 1) = 1 if v and w are in the same group and 0 otherwise.

Since
∑n

v=1 q(v, w) =
∑n

w=1 q(v, w) = 0, we have from (61) that

Q(P) = q(S1, S1) + q(S2, S2) =

n∑
v=1

n∑
w=1

q(v, w)
1

2
(svsw + 1) =

1

2

n∑
v=1

n∑
w=1

q(v, w)svsw. (62)

Thus, the modularity maximization problem can be transformed into the following optimization
problem:

max
n∑
v=1

n∑
w=1

q(v, w)svsw

s.t. sv = 1 or − 1, v = 1, 2, . . . , n. (63)
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Instead of using the integer-valued constraints in (63), one can consider using a weaker real-
valued constraint

∑n
v=1 s

2
v = n. This leads to the following (relaxed) optimization problem:

max
n∑
v=1

n∑
w=1

q(v, w)svsw

s.t.
n∑
v=1

s2
v = n. (64)

By using a single Lagrange multiplier β, the solution of the above optimization problem can be
found by

∂

∂su
[

n∑
v=1

n∑
w=1

q(v, w)svsw + β(n−
n∑
v=1

s2
v)] = 0.

Thus, for u = 1, 2, . . . , n,
n∑

w=1

q(u,w)sw = βsu. (65)

Let s be the n × 1 column vector with its vth element being sv. Writing (65) in the matrix form
yields

Qs = βs. (66)

Thus, s is one of the eigenvectors of the modularity matrix Q with the corresponding eigenvalue
β. Note that

n∑
v=1

n∑
w=1

q(v, w)svsw = sTQs = βss = nβ.

Clearly, in order to maximize
∑n

v=1

∑n
w=1 q(v, w)svsw, one has to maximize β. Thus, the solution s

to the optimization problem in (64) is the eigenvector corresponding to the largest eigenvalue of
Q. Let s∗ be the eigenvector corresponding to the largest eigenvalue of Q. To find a good solution
to the original modularity maximization problem in (63), we can simply choose sv = 1 if s∗v ≥ 0
and −1 otherwise.

The spectral modularity maximization algorithm relies on finding the eigenvector of the mod-
ularity matrix that corresponds to the largest eigenvalue. Even for a sparse network, the compu-
tational complexity is O(n2) [4] and it is still too high for a large network. To find a partition with
more than two groups, one can continue bisecting one of the two groups until the modularity
cannot be further increased.

3.2 The hierarchical agglomerative algorithm
Analogous to the hierarchical agglomerative algorithms in [14], [68], we introduce a hierarchical
agglomerative algorithm for community detection in the probabilistic framework (see Algorithm
1). The algorithm starts from n sets with each node itself as a set. It then recursively merges two
disjoint positively correlated sets to form a new set until either there is a single set left or all the
remaining sets are not positively correlated. There are two main differences between a standard
hierarchical agglomerative algorithm and ours:

(i) Stopping criterion: in a standard hierarchical agglomerative clustering algorithm,
such as single linkage or complete linkage, there is no stopping criterion. Here our
algorithm stops when all the remaining sets are not positively correlated.
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ALGORITHM 1: The Hierarchical Agglomerative Algorithm
Input: A sampled graph (G(Vg, Eg), p(·, ·)) with a symmetric bivariate distribution p(·, ·).
Output: A partition P = {Sc, c = 1, 2, . . . , C} for some C ≤ n.
(H1) Initially, C = n; Si = {i}, i = 1, 2, . . . , n;
(H2) Compute the correlation measures q(Si, Sj) = q({i}, {j}) from (58) for all
i, j = 1, 2, . . . , n;

while there exists some i and j such that q(Si, Sj) > 0 do
(H3) Merge Si and Sj into a new set Sk, i.e., Sk = Si ∪ Sj ;

q(Sk, Sk) = q(Si, Si) + 2q(Si, Sj) + q(Sj, Sj); (67)

for each ` 6= k do

q(Sk, S`) = q(S`, Sk) = q(Si, S`) + q(Sj, S`); (68)

end
C = C − 1;

end
Reindex the C remaining sets to {S1, S2, . . . , SC};

(ii) Greedy selection: our algorithm only needs to select a pair of positively correlated
sets to merge. It does not need to be the most positively correlated pair. This could
potentially speed up the algorithm in a large data set.

The hierarchical agglomerative algorithm in Algorithm 1 has the following properties. The
proof of Theorem 18 is given in Section 9.3.
Theorem 18.

(i) For the hierarchical agglomerative algorithm in Algorithm 1, the modularity is non-
decreasing in every iteration and thus converges to a local optimum.

(ii) When the algorithm converges, every set returned by the hierarchical agglomerative
algorithm is indeed a community.

The output of a hierarchical agglomerative algorithm can be represented by a dendrogram
that depicts the order of the merges as a tree. As an illustrating example for the output of the
hierarchical agglomerative algorithm, we use the Zachary’s karate club friendship network [83]
in Figure 7. The set of data was observed by Wayne Zachary [83] over the course of two years
in the early 1970s at an American university. During the course of the study, the club split into
two groups because of a dispute between its administrator (node 34 in Figure 7) and its instructor
(node 1 in Figure 7).

In Figure 8, we show the dendrogram generated by using the hierarchical agglomerative algo-
rithm (with a particular sampled graph). The algorithm stops when there are three communities
left, one led by the administrator (node 34), one led by the instructor (node 1), and person number
9 himself. According to [83], there was an interesting story for person number 9. He was a weak
supporter for the administrator. However, he was only three weeks away from a test for black
belt (master status) when the split of the club occurred. He would have had to give up his rank
if he had joined the administrator’s club. He ended up with the instructor’s club. We also run an
additional step for our algorithm (to merge the pair with the largest correlation measure) even
though the remaining three communizes are negatively correlated. The additional step reveals
that person number 9 is merged into the instructor’s club.
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Fig. 7. The network of friendships between individuals in the karate club study of Zachary [83]. The instructor and the administrator
are represented by nodes 1 and 34, respectively. Squares represent individuals who ended up with the administrator and circles
represent those who ended up with the instructor.

Fig. 8. The dendrogram from the hierarchical agglomerative algorithm for the Zachary karate club friendship network.

For (i) and (ii) of Theorem 18, it is not necessary to specify how we select a pair of two sets
with a nonnegative correlation. However, in practice, the greedy selection that selects the two
sets with the largest correlation measure to merge in (H3) of Algorithm 1 is widely used. Such a
selection results in the largest increase of the modularity in each merge. Another greedy selection
is to select the two sets with largest average correlation measure to merge. One advantage of using
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such a greedy selection is the monotonicity property for the dendrogram produced by a greedy
agglomerative clustering algorithm (see [38], Chapter 13.2.3), i.e., the measure for the selection of
the two sets in each merge operation is monotonic. With such a monotonicity property, there is no
crossover in the produced dendrogram. To address the monotonicity property for our hierarchical
agglomerative clustering algorithm, we consider the average correlation measure between two
sets as follows:
Definition 19. (Average correlation measure) Define the average correlation measure between two

sets S1 and S2 as
q̄(S1, S2) =

1

|S1| · |S2|
q(S1, S2). (69)

To turn our hierarchical agglomerative clustering algorithm into a greedy algorithm, we modify
(H3) in the algorithm by selecting the two sets with the largest average correlation measure. In the
following corollary, we show the monotonicity property of our greedy hierarchical agglomerative
clustering algorithm. Its proof is given in Section 9.4.
Corollary 20. For the greedy hierarchical agglomerative clustering algorithm that selects the two

sets with largest average correlation measure to merge in (H3) of Algorithm 1, the average
correlation measure of the two selected sets in each merge operation is non-increasing.

Even though the hierarchical agglomerative algorithm in Algorithm 1 produces communities,
there are still two drawbacks:
(i) The hierarchical agglomerative algorithm only uses the ”merge” operation to increase the
modularity. As such, once a ”merge” operation is done, there is no way to reverse it. As such, the
order of the ”merge” operations might have a serious effect on the final outcome.
(ii) In the initialization stage, every node is assumed to be a community itself. There are roughly
O(n) communities at the early stage of the hierarchical agglomerative algorithm. Thus, its com-
putational complexity is high at the early stage of the algorithm. For a graph with n nodes, it is
well-known (see e.g., [4]) that the computational complexity of a näive implementation is O(n3)
[14] for a greedy hierarchical agglomerative algorithm and it can be reduced to O(n2 log n) (or
O(m log n) in a sparse graph) by implementing priority queues [84].

3.3 The partitional algorithm
As mentioned in the previous section, there are two drawbacks of the hierarchical agglomerative
algorithm in Algorithm 1. To tackle these problems, we introduce the partitional algorithm in
Algorithm 2 that has a much lower computational complexity. The partitional algorithm also
allows nodes to move from communities to communities.

We first consider another correlation measure q0(·, ·) from the original correlation measure q(·, ·)
in (58) by letting q0(v, w) = q(v, w) for v 6= w and q0(v, w) = 0 for v = w. Also let

q0(S1, S2) =
∑
v∈S1

∑
w∈S2

q0(v, w). (70)

In view of (61), we have for any partition P = {Sc, c = 1, 2, . . . , C} that

Q(P) =

C∑
c=1

q(Sc, Sc) =

C∑
c=1

q0(Sc, Sc) +

n∑
v=1

q(v, v). (71)

Thus, maximizing the modularity is equivalent to maximizing
∑C

c=1 q0(Sc, Sc).
To describe the partitional algorithm in Algorithm 2, we let

Nei(v) = {w : p(v, w) > 0} (72)
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ALGORITHM 2: The Partitional Algorithm
Input: A sampled graph (G(Vg, Eg), p(·, ·)) with a symmetric bivariate distribution p(·, ·) and

the (maximum) number of communities K.
Output: A partition P = {Sc, c = 1, 2, . . . , C} for some C ≤ K.
(P0) Initially, choose arbitrarily K disjoint nonempty sets S1, . . . , SK as a partition of the
sampled graph (G(Vg, Eg), p(·, ·)).

(P1) for v = 1, 2, . . . , n do
for each neighboring set Sj of node v do

Compute the correlation measures q0(v, Sj).
end
Find the neighboring set to which node v has the largest correlation measure. Assign
node v to that set.

end
(P2) Repeat from (P1) until there is no further change.

be the set that contains the “neighboring” nodes of v, where p(v, w) is the symmetric bivariate
distribution. A set S is called a neighboring set of a node v if there exists a node w ∈ S such that
p(v, w) > 0.

The partitional algorithm in Algorithm 2 starts from a (random) initial partition of the nodes
into K disjoint sets. In each iteration, every node is presented and assigned to one of its neigh-
boring set to which it has the largest correlation measure (in terms of q0(·, ·)). This process is then
repeated until there is no further change of the partition. It might happen (in fact very often) that
some sets of the initial partition become empty when all their set members are moved to other
sets. Intuitively, the ”merge” operation that is used in the hierarchical agglomerative algorithm is
done in a microscopic manner in the partitional algorithm. As such, the chance for the partitional
algorithm to be trapped in a bad ”merge” operation is smaller than that for the hierarchical
agglomerative algorithm.

A video demo of the results from the partitional algorithm to detect six clusters on a plane from
an initial random partition can be found at http://imgur.com/b5KQo9I.

The partitional algorithm has the following property and its proof is given in Section 9.5.
Theorem 21. In the partitional algorithm in Algorithm 2, the modularity is non-decreasing when

there is a change, i.e., a node is moved from one set to another. Thus, the algorithm converges
to a local optimum of the modularity in a finite number of steps.

Unlike the hierarchical agglomerative algorithm in Algorithm 1, the sets returned by the
partitional algorithm in Algorithm 2 may not be communities. As such, one can use the output
of the partitional algorithm as the input of the hierarchical agglomerative algorithm so that the
final outputs are communities. Such a two-step approach is called the partitional-hierarchical
algorithm.

Now we turn our attention to the computation complexity of the partitional algorithm in
Algorithm 2. Let m be the total number of nonzero entries in the n × n matrix P = (p(v, w)).
Even though the total number of nonzero entries in the modularity matrix Q is O(n2), we will
show that the computation complexity of the partitional algorithm is only O((n + m)I), where I
is the number of iterations in Algorithm 2. This is done with the memory complexity O(n + m).
Thus, Algorithm 2 is a linear time algorithm for a sparse graph with m = O(n) and it is much
more efficient than the hierarchical agglomerative algorithm for large sparse graphs.
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Let

p(S1, S2) =
∑
v∈S1

∑
w∈S2

p(v, v), and (73)

pV (S) =
∑
v∈S

pV (v). (74)

To store the nonzero entries of the n×n matrix P = (p(v, w)) requires O(m) memory complexity. In
addition to this, we also store q(v, v), pV (v) for all v = 1, 2, . . . , n, and pV (Sk) for all k = 1, 2, . . . , K.
Thus, the memory complexity is O(n+m). Now suppose node v is moved from S1 to S2. As pV (v)
for all v = 1, 2, . . . , n, are all stored in the memory, one can perform the following updates:

pV (S1)⇐ pV (S1)− pV (v), and
pV (S2)⇐ pV (S2) + pV (v).

These updates can be done in O(1) steps. Thus, the total number of updates in each iteration of
Algorithm 2 requires O(n) steps.

Now we argue that the computational complexity for the correlation measures in each iteration
is O(n+m). Note that

q(v, Sk) =
∑
w∈Sk

q(v, w)

= p(v, Sk)− pV (v)pV (Sk)

and that

p(v, Sk) =
∑
w∈SK

p(v, w)

=
∑

w∈Sk∩Nei(v)

p(v, w).

As now pV (v) and pV (Sk) are stored in the memory and there are |Nei(v)| ”neighboring” nodes
of v, one can compute the correlation measures q(v, Sk) for all the neighboring sets Sk of node v
in |Nei(v)| steps. The correlation measure q0(v, Sk) can be computed by using q(v, Sk) for v 6∈ Sk
and q(v, Sk)− q(v, v) for v ∈ Sk. Thus, the computational complexity for the correlation measures
for the n nodes in each iteration is O(n+m).

One possible initial partition for the partitional algorithm is to choose K = n and every node
is in a different set. Such a choice was in fact previously used in the fast unfolding algorithm in
[68]. The fast unfolding algorithm is also a modularity maximization algorithm and it consists
of two-phases: the first phase is also a partitional algorithm like the one presented here. The
difference is that our partitional algorithm uses the probabilistic framework. Such a framework
not only provides the needed physical insights but also allows a much more general treatment for
modularity maximization. Once the first phase is completed, there is a second phase of building
a new (and much smaller) network whose nodes are the communities found during the previous
phase. This will be addressed in the next section.

3.4 Node aggregation
In this section, we introduce the concept of node aggregation that transforms a sampled graph
into another smaller sampled graph by aggregating several sets of the nodes in the original
sampled graphs into giant nodes. Such a transformation is modularity preserving as it preserves
the modularity.
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Definition 22. (Node aggregation) Consider a sampled graph (G(Vg, Eg), p(·, ·)) with a symmetric
bivariate distribution p(·, ·), and a partition P = {Sc, c = 1, 2, . . . , C} of the sampled graph
(G(Vg, Eg), p(·, ·)). Now we aggregate the nodes in Sc into a giant node c, c = 1, 2, . . . , C, and
define the bivariate distribution p̂(·, ·) with

p̂(c1, c2) =
∑
u∈Sc1

∑
v∈Sc2

p(u, v), (75)

for c1, c2 = 1, 2, . . . , C. Let V̂ be the collection of the giant nodes c, c = 1, 2, . . . , C, and Ê be the
collection of pairs (c1, c2) with p̂(c1, c2) > 0. The new sampled graph (G(V̂ , Ê), p̂(·, ·)) is called
the P-aggregated sampled graph of the sample graph (G(Vg, Eg), p(·, ·)).

It is clear from Definition 22 that the new sampled graph (G(V̂ , Ê), p̂(·, ·)) also has a symmetric
bivariate distribution p̂(·, ·). In the following lemma, we further show that the node aggregation
in Definition 22 is a modularity preserving transformation. Its proof is given in Section 9.6.
Lemma 23. Consider a sampled graph (G(Vg, Eg), p(·, ·)) with a symmetric bivariate distribution
p(·, ·) and a partition P = {Sc, c = 1, 2, . . . , C} of the sampled graph (G(Vg, Eg), p(·, ·)). Suppose
Pa = {Sak , k = 1, 2, . . . , K} for some K ≤ C is a partition of the P-aggregated sampled graph of
the sample graph (G(Vg, Eg), p(·, ·)). Then Pa induces a partition Po = {Sok, k = 1, 2, . . . , K} on
the sampled graph (G(Vg, Eg), p(·, ·)), where

Sok = ∪c∈SakSc, (76)

for k = 1, 2, . . . , K. Let Q̂(Pa) be the modularity of the partition Pa of the P-aggregated
sampled graph and Q(Po) be the modularity of the induced partition Po of the sampled graph
(G(Vg, Eg), p(·, ·)). Then

Q̂(Pa) = Q(Po). (77)

Note from (75) that the number of nonzero entries in the C ×C matrix P̂ = (p̂(·, ·)) is not larger
than the number of nonzero entries in the n× n matrix P = (p(·, ·)). Thus, such a transformation
is also sparsity preserving.

3.5 The fast unfolding algorithm
The outputs of the partitional algorithm may not be communities when it converges. For this, we
consider another phase that uses node aggregation as in the fast unfolding algorithm in [68].

As shown in Lemma 23, node aggregation is a modularity preserving and sparsity preserving
transformation. The modularity preserving property in Lemma 23 allows us to further increase
the modularity by applying the partitional algorithm in Algorithm 2 again with the new sampled
graph after node aggregation as its input. In fact, one can do this two step process, i.e., the
partitional algorithm and the node aggregation algorithm, iteratively until the modularity cannot
be further increased. This then leads to a recursive modularity maximization algorithm, called
the (recursive) fast unfolding algorithm. The details of the fast unfolding algorithm is outlined in
Algorithm 3.

In Figure 9, we provide an illustrating example of the fast unfolding algorithm. After the first
pass of the partitional algorithm, nodes 1 and 2 are aggregated into a giant node. Also, nodes 3
and 4 are aggregated into another giant node. After node aggregation (and relabelling), we have a
sampled graph with three nodes. Now run the partitional algorithm again with this new sampled
graph leads to the aggregation of node 1 and node 2 into a giant node. As the modularity cannot
be further improved with the two two-node sampled graph, the fast unfolding algorithm stops
and return the induced partition,
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ALGORITHM 3: The fast unfolding (Louvain) algorithm
Input: A sampled graph (G(Vg, Eg), p(·, ·)) with a symmetric bivariate distribution p(·, ·).
Output: A partition P = {Sc, c = 1, 2, . . . , C} for some C ≤ n.
(F0) Initially, choose the partition P with C = n and Si = {i}, i = 1, 2, . . . , n;
(F1) Run the partitional algorithm in Algorithm 2 with the initial partition P . Let
P ′ = {S1, S2, . . . , SC} be its output partition.

(F2) If P = P ′, then there is no improvement and return P as the output partition.
(F3) Otherwise, do node aggregation to generate the P ′-aggregated sampled graph of the

sampled graph (G(Vg, Eg), p(·, ·)). Run the fast unfolding algorithm in Algorithm 3 with the
P ′-aggregated sampled graph as its input. Suppose it outputs the partition
Pa = {Sak , k = 1, 2, . . . , K} on the P ′-aggregated sampled graph. Return the induced
partition Po = {Sok, k = 1, 2, . . . , K} on the sampled graph (G(Vg, Eg), p(·, ·)), where
Sok = ∪c∈SakSc.

Fig. 9. An illustrating example of the fast unfolding algorithm and node aggregation.

Since the transformation by node aggregation is also sparsity preserving, the computational
complexity of each recursive call of Algorithm 3 is O(m+n) (as in the partitional algorithm). Thus,
the overall computational complexity depends on the depth of the recursive calls. A rigourous
proof for the upper bound on the depth of the recursive calls appears to be difficult. The original
fast unfolding algorithm is a special case of ours (by using the uniform edge sampling) and it is
generally conjectured to be O(logm) for the depth of the recursive calls. But we do not have a
formal proof for that. However, in our experiments, the depth is quite small.

We have the following properties for Algorithm 3. Its proof is given in Section 9.7.
Theorem 24.

(i) In the fast unfolding algorithm in Algorithm 3, the modularity is non-decreasing when
there is a change of the partition. Thus, the algorithm converges to a local optimum
of the modularity in a finite number of steps.

(ii) When the algorithm converges, every set returned by Algorithm 3 is indeed a commu-
nity.

The intuition behind the fast unfolding algorithm is to increase the modularity by moving a
single node one at a time at the first level and then moving a block of nodes in each recursive
level. As it gets deeper, the block size is larger. The fast unfolding algorithm stops at its deepest
level when no more blocks of nodes can be moved to increase the modularity. In view of this, it
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is not necessary to start the fast unfolding algorithm from the initial partition that contains n sets
with each node in a set. The modularity can be further increased by running the fast unfolding
algorithm again with its first output partition as its input partition. However, the gain from doing
another iteration of the fast unfolding algorithm is in general quite limited. Also, as pointed out
in [68], two tricks to reduce the computational cost are (i) to stop the partitional algorithm when
the gain of modularity is below a certain threshold, and (ii) removing the nodes with degree 1
and then adding them back later.

In comparison with the original fast unfolding algorithm in [68], our fast unfolding algorithm
has the following advantages:
(i) Generalization: based on our probabilistic framework, our fast unfolding algorithm provides
users the freedom to choose the sampled graph that might be more suitable for their viewpoints
and resolution requirements.
(ii) Theoretical guarantees: our framework provides a rigorous proof for the convergence of the
fast unfolding algorithm through modularity maximization and node aggregation. Moreover,
when the algorithm converges, it returns communities that are formally defined in our framework.
(iii) Probabilistic insights: our probabilistic framework defines the concept of correlation. The
partitional algorithm in the first phase of the fast unfolding algorithm is simply to repeatedly
move each node to the most positively correlated set. Also, the variables that need to be stored
in the memory have clear probabilistic meanings that can then be used for speeding up the
computation of correlation. More importantly, the node aggregation phase can be understood as
a modularity preserving and sparsity preserving transformation.
(iv) Reduction of computational cost: by setting the diagonal elements of the modularity matrix
to be 0, the computation for the largest increase of modularity, ∆Q in [68], is now reduced to the
computation of the largest correlation of a node to its neighboring sets.

3.6 Post-processing for weak communities and outliers
If the output partition of the fast unfolding algorithm is satisfactory, then we can simply stop
there. If otherwise, we can perform the following post-processing to find another and possibly
better initial partition. The idea of post-processing is to examine the contribution of each commu-
nity to the modularity and reassign the nodes in the communities with small contributions.
Specifically, suppose that the fast unfolding algorithm returns a partition of C communities
S1, S2, . . . , SC . The contribution of Sc to the modularity is then q(Sc, Sc), where q(·, ·) is defined in
(59). Then we can sort q(Sc, Sc), c = 1, 2, . . . , C in the ascending order and perform a “sweep” to
cut these C communities (at the maximum gap) into strong communities and weak communities.
Suppose that the strong communities are S ′1, . . . , S ′K with K < C. The nodes in the weak commu-
nities are then iteratively reassigned to the most positively correlated strong community, i.e., node
i is assigned to S ′j if q(i, S ′j) = max1≤`≤K q(i, S

′
`) and q(i, S ′j) > 0. After this is done, we have K

communities, S ′′1 , . . . , S ′′K with S ′` ⊂ S ′′` , ` = 1, 2, . . . , K. There might be still some nodes that are
negatively correlated to S ′′` for all ` = 1, 2, . . . , K. The set of nodes {i : q(i, S ′′` ) ≤ 0, ` = 1, 2, . . . , K}
can be classified as outliers. For outliers, we can either remove them from the graph or reassign
them to the most correlated strong community. In either case, we have a new initial partition that
we can use for another run of the fast unfolding algorithm.
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4 THE PROBABILISTIC FRAMEWORK FOR DIRECTED NETWORKS

In the previous section, the bivariate distributions are all assumed to be symmetric and that limits
its applicability to undirected networks. In this section, we relax the symmetric assumption for the
bivariate distribution so that the framework can be applied to directed networks. The key idea of
doing this is to assume that the bivariate distribution has the same marginal distributions, i.e.,

pV (v) = pW (v), for all v. (78)

As pointed out in [85], the bivariate distribution that has the same marginal distributions, called
circulation in [85], plays an important role in analyzing directed networks. Note that a symmetric
bivariate distribution has the same marginal distributions and thus the assumption in (78) is
much more general.

4.1 Sampling a directed network
One approach for sampling a network with a bivariate distribution that has the same marginal
distributions is to sample a network by an ergodic Markov chain. From the Markov chain theory (see
e.g., [79]), it is well-known that an ergodic Markov chain converges to its steady state in the long
run. Hence, the joint distribution of two successive steps of a stationary and ergodic Markov chain
can be used as the needed bivariate distribution. Specifically, suppose that a network G(Vg, Eg) is
sampled by a stationary and ergodic Markov chain {X(t), t ≥ 0} with the state space {1, 2, . . . , n}
being the n nodes in Vg. For this Markov chain, let pij be the transition probability from state
i to state j and πi be the steady state probability of state i. Then we can choose the bivariate
distribution

P(V = v,W = w) = p(v, w)

= P(X(t) = v,X(t+ 1) = w). (79)

As the Markov chain is stationary, we have

P(X(t) = v) = P(X(t+ 1) = v) = pV (v) = pW (v). (80)

It is well-known that a random walk on the graph induces a Markov chain with the following
state transition probabilities:

pij =
aij
kouti

, (81)

where

kouti =

n∑
j=1

aij, (82)

is the number of outgoing edges from vertex i (here we assume that kouti ≥ 1 for all i). In particular,
if the graph is an undirected graph, i.e., aij = aji, then the induced Markov chain is reversible
and the steady state probability of state i, i.e., πi, is ki/2m, where m = 1

2

∑n
i=1

∑n
j=1 aij is the total

number of edges of the undirected graph.

Example 25. (PageRank) One problem for sampling a directed network by a simple random
walk is that the induced Markov chain may not be ergodic even when the network itself is
weakly connected. One genuine solution for this is to allow random jumps from states to
states in a random walk. PageRank [5], proposed by Google, is one such example that has
been successfully used for ranking web pages. The key idea behind PageRank is to model
the behavior of a web surfer by a random walk (the random surfer model) and then use
that to compute the steady state probability for a web surfer to visit a specific web page.
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Specifically, suppose that there are n web pages and a web surfer uniformly selects a web
page with probability 1/n. Once he/she is on a web page, he/she continues web surfing with
probability λ. This is done by selecting uniformly one of the hyperlinks in that web page. On the
other hand, with probability 1− λ he/she starts a new web page uniformly among all the n web
pages. The transition probability from state i to state j for the induced Markov chain is then

pij = (1− λ)
1

n
+ λ

aij
kouti

, (83)

where aij = 1 if there is a hyperlink pointing from the ith web page to the jth web page and
kouti =

∑n
j=1 aij is the total number of hyperlinks on the ith web page. Let πi be steady probability

of visiting the ith web page by the web surfer. It then follows that

πi = (1− λ)
1

n
+ λ

n∑
j=1

aji
koutj

πj. (84)

PageRank then uses πi as the centrality of the ith web page and rank web pages by their
centralities. Unlike the random walk on an undirected graph, the steady state probabilities in
(84) cannot be explicitly solved and it requires a lot of computation to solve the system of linear
equations. The sampled graph (G(Vg, Eg), p(·, ·)) by using PageRank then has the following
bivariate distribution

p(v, w) = πvpvw, (85)

where pvw is defined in (83) and πv is the solution of (84). Such a sampled graph was called
LinkRank in [86].

Example 26. (Random walks with self-loops and backward jumps) Another way to look at the
Markov chain induced by PageRank in (83) is that it is in fact a random walk on a different
graph with the adjacency matrix Ã that is constructed from the original graph with additional
edge weights, i.e.,

Ã = (1− λ)
1

n
1 + λD−1A, (86)

where 1 is an n × n matrix with all its elements being 1 and D = (dij) is the diagonal matrix
with dii = kouti for all i = 1, 2, . . . , n.
In view of (86), another solution for the ergodic problem is to consider a random walk on the
graph with the adjacency matrix

Â = λ0I + λ1A+ λ2A
T , (87)

where I is the n × n identity matrix and AT is the transpose matrix of A. The three parameters
λ0, λ1, λ2 are positive and

λ0 + λ1 + λ2 = 1.

A random walk on the graph with the adjacency matrix Â induces an ergodic Markov chain if
the original graph is weakly connected. Also, with the additional edges from the identity matrix
and the transpose matrix, such a random walk can be intuitively viewed as a random walk on
the original graph with self-loops and backward jumps.

Example 27. (Diffusion) In addition to random walks, one can also consider using diffusion in a
network to obtain the corresponding Markov chain. Specifically, let koutmax = max1≤i≤n k

out
i , I be the
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n × n identity matrix and D = (dij) be the diagonal matrix with dii = kouti for all i = 1, 2, . . . , n.
The transition probability matrix is then I − α(D − A), where α ≤ 1/koutmax is a normalization
coefficient and D − A is the graph Laplacian. For other Laplacian related methods, we refer to
the survey paper [69].

In general, one can generate a bivariate distribution that has the same marginal distributions by
using a stationary and ergodic stochastic process, e.g., a semi-Markov process or a hidden Markov
process.

4.2 Centralities and relative centralities in directed networks
Under the assumption that the bivariate distribution p(·, ·) has the same marginal distributions,
the definitions for centralities and relative centralities for directed networks are exactly the same
as those for undirected networks.
Definition 28. (Centrality) For a sampled graph (G(Vg, Eg), p(·, ·)) with the bivariate distribution
p(·, ·) that has the same marginal distributions in (78), the centrality of a set of nodes S, denoted
by C(S), is defined as the probability that a node in S is selected, i.e.,

C(S) = P(V ∈ S) = P(W ∈ S). (88)

Definition 29. (Relative centrality) For a sampled graph (G(Vg, Eg), p(·, ·)) with the bivariate
distribution p(·, ·) that has the same marginal distributions in (78), the relative centrality of a
set of nodes S1 with respect to another set of nodes S2, denoted by C(S1|S2), is defined as the
conditional probability that the randomly selected node W is inside S1 given that the randomly
selected node V is inside S2, i.e.,

C(S1|S2) = P(W ∈ S1|V ∈ S2). (89)

Example 30. (Relative PageRank) PageRank defined in Example 25 has been commonly used
for ranking the importance of nodes in a directed network. Here we can use Definition 29 to
define relative PageRank that can be used for ranking the relative importance of a set of nodes
to another set of nodes in a directed network. Specifically, let πi be the PageRank for node i in
(84) and pi,j be the transition probability from state i to state j for the induced Markov chain in
(83). Then the relative PageRank of a set S1 with respect to another set S2 is

C(S1|S2) = P(W ∈ S1|V ∈ S2)

=
P(W ∈ S1, V ∈ S2)

P(V ∈ S2)
=

∑
i∈S2

∑
j∈S1

πipij∑
i∈S2

πi
. (90)

4.3 Community and modularity in directed networks
Once again, under the assumption that the bivariate distribution p(·, ·) has the same marginal
distributions, the definitions for community and modularity in directed networks are the same as
those in undirected networks.
Definition 31. (Community strength and communities) For a sampled graph (G(Vg, Eg), p(·, ·))

with a bivariate distribution p(·, ·) that has the same marginal distributions in (78), the commu-
nity strength of a set of nodes S ⊂ Vg, denoted by Str(S), is defined as the difference of the
relative centrality of S with respect to itself and its centrality, i.e.,

Str(S) = C(S|S)− C(S). (91)
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In particular, if a subset of nodes S ⊂ Vg has a nonnegative community strength, i.e., Str(S) ≥ 0,
then it is called a community.

Under Definition 31, one can easily show that the equivalent statements for a community in
Theorem 12 still holds.
Definition 32. (Modularity) Consider a sampled graph (G(Vg, Eg), p(·, ·)) with a bivariate distri-

bution p(·, ·) that has the same marginal distributions in (78). Let P = {Sc, c = 1, 2, . . . , C}, be
a partition of {1, 2, . . . , n}, i.e., Sc ∩ Sc′ is an empty set for c 6= c′ and ∪Cc=1Sc = {1, 2, . . . , n}.
The modularity Q(P) with respect to the partition Sc, c = 1, 2, . . . , C, is defined as the weighted
average of the community strength of each subset with the weight being the centrality of each
subset, i.e.,

Q(P) =

C∑
c=1

C(Sc) · Str(Sc). (92)

As before, the modularity in (92) can also be written as follows:

Q(P) =

C∑
c=1

P(V ∈ Sc,W ∈ Sc)− P(V ∈ Sc)P(W ∈ Sc)

=

C∑
c=1

∑
v∈Sc

∑
w∈Sc

(p(v, w)− pV (v)pW (w)). (93)

For sampled graphs with symmetric bivariate distributions, there are already various community
detection algorithms in Section 3 that find local maxima of the modularity. However, they
cannot be directly applied as the bivariate distributions for sampling directed networks could
be asymmetric. For this, we introduce a modularity preserving transformation that transforms a
sampled graph that has the same marginal distributions to another sampled graph that has a
symmetric bivariate distribution. The proof of Lemma 33 is given in Section 9.8.
Lemma 33. Consider a sampled graph (G(Vg, Eg), p(·, ·)) with a bivariate distribution p(·, ·) that

has the same marginal distributions in (78). Construct the sampled graph (G(Vg, Eg), p̃(·, ·)) with
the symmetric bivariate distribution

p̃(v, w) =
p(v, w) + p(w, v)

2
. (94)

Let Q(P) (resp. Q̃(P)) be the modularity for the partition P = {Sc, c = 1, 2, . . . , C} of the
sampled graph (G(Vg, Eg), p(·, ·)) (resp. the sampled graph (G(Vg, Eg), p̃(·, ·))). Then

Q̃(P) = Q(P). (95)

We note the transformation in Lemma 33 is also sparsity preserving. Specifically, let m0 be the
total number of nonzero entries in the n × n matrix P = (p(v, w)). Then the number of nonzero
entries in the n × n matrix P̃ = (p̃(v, w)) is at most 2m0. Such a sparsity property is crucial
for reducing the computational complexity of the community detection algorithms described in
Section 3.
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4.4 General bivariate distribution
In this section, we discuss how to extend our framework of sampled graphs to the setting with
general bivariate distributions. As the marginal distributions may not be the same, many results
derived in the previous section are not as elegant as before. For instance, now we have to
distinguish the notion of centrality into two types: the out-centrality (with respect to the marginal
distribution of V ) and the in-centrality (with respect to the marginal distribution ofW ). The notion
of relative centrality also needs to be extended in the same manner. However, even with such an
extension, the reciprocity property in (23) is not true any more. To see this, let us consider the
uniform edge sampling method in a directed network. For such a sampling method, the bivariate
distribution is p(v, w) = avw/m, where m is the total number of edges in the directed network.
Then pV (v) = koutv /m is the out-degree centrality of node v and pW (w) = kinw /m the in-degree
centrality of node w.

The good news is that the notions of community and modularity can be extended in the same
manner as before. There is no need to distinguish an in-community and an out-community.
Specifically, we can still define a set S as a community if

P(V ∈ S,W ∈ S)− P(V ∈ S)P(W ∈ S) ≥ 0,

and define the modularity Q(P) with respect to the partition Sc, c = 1, 2, . . . , C, by using (53).
However, the equivalent characterizations for a community in Theorem 12 are no long valid as
the reciprocity property in (23) is not true any more.

With the general definition of the modularity, one can still apply the hierarchical agglomerative
algorithm in Algorithm 1, the partitional algorithm in Algorithm 2, and the fast unfolding
algorithm in Algorithm in 3 for community detection in a sampled graph with a general bivariate
distribution. Moreover, the results in Theorem 18, Theorem 21, and Theorem 24 also hold.
However, there are two minor modifications:
(i) One needs to generalize the definition of the correlation measure between two nodes v and w
in (58) as follows:

q(v, w) =
p(v, w)− pV (v)pW (w) + p(w, v)− pV (w)pW (v)

2
. (96)

Then use q(v, w) in (96) to construct the correlation matrix. Also, for any two sets S1 and S2, the
correlation measure between these two sets, i.e., q(S1, S2), is still defined as in (59). By doing so,
a set S is community if and only if q(S, S) ≥ 0 and the modularity for a partition P = {Sc, c =
1, 2, . . . , C} can still be computed by

∑C
c=1 q(Sc, Sc) as described in (61).

(ii) The definition of ”neighboring” nodes of a node v in (72) should be generalized as follows:

Nei(v) = {w : p(v, w) > 0 or p(w, v) > 0}. (97)

Also, a set S is called a ”neighboring” set of a node v if there exists a node w ∈ S such that w
is a ”neighboring” node of v. In order to show that the partitional algorithm is still a linear-time
algorithm, one needs to store in memory the nonzero entries of the n × n matrix P = (p(v, w)),
q(v, v), pV (v), pW (v) for all v = 1, 2, . . . , n, and pV (Sk), pW (Sk) for all k = 1, 2, . . . , K. Then use
those to compute the correlation measure

q(v, Sk)

=
p(v, Sk) + p(Sk, v)− pV (v)pW (Sk)− pW (v)pV (Sk)

2
.

There are two different types of communities for directed networks that are commonly ad-
dressed in the literature (see e.g., [87], [88]): structural communities (based on the densities of
edges) and flow communities (based on the flow of probabilities). These two types of communities
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correspond to two different types of sampled graphs in our probabilistic framework. For flow
communities, they can be detected by using random walks as a random walker tends to be
”trapped” in a community with a high probability. On the other hand, structural communities
can be detected by using uniform edge sampling in [89] to produce communities that are densely
connected inside and sparsely connected outside. A very enlightening example was shown in
Fig. 4 of [88]. We note that the computation complexity of constructing the desired bivariate
distribution to detect a certain type of communities might vary. For instance, the computation
complexity of finding p(v, w) by using uniform edge sampling in [89] is O(1). On the other hand,
the computation complexity of finding p(v, w) by using a random walk requires solving the steady
state probabilities of a Markov chain, which is in general O(n3).
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5 EXPERIMENTAL DATASETS AND RESULTS

5.1 The stochastic block model and the hierarchical agglomerative algorithm
The stochastic block model (SBM), as a generalization of the Erdös-Rényi random graph [90],
is a commonly used method for generating random graphs that can be used for benchmarking
community detection algorithms [91], [92]. In a stochastic block model with q blocks (commu-
nities), the total number of nodes in the random graph are evenly distributed to these q blocks.
The probability that there is an edge between two nodes within the same block is pin and the
probability that there is an edge between two nodes in two different blocks is pout. These edges
are generated independently. Let cin = n · pin , cout = n · pout. Then it is known (see e.g., [93], [94],
[91]) that these q communities can be detected (in theory for a large network) if

|cin − cout| > q
√

mean degree. (98)

As an illustrating example of the stochastic block model with two blocks, we use the hierarchical
agglomerative algorithm to compare the sampling methods by PageRank in Example 25 and
random walks with self-loops and backward jumps in Example 26. In these experiments, the
number of nodes n in the stochastic block model is 2000 with 1000 nodes in each of these two
blocks. The average degree (the sum of the average in-degree and the average out-degree) of a
node is set to be 3. The values of cin − cout of these graphs are in the range from 2.5 to 5.9 with
a common step of 0.1. We generate 20 graphs for each cin − cout. Isolated vertices are removed.
Thus, the exact numbers of vertices used in this experiment might be slightly less than 2000. For
PageRank, the parameter λ is chosen to be 0.9. For the random walk with self-loops and backward
jumps, the three parameters are λ0 = 0.05, λ1 = 0.75 and λ2 = 0.2. We run the greedy hierarchical
agglomerative algorithm in Algorithm 1 until there are only two sets (even when there do not exist
nonnegative correlation measures between two distinct sets). We then evaluate the overlap with
the true labeling. In Figure 10, we show the experimental results, where each point is averaged
over 20 random graphs from the stochastic block model. The error bars are the 95% confidence
intervals. From Figure 10, one can see that the performance of random walks with self-loops and
backward jumps is better than that of PageRank. One reason for this is that PageRank uniformly
adds an edge (with a small weight) between any two nodes and these added edges change the
network topology. On the other hand, mapping by a random walk with backward jumps in (87)
does not change the network topology when it is viewed as an undirected network.

Fig. 10. Community detection of the stochastic block model by using PageRank in (86) and a random walk with self-loops and
backward jumps in (87).

5.2 The LFR model and the fast unfolding algorithm
Both the average degrees of nodes and the community sizes in the stochastic block model are
constants. To address this problem, the LFR benchmark graphs [95] have the freedom to choose
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the distributions of node degrees and community sizes. There are several parameters that need to
be specified in the LFR benchmark graphs. The node degrees and the (ground truth) community
sizes in the LFR model are distributed according to the power law, with exponents γ and β,
respectively. The symbol 〈k〉 denotes the average degree. The mixing parameter µ is used for
characterizing how the built-in communities in a graph are mixed. Specifically, each node has a
fraction 1− µ (resp. µ) of its edges connected to the other nodes of its community (resp. the other
nodes of the network). To generate directed network, the direction of the edge is chosen with a
certain probability. In the experiments below, such a probability is chosen to be 0.5.

Fig. 11. The NMIs of our fast unfolding algorithm as a function of the mixing parameter µ.

Fig. 12. The number of iterations in each level of recursive calls. The parameters γ, β, 〈k〉 are set to be 2, 1, 100, respectively.

Now we illustrate the use of the LFR model by the fast unfolding algorithm. Though the
fast unfolding algorithm is a nearly-linear time algorithm for large sparse graphs with edge
sampling, it suffers from the problem of resolution limit [62] due to its limited visibility to “see”
more than one step. To address the problem of resolution limit, stability was then proposed
in [21], [22] based on continuous-time random walks. As shown in [59], the stability is also a
special case of the modularity for a certain sampled graph. However, the sampled graph that
corresponds to the stability in [21], [22] is no longer sparse and thus the computational cost of
the fast unfolding algorithm is increased dramatically. One reasonable compromise might be to
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consider the following sampling method with paths of length two:

p(u, v) =
ău,v
2m̆

, (99)

where
Ă = (ău,v) = (A+ AT ) + 0.5(A+ AT )2

and
m̆ =

∑
u

∑
v

ă(u, v)/2.

The objective of the first experiment for the LFR model is to show that our fast unfolding
algorithm can produce good community detection results for various parameter settings. In the
first experiment, the two exponents (γ, β) are chosen to be (2,1) and (3,2), respectively. The
rest of the parameters, including the number of nodes, the maximum degree, 〈k〉, are set to be
100,000, 300, and 100, respectively. The values of mixing parameter µ of these graphs are in the
range from 0.1 to 0.75 with a common step of 0.05. We generate 20 graphs for each µ. Then, we
run our fast unfolding algorithm on each graph and compute the normalized mutual information
measure (NMI) by using a built-in function in igraph [96]. The results are shown in Figure 11. The
error bars are the 95% confidence intervals. As shown in Figure 11, our fast unfolding algorithm
can produce good community detection results when the mixing parameter µ is small. Also,
increasing the average degree 〈k〉 also increases the NMIs of the community detection results. In
Figure 12, we show the number of the iterations of performing the partition algorithm at various
recursive levels. As shown in Figure 12, the number of iterations increases when the mixing
parameter µ increases.

In the second experiment for the LFR model, we show that our fast unfolding algorithm is
capable of dealing with large scale networks. In this experiment, γ, β, the number of nodes, the
maximum degree, the average degree, and the mixing parameter µ are set to be 2, 1, 10,000,000,
500,100, 0.5, respectively. As such, there are roughly half a billion edges in a graph with 10
million nodes. The number of ground-truth communities is 57187. As it takes more than 150
hours to generate such a large graph, we only generate a single LFR benchmark graph in this
experiment. We use a random walk with self-loops to obtain the needed bivariate distribution
for our probabilistic framework. In each node, the random walker will either stay at the same
node or go along with one of its edges to an adjacent node, with probabilities λ and 1 − λ,
respectively. Hence, the transition probability matrix of such a Markov chain can be characterized
by λI + (1 − λ)D−1A. The steady state probability for the random walker to visit node v is
πv = kv/2m, where kv is the degree of node v and m is the total number of edges in the network.
In this experiment, we set λ = 2999/3000 so that the random walker has a very high probability to
stay at the same node. We then compare our algorithm with the original fast unfolding algorithm
that uses Newman’s modularity [68]. The original fast unfolding algorithm is known to be one
of the fastest community detection algorithms in the literature. Our algorithm is implemented in
C++, while the original fast unfolding algorithm is obtained from built-in functions of igraph [96],
which are implemented in C. We perform the experiment on an Acer Altos-T350-F2 machine with
two Intel(R) Xeon(R) CPU E5-2690 v2 processors (only one single thread is used). We compare
the performance of these two algorithms in Table 4. Note that the I/O time is excluded from the
running time in Table 4. As shown in Table 4, our algorithm achieves better performance than the
original fast unfolding algorithm, both in accuracy (in terms of NMI) and the running time. To dig
further, we observe that the original fast unfolding algorithm (that aims to maximize Newman’s
modularity) fails to detect small communities because it keeps recursively merging communities
until there are only 3395 communities left. This phenomenon is known as the resolution limit
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previously reported in [62]. To see the intuition behind this, note that Newman’s modularity in the
original fast unfolding algorithm is equivalent to using the bivariate distribution pvw = Avw/(2m)
in our fast unfolding algorithm and this corresponds to the random walker without self-loops.
Intuitively, increasing the self-loop probability of the random walker decreases its mobility and
the mobility of the random walker can be used to control the size of detected communities.
Decreasing (resp. Increasing) the mobility behaves like “zooming in” (resp. “zooming out”) on
the graph, and results in the detection of “local communities” (resp. “global communities”), which
are small (resp. large) in size. Given this, our probabilistic framework has the flexibility to choose
the resolution and might be more suitable for practical applications than other algorithms that
have fixed resolutions.

5.3 The six cluster model and the process of eliminating communities with weak contribu-
tions
We generate a graph with six communities on a plane. We consider six unit circle centered at
(2, 0), (4, 0), (6, 0), (2, 2), (4, 2), and (6, 2), respectively. For the first (resp. last) three circles, we
generate 1000 (resp. 800) random nodes. A node within a circle is generated by first selecting its
distance to its center uniformly in [0, 1] and then its angle uniformly in [0, 2π]. Clearly, there are
six ”ground truth clusters” of these 5400 nodes as shown in Figure 13(a). Now we construct a
directed (neighborhood) graph by connecting two nodes with a directed edge if their distance is
not greater than a constant ε. The direction of the edge is chosen with an equal probability of 0.5.

In our first experiment, we choose ε = 0.5. We use the random walk with backward jumps for
generating the sampled graph. The three parameters are λ0 = 0, λ1 = 0.5 and λ2 = 0.5. In view of
(87), such a sampled graph has the following symmetric bivariate distribution

p(u, v) =
au,v + av,u

2m
, (100)

where A = (au,v) is the adjacency matrix of the directed graph and m is the total number of edges.
This is also equivalent to the edge sampling [59] of an undirected graph with the adjacency
matrix B = A + AT (with AT being the transpose of the matrix A) that chooses the two end
nodes of a uniformly selected edge. The modularity for edge sampling is thus the same as the
Newman’s modularity [25]. The modularity of the partition with the six ”ground truth clusters”
for such a graph is 0.8105. We run the fast unfolding algorithm in Algorithm 3 for such a graph
and it outputs a partition of 6 communities with the modularity 0.8106 (see Figure 13(b)). The
fast unfolding algorithm in facts ends when the partitional algorithm in Algorithm 2 ends after 6
iterations. In other words, node aggregation is not used for this experiment of the fast unfolding
algorithm.

In our second experiment, we construct another graph that is more difficult to detect commu-
nities. This is done by choosing ε = 0.25 so that the graph is much more sparse than the one
with ε = 0.5. Once again, we use the sampling in (100) for this new graph. The modularity of the
partition with the six ”ground truth clusters” for such a graph is 0.8197. We run the fast unfolding
algorithm in Algorithm 3 for such a graph and it outputs a partition of 11 communities with the
modularity 0.8246 (see Figure 13(c)), which is much larger than the modularity of the ground
truth partition 0.8197. As can be seen from Figure 13(a) and (c), the fast unfolding algorithm
outputs a partition (with a much larger modularity value) that is not even close to the ground
truth partition. In view of this, one should carefully examine the output partition of a modularity
maximization algorithm.

For this new graph with ε = 0.25, the fast unfolding algorithm needs 5 levels of node aggre-
gations and the partitional algorithm in the first level has 20 iterations, which is significantly
larger than the graph with ε = 0.5. By examining the 11 communities (see Table 3), we find that
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there are 5 communities (communities 3,4,6,7 and 9) that have relatively weak contributions to
the modularity. This does not mean the community strengths of these 5 communities are small.
In fact, their community strengths are comparable to the other 6 communities (communities
1,2,5,8,10 and 11). However, their sizes are relatively smaller. After the process of eliminating
communities with weak contributions to the modularity in Section 3.6, we have a partition of six
clusters with the modularity 0.8175 (see Figure 13(d)). We then use that partition as the initial
partition for another run of the fast unfolding algorithm and it outputs a partition of six clusters
with the modularity 0.8200 (see Figure 13(e)). One lesson learned from this experiment is that the
fast unfolding algorithm (based on modularity maximization) might produce small communities
with relatively strong community strengths if the total number of communities is not known in
advance. These small communities are also negatively correlated to the large communities and
thus cannot be merged into larger communities. In view of this, post processing that carefully
examines the results produced by modularity maximization algorithms (such as the fast unfolding
algorithm) is crucial to improving the quality of the community detection result.

In Figure 13(f), we show the partition generated by the fast unfolding algorithm for the sampled
graph in (99). Since the matrix A is the adjacency matrix of the graph with ε = 0.25, the matrix
Ă is capable of “seeing” nodes within the distance 0.5. As shown in Figure 13(a) and (f), its
performance is comparable to that by the fast unfolding algorithm for the more dense graph with
ε = 0.5.

TABLE 3
The 11 communities by the fast unfolding algorithm for a graph with six clusters in Figure 13(c).

community 1 2 3 4 5 6 7 8 9 10 11
contribution 0.1441 0.1397 0.0222 0.0229 0.1345 0.0225 0.0096 0.1116 0.0127 0.1044 0.1004

strength 0.8029 0.8007 0.7984 0.7908 0.7888 0.7961 0.8046 0.8662 0.8641 0.8631 0.8800
size 717 621 352 324 476 372 148 756 230 598 806

5.4 The SNAP collection
In addition to synthetic networks, there are several well-known real-world networks from the
Stanford Network Analysis Project Collection (SNAP) [71]. The collection contains six networks:
Amazon, DBLP, Friendster, LiveJournal, Orkut, and Youtube. All the networks come with top
5000 ground-truth communities with the highest quality. Since all the ground-truth communities
are overlapping, we need a preprocessing step to generate the ground-truth disjoint communities
in these networks. To do so, one can follow the maximum independent set (MIS) method in [97]
and use their code to generate the ground-truth disjoint communities. For each graph G, the
MIS method considers each of the 5000 ground-truth community as a giant vertex, and assigns an
edge between two giant vertices if and only if two communities share at least one vertex, i.e., they
are two overlapping communities. Specifically, let Ci, i = 1, 2, . . . , 5000, be the 5000 ground-truth
communities in G. The MIS method constructs another graph G′(V ′, E ′) with V ′ = {C1, C2...C5000}
and E ′ = {(Ci, Cj)|Ci ∩Cj 6= φ}. Then, it finds the maximum independent set of the graph G′ and
removes all the giant vertices that are not in the maximum independent set. This then leads to a
graph with disjoint communities. We summarize the parameters of these six graphs by using the
MIS method in Table 5, including the number of vertices, the number of edges and the number
of ground-truth communities.

Now we use a random walk with self-loops to obtain the bivariate distribution for our prob-
abilistic framework and the fast unfolding algorithm in Algorithm 3 for community detection.
In each node, the random walker will either stay at the same node or go along with one of its
edges to an adjacent node, with probabilities λ and 1 − λ, respectively. In this experiment, the
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(a) ground truth (b) fast unfolding, ε = 0.5 (c) fast unfolding, ε = 0.25

(d) eliminating communities,
ε = 0.25

(e) 2nd fast unfolding, ε =
0.25

(f) another sampled graph,
ε = 0.25

Fig. 13. The community detection result for a graph with six ”ground truth clusters.”

values of 1 − λ are selected from 2−`, ` = 0, 1, . . . , 18. The NMI results are shown in Figure 14,
and the running time for each data point in Figure 14 is within two seconds. Note that for ` = 0,
we have λ = 0 and the random walk with self-loops degenerates to the original fast unfolding
algorithm. As such, the first data point of each curve corresponds to that from the original fast
unfolding algorithm. As shown in this figure, the NMI values of each curve form an inverted
U-shaped curve that gradually increases to its maximum and then decreases. When the value
of 1 − λ is lower than a particular threshold, the curve will suddenly level off. To explain this
phenomenon, we manually examine the output communities. We find that the number of the
communities increases when the value of 1− λ decreases. This is because the random walker has
a higher probability to stay at the same node for a smaller 1 − λ. If the value of 1 − λ is below
a particular threshold, the algorithm outputs each single node as a community itself. As such,
each curve levels off when 1 − λ is below that threshold. Moreover, when each curve reaches its
maximum NMI, the output of the algorithm has roughly the same number of communities as
that of the ground-truth communities. For the two networks with less than 1000 communities,
i.e., Amazon and Orkut, the original fast unfolding performs well since both curves reach their
maximums with relatively small values of λ. On the other hand, for the other four networks
with more than 1000 communities, i.e., DBLP, Friendster, LiveJournal, and Youtube, the number
of communities resulted from the original fast unfolding is smaller than the number of ground-
truth communities. For these four networks, the fast unfolding algorithm based on a random
walk with self-loops performs much better than the original fast unfolding algorithm. In view
of this, when the number of detected communities is smaller than expected, one might consider
using another “viewpoint” to detect the ground-truth communities in a real-world network (such
as the random walk with self-loops in this experiment).
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TABLE 4
Performance comparison between the original fast unfolding algorithm and the fast unfolding algorithm in our probabilistic

framework.

performance metric NMI running time (hours)
fast unfolding (Newman’s modularity) 0.86 1.45

fast unfolding (probabilistic framework) 1 0.50

TABLE 5
Summary of the six networks after the preprocessing step.

Amazon DBLP Friendster Livejournal Orkut Youtube
number of vertices 8258 23479 79803 38713 6722 10206
number of edges 22129 72116 992461 633195 73522 15959

number of communities 992 3021 3529 2520 375 2883

6 CENTRALITY ANALYSIS IN ATTRIBUTED NETWORKS

In this section, we consider attributed networks. An attributed network is a generalization of a
network (graph). In addition to the set of nodes and the set of edges in a (underlining) network,
an attributed network could have node attributes and edge attributes that specify the “features”
of nodes and edges. For instance, a signed network is an attributed network, where each edge
is labelled with either a positive sign or a negative sign to indicate the friendship/enemy rela-
tionship between the two ends of an edge. Another typical example of an attributed network is
that every node in the network represents a person with different ratings/interests on various
topics. The problem we would like to address is how we rank nodes in attributed networks. Such
a problem will be called the centrality analysis in attributed networks.

Our approach to the centrality analysis in attributed networks is to use the probabilistic frame-
work for structural analysis in networks in [58], [59], [70]. Like PageRank [5], the probabilistic
framework requires a sampling method of a network, called a viewpoint. The sampling method
of a network is characterized by a probability measure for randomly selecting a path r in the
network. In order to take the attributes of nodes and edges into account, one needs a biased
viewpoint as previously discussed in Personalized PageRank [73], [74]. As such, the sampling
method in an attributed network (and the corresponding probability measure) needs to be a
twisted probability measure of its underlining network. For this, we propose using a path measure
f(r) that maps every path r in an attributed network to a real-valued vector. By specifying the
average values of a path measure, we then have a set of constraints for the twisted sampling
probability measure. This then leads to the exponentially twisted probability measure [75], [76],
[77] that minimizes the Kullback-Leibler distance between the twisted probability measure and
the original probability measure under the set of constraints from the average values of the path
measure.

Each path measure with specified average values leads to a method of ranking nodes in an
attributed network and that method is in general different from the original ranking method in
its underlining network. In this section, we introduce three path measures in attributed networks
and that leads to three new notions of centralities in attributed networks. For signed networks
that have both positive edges and negative edges, we show how the influence centralities can be
defined by using a path measure derived from opinions dynamics and how the trust centralities
can be defined by using a path measure derived from a chain of trust. In particular, we show
that one may vary the specified average value of the path measure in a signed network so
that the influence centrality is turned into positive degree ranking, negative degree ranking
and total degree ranking. For attributed networks with node attributes, we also show how
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Fig. 14. The NMIs of the six networks from the SNAP collection. The values of 1− λ are selected from 2−`, ` = 0, 1, . . . , 18.

advertisement-specific influence centralities can be defined by using a specific path measure that
models influence cascades in such networks.

6.1 Exponentially twisted sampling in attributed networks
Now we generalize the probabilistic framework to attributed networks. An attributed network is
a generalization of a graphG(V,E) by assigning each node u ∈ V an attribute hV (u) and each edge
e ∈ E an attribute hE(e). As such, an attributed network can be represented asG(V,E, hV (·), hE(·)),
where hV (·) and hE(·) are called the node attribute function and the edge attribute function,
respectively.

For a path r that traverses a sequence of nodes {u1, u2, . . . , uk−1, uk} in a attributed network, we
can define a path measure f(r) as a function of the attributes of the nodes and edges along the
path r, i.e.,

{hV (u1), . . . , hV (uk), hE(u1, u2), . . . , hE(uk−1, uk)}.

In this section, we assume that a path measure f(·) is a mapping from the set of paths R to an
L-dimensional real-valued vector in RL, i.e.,

f(r) = (f1(r), f2(r), . . . , fL(r)),

where fi(·), i = 1, 2, . . . , L, are real-valued functions.
Now suppose that we use the probability mass function p0(r) to sample a path r in G(V,E). The

question is how the sampling distribution should be changed so that the average path measure
is equal to a specified vector f̄ . In other words, what is the most likely sampling distribution p(·)
that leads to the average path measure f̄ given that the original sampling distribution is p0(·)?
For this, we introduce the Kullback-Leibler distance between two probability mass functions p(·)
and p0(·):

D(p‖p0) =
∑
r∈R

p(r) log(
p(r)

p0(r)
). (101)

The Kullback-Leibler distance is known to be nonnegative and it is zero if and only if p(·) = p0(·)
(see e.g., [76]). Also, according to the Sanov theorem (see e.g., the books [76], [77]), the larger the
Kullback-Leibler distance is, the more unlikely for p0(·) to behave like p(·). Thus, to address the
question, we consider the following constrained minimization problem:
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min D(p‖p0)

s.t.
∑
r∈R

p(r) = 1,∑
r∈R

f(r)p(r) = f. (102)

The first constraint states that the total probability must be equal to 1. The second constraint states
that the average path measure must be equal to f̄ with the new sampling distribution p(·).

The above minimization problem can be solved by using Lagrange’s multipliers α ∈ R and
θ ∈ RL as follows:

I = D(p‖p0) + α(1−
∑
r∈R

p(r))

+θ · (f −
∑
r∈R

f(r)p(r)). (103)

Taking the partial derivative with respect to p(r) yields

∂I

∂p(r)
= log p(r) + 1− log p0(r)− α− θ · f(r) = 0. (104)

Thus,

p(r) = exp(α− 1) ∗ exp(θ · f(r)) ∗ p0(r). (105)

Since
∑

r∈R p(r) = 1, it then follows that

p(r) = C ∗ exp(θ · f(r)) ∗ p0(r), (106)

where
C =

1∑
r∈R exp(θ · f(r)) ∗ p0(r)

(107)

is the normalization constant.
To solve the parameter vector θ, we let

F = log(1/C).

The quantity F is called the free energy as it is analogous to the free energy in statistical mechanic
[4]. Also, the parameter vector θ is called the inverse temperature vector. It is easy to see that for
i = 1, 2, . . . , L that

∂F

∂θi
=
∑
r∈R

fi(r)p(r) = f i. (108)

These L equations can then be used to solve θi, i = 1, 2, . . . , L.
Once we have the sampling distribution in (106), we can define a bivariate distribution pU,W (u,w)

as in (4). Specifically, let Ru,w be the set of paths from u to w and U (resp. W ) be the starting (resp.
ending) node of a randomly select path according to the sampling distribution in (106). Then the
bivariate distribution

pU,W (u,w) = P(U = u,W = w) =
∑

r∈Ru,w

p(r) (109)
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is the probability that the ordered pair of two nodes (U,W ) is selected and it can be viewed as a
similarity measure from node u to node w. Analogous to the discussion of a sampled graph in the
previous section, the marginal distribution of the random variable U (resp. W ), i.e., pU(u) (resp.
pW (w)), can be viewed as the out-centrality of u (resp. in-centrality of w).

To summarize, in order to define the out-centrality and the in-centrality of an attributed
network, one needs (i) the original sampling distribution p0(·) for the network, and (ii) the path
measure f(·) of the attributed network. Once a specified average path measure f̄ (or the inverse
temperature vector θ) is given, one can have the new sampling distribution p(·) in (106). This then
leads to the bivariate distribution in (109). The marginal distributions of that bivariate distribution
then correspond to the out-centrality and the in-centrality of the attributed network.

6.2 Influence centralities in signed networks
In this section, we consider a special class of attributed networks, called signed networks. A signed
network G = (V,E, hE(·)) is an attributed network with an edge attribute function hE(·) that maps
every undirected edge in E to the two signs {+,−}. We represent the positive (resp. negative)
sign by 1 (resp. -1). An edge (u,w) mapped with the + sign is called a positive edge, and it is
generally used for indicating the friendship between the two nodes u and w. On the other hand,
an edge mapped with the − sign is called a negative edge. A negative edge (u,w) indicates that u
and w are enemies.

One interesting question for signed networks is how the nodes in signed networks are ranked.
Such a question was previously addressed in [98] by using a signed random surfer model that
consists of a positive surfer and a negative surfer. Instead of using the signed random surfer
model, our idea for this question is to use opinion dynamics. If u and w are connected by a positive
(resp. negative) edge, then it is very likely that u will have a positive (resp. negative) influence
on w and vice versa. As such, if we start from a node u with a positive opinion on a certain topic,
then a neighbor of node u connected by a positive (resp. negative) edge will tend to have the
same (resp. the opposite) opinion as node u has. Now we can let the opinion propagate through
the entire network (via a certain opinion dynamic) and count the (expected) number of nodes
that have the same opinion as node u has. If such a number is large, then it seems reasonable to
say that node u has a large positive influence on the other nodes in the network. In other words, a
node u has a large positive influence if there is a high probability that the other end of a randomly
selected path has the same opinion as node u. This then leads us to define the notion of influence
centralities for ranking nodes in signed networks.

The above argument is based on the general belief that “a friend of my friend is likely to be my
friend” and “an enemy of my enemy can be my friend” in [4]. As such, for a path r that traverses
a sequence of nodes {u1, u2, . . . , uk} in a signed network, we define the following path measure
as the product of the edge signs along the path, i.e.,

f(r) =
∏

(ui,ui+1)∈r

hE(ui, ui+1). (110)

Note that f(r) is either 1 or -1 as the edge attribute function hE(·) that maps every undirected
edge in E to {1,−1}.

As an illustrating example, let us consider sampling the undirected network G = (V,E) by
a random walk with path length 1 or 2. Such sampling methods are previously addressed in
Example 4 and Example 13.

Example 34. (Sampling by a random walk with path length 1 or 2) For an undirected graph
G(V,E) with n nodes, let m = |E| be the total number of edges, kv be the degree of node v,
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v = 1, 2, . . . , n, and A = (ai,j) be the adjacency matrix. A path r with length 1 can be represented
by the two nodes {u1, u2} it traverses. Similarly, a path with length 2 can be represented by the
three nodes {u1, u2, u3} it traverses. A random walk with path length not greater than 2 can be
generated by the following two steps: (i) with the probability kv/2m, an initial node v is chosen,
(ii) with probability βi, i = 1, 2, a walk with length i is chosen. As such, we have

p0(r) =


β1
2m
au1,u2 , if r = {u1, u2},

β2
2m

au1,u2au2,u3
ku2

, if r = {u1, u2, u3},
(111)

where β1 + β2 = 1 and βi ≥ 0, i = 1, 2. For an undirected network, we have ai,j = aj,i for all
i, j = 1, 2, . . . , n. Thus, in view of (111), we also have

p0(r) = p0(Rev(r)), (112)

where Rev(r) is the reverse path of r. Moreover, if β2 = 0, then the random walk has path length
1, and this is equivalent to sampling by uniformly selecting an edge.

With the sampling distribution p0(r) from a random walk with path length 1 or 2 in Example
34, we have follows from (106), (110) and (111) that

p(r) =


C · eθhE(u1,u2) · β1

2m
au1,u2 ,

if r = {u1, u2},

C · eθ·hE(u1,u2)·hE(u2,u3) · β2
2m

au1,u2au2,u3
ku2

,

if r = {u1, u2, u3}.

(113)

The constant C in (113) is the normalization constant. Summing all the paths from u to w yields
the bivariate distribution

pU,W (u,w) = C
[
eθhE(u,w) · β1

2m
au,w

+
∑
u2∈V

eθ·hE(u,u2)·hE(u2,w) · β2

2m

au,u2au2,w
ku2

]
. (114)

The marginal distribution of the bivariate distribution, denoted by PU(u), is called the influence
centrality of node u (with respect to the inverse temperature θ).

If we only select paths with length 1, i.e., β2 = 0 in (114), then there is a closed-form expression
for the influence centrality. For this, we first compute the normalization constant C by summing
over u and w in (114) and this yields

C =
m

m+eθ +m−e−θ
, (115)

where m+ (resp. m−) is the total number of positive (resp. negative) edges in the graph. Thus, for
β2 = 0,

pU(u) =
∑
w∈V

pU,W (u,w)

=
(k+
u e

θ + k−u e
−θ)

2(m+eθ +m−e−θ)
, (116)

where k+
u (resp. k−u ) is the number of positive (resp. negative) edges of node u.
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Now suppose we require the average path measure f̄ to be equal to some fixed constant −1 <
γ < 1. Then we have from (108) that

γ = f̄ =
∂F

∂θ

=
m+ exp(θ)−m− exp(−θ)
m+ exp(θ) +m− exp(−θ)

, (117)

where F = log(1/C) with C in (115) being the free energy. This then leads to

θ = ln( 2

√
m−(1 + γ)

m+(1− γ)
). (118)

Now we discuss the connection of the influence centralities with the three degree ranking meth-
ods: (i) ranking by the number of positive edges (positive degree), (ii) ranking by the number
of negative edges (negative degree), and (iii) ranking by the total number of edges (total de-
gree). When γ → 1, we have from (118) that θ → ∞. As a result from (116), PU(u) → k+u

2m+

and this corresponds to positive degree ranking. On the other hand, when γ → −1, we have
θ → −∞ and PU(u) → k−u

2m−
. This corresponds to negative degree ranking. Finally, if we choose

γ = (m+−m−)/(m+ +m−), then θ = 0 and PU(u) = ku
2m

. This corresponds to total degree ranking.
Thus, different choices of γ lead to different ranking methods. We will illustrate this further in
Section 6.5.

6.3 Trust centralities in signed networks
As discussed in the previous section, the influence centralities are based on the general belief
that “an enemy of my enemy can be my friend.” Such a statement might be valid for modelling
opinion dynamics. However, it is not suitable for modelling trust. In addition to the interpretation
of a signed edge as the friend/enemy relationship, another commonly used interpretation is the
trusted/untrusted link. A path r that traverses a sequence of nodes {u1, u2, . . . , uk} can be trusted
if every edge is a trusted link so that there exists a chain of trust. In view of this, the notion of trust
centrality in a signed network can be defined by using the path measure f that is the minimum
of the edge signs along the path, i.e.,

f(r) = min
(ui,ui+1)∈r

hE(ui, ui+1). (119)

If we use the random walk with path length 1 or 2 to sample a path r in G(V,E) as in (111), then
the sampling distribution for the signed network with the path measure in (119) can be written
as follows:

p(r) =


C · eθhE(u1,u2) · β1

2m
au1,u2 ,

if r = {u1, u2},

C · eθ·min[hE(u1,u2),hE(u2,u))] · β2
2m

au1,u2au2,u3
ku2

,

if r = {u1, u2, u3}.
(120)

Moreover, we have the following bivariate distribution

pU,W (u,w) = C
[
eθhE(u,w) · β1

2m
au,w

+
∑
u2∈V

eθ·min[hE(u,u2),hE(u2,w)] · β2

2m

au,u2au2,w
ku2

]
,

(121)
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where C is the normalization constant. The marginal distribution of the bivariate distribution,
denoted by PU(u), is the trust centrality of node u (with respect to the temperature θ). We note
that if we only select paths with length 1, i.e., β2 = 0, then the trust centrality is the same as the
influence centrality in (116).

6.4 Advertisement-specific influence centralities in networks with node attributes
In this section, we consider another class of attributed networks that have node attributes. For a
graph G(V,E) with the node attribute function hV (u) that maps every node u to a vector in RL

(hV,1(u), hV,2(u), . . . , hV,L(u)). (122)

One intuitive way to interpret such an attributed network is to view the graph G(V,E) as a social
network with n users and the attribute vector in (122) as the scores of user u on various topics.
Now suppose an advertisement z can be represented by a vector of scores (z1, z2, . . . , zL) with
zi being the score of the ith topic. Then we would like to find out who is the most influential
user in the network to pass on the advertisement z. Such a problem was previously studied in
[99] for ranking nodes in Twitter. In TwitterRank [99], a two-step approach was used. First, a
topic-specific ranking is obtained for each topic by using a random surfer model similar to that
in PageRank [5]. The second step is then to take the weighted average over these topic-specific
rankings. Specifically, suppose that RTi(u) is the ranking for topic i and user u. TwitterRank for
advertisement z and user u is then defined as the following weighted average:

L∑
i=1

zi ·RTi(u). (123)

One flaw for such a two-step approach is that it neglects the fact that the propagation of a
specific advertisement through a user depends on how much a user “likes” the advertisement.
To model how much a user “likes” an advertisement, we use the similarity measure from the
inner product of the score vector of the user and that of the advertisement. It is possible that in
a cascade of two users {u1, u2}, both users like the advertisement because their inner products
are large, but user u1 likes one topic in that advertisement and user u2 likes another different
topic in that advertisement. Such a cascade cannot be modelled by using the two-step approach
in TwitterRank [99]. In view of this, it might be better to use a one-step approach for computing
advertisement-specific influence centralities. As the influence centralities in the previous section,
we propose using opinion dynamics through a path. For a path r that traverses a sequence of
nodes {u1, u2, . . . , uk−1, uk} in the attributed network, we define the following path measure

f(r) = min
u∈r

[

L∑
i=1

zi · hV,i(u)]. (124)

6.5 Experimental results for the influence centralities in signed networks
In this section, we evaluate the influence centralities in signed networks by using the real dataset
from the political blogs in [100]. The network in [100] is a directed network of hyperlinks between
weblogs collected around the time of the United States presidential election of 2004. There are
1,490 nodes and 19,090 edges in this dataset. These 1490 nodes can be partitioned into two
(ground-truth) communities (parties). In order to have a signed network for our experiment, we
add 4,000 negative edges between two nodes chosen randomly from each community. We then
symmetrize the adjacency matrix by using the matrix A + AT (to obtain an undirected network).
We also delete the nodes with degree smaller than 7, and remove self edges and multiple edges.
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(a) γ = -0.9 (θ=-2.6566) (b) γ =-0.5 (θ=-1.7337) (c) γ =0 (θ=-1.1844)

(d) γ =0.5 (θ=-0.6351) (e) γ =0.9 (θ=0.2878) (f) γ =0.99 (θ=1.4623)

Fig. 15. The ranking result of influence centrality by β2=0 with different theta

As a result, we obtain a simple undirected signed network with 863 nodes and 16,650 edges,
including 15,225 positive edges and 1,425 negative edges.

For our experiment, we use sampling by a random walk with path length 1, i.e., β2 = 0 in
Example 34. In Figure 15, we show the ranking results of the influence centralities for six values
of γ. The corresponding θ is computed from (118). The top 100 nodes are marked with different
colors, 1-20 in red, 21-40 in orange, 41-60 in yellow, 61-80 in green and 81-100 in blue. When γ
is chosen to be -0.9 in Figure 15(a), the top 100 nodes seem to be uniformly distributed among
all the nodes. It is interesting to see that the top 100 nodes gradually move toward the “center”
of each community when the value of γ is increased. Also, these top 100 nodes are separated
into the two communities, and they are closely packed with each other around the center of each
community. In our plots, the nodes near the center of each community have large degrees. As
discussed in Section 6.2, the choice of γ is closely related to the three degree ranking methods:(i)
ranking by the number of positive edges (positive degree), (ii) ranking by the number of negative
edges (negative degree), and (iii) ranking by the total number of edges (total degree). To further
illustrate the connection between the influence centrality and the three degree ranking methods,
we compute the Jaccard index between the top 100 nodes obtained from the influence centrality
and the top 100 nodes obtained from each of the degree centrality method. Recall that the Jaccard
index between two sets S1 and S2 is computed as follows:

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

. (125)

In Figure 16, we plot the three curves of the Jaccard indices with respect to γ. One can see that
the Jaccard index for the curve from ranking by negative degree is a decreasing function of γ,
while the other two curves are increasing functions of γ. This shows that the influence centrality
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with γ close to -1 is mostly in line with ranking by negative degree. On the other hand, the
influence centrality with γ close to 1 is mostly in line with ranking by positive degree. This is
because increasing γ increases the probability that a positive edge is sampled (and decreases the
probability that a negative edge is sampled). Note that there is a slight difference between ranking
by positive degree and ranking by total degree when γ is close to 1 as ranking by total degree still
counts the number of negative edges and those negative edges have little chance being selected
when γ is close to 1.

Fig. 16. The three Jaccard index curves between the influence centralities and the three degree centralities for the top 100 nodes.

6.6 Experimental results for the advertisement-specific influence centralities
In this section, we evaluate the performance of the advertisement-specific influence central-
ity by using the MemeTracker dataset [101]. Such a dataset collects the quotes and phrases,
called “memes,” that frequently appear over time across mass media and personal blogs. To
obtain the advertisement information from these memes, we use Carrot2 [102], an open source
clustering engine, to classify memes into fifteen topics including “People”, “Going”, “Know”,
“Years”, “Way”, “United States”, “States”, “Life”, “Believe”, “Lot”, “Love”, “America”, “Coun-
try”, “Barack Obama” and “Obama”. As “United States” and “Barack Obama” are clearly subsets
of the two topics, “States” and “Obama”, they are merged into these two topics. Therefore, we
obtain a dataset with thirteen topics. As in the previous experiment, we delete the nodes with
degree smaller than 7, and remove self edges and multiple edges. This then leads to an attributed
network with 2082 nodes and 16,503 edges.

Again, we use sampling by a random walk with path length 1, i.e., β2 = 0 in Example 34. The
inverse temperature θ is set to be 0.2 (as the top 250 nodes do not change when θ is larger than
0.2 in our experiments). In Figure 17, we show the ranking results for the six most frequently-
used phrases, i.e., “Going”, “Know”, “People”, “Years”, “America”, and “Obama”. As shown in
Figure 17, different topics lead to different ranking results. Additional experimental results for
the ranking method that combines various topics can be found in the full report [103].
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(a) Going (b) Know (c) People

(a) Years (b) America (c) Obama

Fig. 17. The ranking results of advertisement-specific influence centralities with different topics

7 INTRODUCTION TO CLUSTERING

7.1 Literature review
Clustering is one of the most fundamental problems in data analysis and it has a lot of applications
in various fields, including Internet search for information retrieval, social network analysis for
community detection, and computation biology for clustering protein sequences. The problem
of clustering has been studied extensively in the literature (see e.g., the books [38], [39] and the
historical review papers [40], [41]). For a clustering problem, there is a set of data points (or
objects) and a similarity (or dissimilarity) measure that measures how similar two data points
are. The aim of a clustering algorithm is to cluster these data points so that data points within the
same cluster are similar to each other and data points in different clusters are dissimilar.

As stated in [41], clustering algorithms (like community detection algorithms) can be divided
into two groups: hierarchical and partitional. Hierarchical algorithms can further be divided into
two subgroups: agglomerative and divisive. Agglomerative hierarchical algorithms, starting from
each data point as a sole cluster, recursively merge two similar clusters into a new cluster. On
the other hand, divisive hierarchical algorithms, starting from the whole set as a single cluster,
recursively divide a cluster into two dissimilar clusters. As such, there is a hierarchical structure
of clusters from either a hierarchical agglomerative clustering algorithm or a hierarchical divisive
clustering algorithm.

Partitional algorithms do not have a hierarchical structure of clusters. Instead, they find all the
clusters as a partition of the data points. The K-means algorithm is perhaps the simplest and the
most widely used partitional algorithm for data points in a Euclidean space, where the Euclidean
distance serves as the natural dissimilarity measure. The K-means algorithm starts from an initial
partition of the data points into K clusters. It then repeatedly carries out the Lloyd iteration [104]
that consists of the following two steps: (i) generate a new partition by assigning each data point
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to the closest cluster center, and (ii) compute the new cluster centers. The Lloyd iteration is known
to reduce the sum of squared distance of each data point to its cluster center in each iteration and
thus the K-means algorithm converges to a local minimum. The new cluster centers can be easily
found if the data points are in a Euclidean space (or an inner product space). However, it is in
general much more difficult to find the representative points for clusters, called medoids, if data
points are in a non-Euclidean space. The refined K-means algorithms are commonly referred
as the K-medoids algorithm (see e.g., [42], [38], [43], [44]). As the K-means algorithm (or the
K-medoids algorithm) converges to a local optimum, it is quite sensitive to the initial choice of
the partition. There are some recent works that provide various methods for selecting the initial
partition that might lead to performance guarantees [45], [46], [47], [48], [49]. Instead of using
the Lloyd iteration to minimize the sum of squared distance of each data point to its cluster
center, one can also formulate a clustering problem as an optimization problem with respect to a
certain objective function and then solve the optimization problem by other methods. This then
leads to kernel and spectral clustering methods (see e.g., [50], [51], [52], [53], [54] and [55], [56]
for reviews of the papers in this area). Solving the optimization problems formulated from the
clustering problems are in general NP-hard and one has to resort to approximation algorithms
[57]. In [57], Balcan et al. introduced the concept of approximation stability that assumes all the
partitions (clusterings) that have the objective values close to the optimum ones are close to the
target partition. Under such an assumption, they proposed efficient algorithms for clustering
large datasets.

Fig. 18. A consistent change of 5 clusters.

Though there are already many clustering algorithms proposed in the literature, clustering
theories that justify the use of these clustering algorithms are still unsatisfactory. As pointed out
in [105], there are three commonly used approaches for developing a clustering theory: (i) an
axiomatic approach that outlines a list of axioms for a clustering function (see e.g., [106], [107],
[108], [109], [110], [111]), (ii) an objective-based approach that provides a specific objective for
a clustering function to optimize (see e.g., [112], [57], and (iii) a definition-based approach that
specifies the definition of clusters (see e.g, [113], [114], [115]). In [109], Kleinberg adopted an
axiomatic approach and showed an impossibility theorem for finding a clustering function that
satisfies the following three axioms:

(i) Scale invariance: if we scale the dissimilarity measure by a constant factor, then the
clustering function still outputs the same partition of clusters.
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(ii) Richness: for any specific partition of the data points, there exists a dissimilarity
measure such that the clustering function outputs that partition.

(iii) Consistency: for a partition from the clustering function with respect to a specific
dissimilarity measure, if we increase the dissimilarity measure between two points in
different clusters and decrease the dissimilarity measure between two points in the
same cluster, then the clustering function still outputs the same partition of clusters.
Such a change of a dissimilarity measure is called a consistent change.

The impossibility theorem is based on the fundamental result that the output of any clustering
function satisfying the scale invariance property and the consistency property is in a collection
of antichain partitions, i.e., there is no partition in that collection that in turn is a refinement of
another partition in that collection. As such, the richness property cannot be satisfied. In [112], it
was argued that the impossibility theorem is not an inherent feature of clustering. The key point
in [112] is that the consistency property may not be a desirable property for a clustering function.
This can be illustrated by considering a consistent change of 5 clusters in Figure 18. The figure is
redrawn from Figure 1 in [112] that originally consists of 6 clusters. On the left hand side of Figure
18, it seems reasonable to have a partition of 5 clusters. However, after the consistent change, a
new partition of 3 clusters might be a better output than the original partition of 5 clusters. As
such, they abandoned the three axioms for clustering functions and proposed another three similar
axioms for Clustering-Quality Measures (CQM) (for measuring the quality of a partition). They
showed the existence of a CQM that satisfies their three axioms for CQMs.

As for the definition-based approach, most of the definitions of a single cluster in the literature
are based on loosely defined terms [38]. One exception is [113], where Ester et al. provided a
precise definition of a single cluster based on the concept of density-based reachability. A point p is
said to be directly density-reachable from another point q if point p lies within the ε-neighborhood
of point q and the ε-neighborhood of point q contains at least a minimum number of points. A
point is said to be density-reachable from another point if they are connected by a sequence of
directly density-reachable points. Based on the concept of density-reachability, a cluster is defined
as a maximal set of points that are density-reachable from each other. An intuitive way to see such
a definition for a cluster in a set of data points is to convert the data set into a graph. Specifically, if
we put a directed edge from one point p to another point q if point p is directly density-reachable
from point q, then a cluster simply corresponds to a strongly connected component in the graph.
One of the problems for such a definition is that it requires specifying two parameters, ε and the
minimum number of points in a ε-neighborhood. As pointed out in [113], it is not an easy task to
determine these two parameters.

Mapping data points and the associated similarity (or dissimilarity) measure to a graph has
several advantages, including (i) rich theories and algorithms: there are many well-known graph
theories and algorithms that can be used, (ii) sparsification: the adjacency matrix of a graph
can be made to be sparse by considering neighboring points within a limited distance, and (iii)
manifold discovery: it is possible to map high dimensional data in a Euclidean space to a graph
to discover the embedded manifold by using the geodesic distance in the graph. Clustering in
a graph is commonly referred to as the community detection problem in the literature and there
are many algorithms that have been proposed for the community detection problem (see e.g., the
review papers in [11], [24] and the comparison studies of these algorithms in [36], [37], [17]). Most
importantly, the probabilistic framework developed for structural network analysis can now be
used for clustering.

In this following, we briefly review several commonly used clustering algorithms. Readers are
referred to the book [39] for more detailed references.
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ALGORITHM 4: The K-means Algorithm
Input: A data set Ω = {x1, x2, . . . , xn} in Rp and the number of sets K.
Output: A partition of sets {S1, S2, . . . , SK}.
(0) Initially, choose arbitrarily K centroids a1, a2, . . . , aK .
(1) For each data point x, compute (x− ak)T (x− ak) for each centroid ak. Find the centroid
to which the point x is closest. Assign that point x to the set of that centroid.

(2) Adjust the centroid of every set by using (127).
(3) Repeat from (1) until there is no further change.

7.2 K-means: clustering data points in a Euclidean space
The K-means algorithm (see Algorithm 4) is commonly used to solve the clustering problem for
data points in a Euclidean space (or more generally an inner product space). In the K-means
algorithm, initially K centroids are chosen to represent K clusters. Then there are two iterative
steps in the K-means algorithm: (i) assigning each point to the closest centroid, and (ii) recompute
the centroid of each cluster after each assignment. Specifically, suppose that Ω = {x1, x2, . . . , xn}
contains data points in Rp, and that the number of sets K for the partition of Ω is given in
advance. The K-means algorithm finds a partition S1, S2, . . . , Sk that achieves a local optimum of
the objective function

K∑
k=1

∑
x∈Sk

(x− ak)T (x− ak), (126)

where
ak =

1

|Sk|
∑
x∈Sk

x (127)

is the centroid of the set of points in Sk (see e.g., [41]). The centroid ak acts as a representative
point for Sk. Let c(x) be the index of the set to which x belongs. Then one can write the objective
function in (126) as follows:

K∑
k=1

∑
x∈Sk

(x− ak)T (x− ak) =
∑
x∈Ω

(x− ac(x))
T (x− ac(x)). (128)

Thus, the objective function is equivalent to minimize the sum of the square of the distance be-
tween each point and its representative point. It is well-known that the computational complexity
of the K-means algorithm is O(pKnI), where I is the number of iterations. One problem of the
K-means algorithm is the choice of the initial centroid in Step (0). For the choice of the initial
centroids, it is suggested that the initial centroids should not too close to each other (see e.g., [46],
[47], [48], [49] for additional references on this).

To see how the K-means algorithm works. Let S ′k, k = 1, 2, . . . , K be the K sets after the first
step. Also, let c′(x) be the index of the set to which x belongs after the first step. In view of the
minimization step for points, we have

(x− ac(x))
T (x− ac(x)) ≥ (x− ac′(x))

T (x− ac′(x))

and thus∑
x∈Ω

(x− ac(x))
T (x− ac(x)) ≥

∑
x∈Ω

(x− ac′(x))
T (x− ac′(x)) =

K∑
k=1

∑
x∈S′k

(x− ak)T (x− ak).



56

Let a′k be the centroid of S ′k, k = 1, 2, . . . , K. One key property of a centroid is that∑
x∈S′k

(x− a′k)T (x− a′k) ≤
∑
x∈S′k

(x− y)T (x− y),

for any point y. Thus,

K∑
k=1

∑
x∈S′k

(x− ak)T (x− ak) ≥
K∑
k=1

∑
x∈S′k

(x− a′k)T (x− a′k) =
∑
x∈Ω

(x− ac′(x))
T (x− ac′(x)).

After these two steps, we then have∑
x∈Ω

(x− ac(x))
T (x− ac(x)) ≥

∑
x∈Ω

(x− ac′(x))
T (x− ac′(x))

and the value of the objective function is non-increasing in each iteration.
Instead of viewing the K-means algorithm as a minimization problem for the objective function

in (128), it can also viewed as a maximization problem for a “similarity” measure. Let

g(x, y) = xTy, (129)

and
g(S1, S2) =

∑
x∈S1

∑
y∈S2

g(x, y), (130)

for any two sets S1 and S2. In addition to minimizing the objective function in (128), the K-means
algorithm is also known to maximize the following objective function:

K∑
k=1

g(Sk, Sk)

|Sk|
, (131)

where |Sk| is the number of elements in Sk. To see this, we note from (127) that∑
x∈Sk

(x− ak)T (x− ak)

=
∑
x∈Sk

xTx− 1

|Sk|
∑
x∈Sk

∑
y∈Sk

xTy

=
∑
x∈Sk

g(x, x)− g(Sk, Sk)

|Sk|
.

Thus, maximizing
∑K

k=1
g(Sk,Sk)
|Sk|

is equivalent to minimizing
∑K

k=1

∑
x∈Sk(x− ak)

T (x− ak).
Note that the objective function in the maximization problem in (131) is normalized with respect

to the sizes of the output sets. As such, the K-means algorithm tends to output “clusters” with
even sizes. This could be a problem if the sizes of the clusters that one would like to detect are
very different. To illustrate this, we show an example in Figure 19, where there are two clusters
centered at (0, 0) and (6, 0), respectively. The cluster centred at (0, 0) consists of 5000 points within
the radius of 4, and the cluster centered at (6, 0) consists of 500 points within the radius of 1. As
shown in Figure 19, theK-means algorithm fails to detect the desired clusters. The centroids of the
two clusters from theK-means algorithm are (0.0178,−0.0302) and (3.9781,−0.4706), respectively..
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Fig. 19. An illustrating example of the K-means algorithm for the problem with uneven cluster sizes.

7.3 K-medoids: clustering data points in a non-Euclidean space
In a non-Euclidean space, there is no notion of centroid that can be used for representing a cluster
of points. Instead, various notions of medoids (or clusteroids) were proposed to represent clusters,
e.g., (i) the sum of the distance to the other points in the cluster, (ii) the maximum distance to
another in the cluster, and (iii) the sum of the squares of the distances to the other points in the
clusters (see e.g., the book [39]).

In particular, the K-medoids algorithm (see Algorithm 5) is an extension of the K-means
algorithm to a non-Euclidean space with a distance measure d(·, ·) that uses the sum of the
distance to the other points in the cluster to find the the medoid of a cluster. Note that there are
two key properties in the minimization process of the K-means algorithm: (i) use the centroid as
the representative point for a set and assign each point to the nearest centroid, and (ii) identify
the new representative point, i.e., the new centroid, after the assignment. As there is no centroid
for a set in a non-Euclidean space, one quick fix is to represent a set by the point in the set that
minimizes the sum of the distance between a point in the set and the representative point. The
representative point is then called a medoid. Specifically, consider a set Sk. Then the medoid of Sk,
denoted by mk, is

mk = arg min
y∈Sk

∑
x∈Sk

d(x, y). (132)

Following the same argument as in the K-means algorithm, the K-medoids algorithm also
reduces in each iteration the value of the objective function, i.e.,

∑
x∈Ω d(x,mc(x)) with c(x)

denoting the index of the set to which x belongs to. As such,t he K-medoids algorithm converges
to a local optimum.

7.4 Spectral clustering: clustering data points with a similarity measure
In this section, we consider a set of n data points, Ω = {x1, x2, . . . , xn}. We assume there is a
symmetric similarity measure g(x, y) (i.e., g(x, y) = g(y, x)) for any two points x and y in Ω and
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ALGORITHM 5: The K-medoids Algorithm
Input: A data set Ω = {x1, x2, . . . , xn} with a distance measure d(·, ·) and the number of sets

K.
Output: A partition of sets {S1, S2, . . . , SK}.
(0) Initially, choose arbitrarily K medoids m1,m2, . . . ,mK ∈ Ω.
(1) For each data point x, find the medoid to which the point x is closest. Assign that point
x to the set of that medoid.

(2) Find the new medoid of every set by using (132).
(3) Repeat from (1) until there is no further change.

each data point x is associated with a positive weight w(x) (i.e., w(x) > 0). For any two sets S1 and
S2, let

g(S1, S2) =
∑
x∈S1

∑
y∈S2

g(x, y). (133)

Also, for any set S, let
w(S) =

∑
x∈S

w(x). (134)

A K-way partition of Ω consists of K disjoint nonempty sets S1, S2, . . . , SK such that the union of
these K sets is Ω (i.e., (i) |Si| ≥ 1 for all i, (ii) Si∩Sj is an empty set for i 6= j, and (iii) ∪Kk=1Sk = Ω).
Let F be the collection of all K-way partitions of Ω. Motivated by the maximization problem for
the K-means algorithm in (131), we consider the following maximization problem:

max

K∑
k=1

g(Sk, Sk)

w(Sk)
(135)

s.t. {S1, S2, . . . , Sn} ∈ F . (136)

A K-way partition that has a very high objective value of this optimization problem may be
considered as a good solution of the clustering problem of Ω as data points in the same set are
similar to each other.

It is well-known that the optimization problem in (135) is NP-complete and is related to the
trace maximization problem [50], [116], [117]. An n × K matrix H is called a partition matrix
of Ω if H ∈ {0, 1}n×K , 1TnH > 0, and H1K = 1n, where 1K and 1n are K dimensional and n
dimensional column vectors with all its elements being 1. One can view a partition matrix H as
a bi-adjacency matrix of a bipartite graph that maps the n data points to the K sets of a K-way
partition {S1, S2, . . . , SK}, and thus there is a one-to-one mapping between a partition matrix and
a K-way partition. Let Hk be the kth column vector of H (that represents the set of data points
in Sk). Also, let G = (g(x, y)) be the n× n similarity matrix and D = diag(w(x1), w(x2), . . . w(xn)).
Then the optimization problem in (135) can be represented equivalently as follows:

max

K∑
k=1

HT
k GHk

HT
k DHk

(137)

s.t. H ∈ {0, 1}n×K ,
1TnH > 0,

H1K = 1n.

As shown in [116], one can use the scaled partition matrix

H̃ = H(HTDH)−
1
2 (138)
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ALGORITHM 6: The Spectral Clustering Algorithm
Input: A data set Ω = {x1, x2, . . . , xn}, a symmetric similarity matrix G = (g(·, ·)), a positive

weight vector w = (w(x1), w(x2), . . . , w(xn)) and the number of sets K.
Output: A partition of sets {S1, S2, . . . , SK}.
(0) Let D = diag(w(x1), w(x2), . . . w(xn)).
(1) Let Z1,Z2, . . . ,ZK be the K largest eigenvectors of the matrix D−

1
2GD−

1
2 (chosen to be

orthogonal to each other). Form the n×K matrix Z = (zi,j) = [Z1,Z2, . . . ,ZK ] by stacking
these K eigenvectors in columns.

(2) Form the n×K matrix Z̃ = (z̃i,j) from Z by renormalizing each row in Z̃ to have unit
length, i.e.,

z̃i,j =
zi,j

(
∑K

`=1 z
2
i,`)

1
2

.

(3) Treat each row of Z̃ as a point in RK and use the K-means algorithm to cluster these n
points.

(4) Assign xi to the set Sk if row i of Z̃ is assigned to the kth cluster by the K-means
algorithm.

to represent the objective function in (137) by tr(H̃TGH̃), where tr denotes the trace of a matrix.
Since

H̃TDH̃ = (HTDH)−
1
2HTDH(HTDH)−

1
2 = IK ,

one can relax the integer constraints in the optimization problem in (137) and consider the
following maximization problem:

max tr(H̃TGH̃) (139)
s.t. H̃TDH̃ = IK .

To convert the trace maximization problem to the standard form, one can further let

Ĥ = D
1
2 H̃. (140)

This then leads to

max tr(ĤTD−
1
2GD−

1
2 Ĥ) (141)

s.t. ĤT Ĥ = IK .

Since the matrix D−
1
2GD−

1
2 is a real symmetric matrix, it is diagonalizable. As stated in [55], a

version of the Rayleigh-Ritz theorem shows that the solution of the trace maximization problem in
(141) is given by choosing Ĥ as the matrix which contains the largest K eigenvectors of D−

1
2GD−

1
2

as columns. As the trace maximization problem in (141) is a relaxation of the optimization prob-
lem in (135), this also gives an upper bound on the objective value of the optimization problem
in (135). Specifically, let λ1, λ2, . . . , λK be the K largest eigenvalues of the matrix D−

1
2GD−

1
2 . Then

the objective value of the optimization problem in (135) is bounded above by
∑K

k=1 λk.
The rest of the problem is to map the solution for the trace optimization problem in (141) back to

the solution space for the optimization problem in (137) (that requires the solutions to be binary).
For this, we follow the approach in [118] that treats the largest K eigenvectors of D−

1
2GD−

1
2 as the

features of the n points and applies the K-means algorithm to cluster these n points. The details
of the spectral clustering algorithm is given in Algorithm 6.
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To see the insight of the spectral clustering algorithm, let us consider the case with equal
weights, i.e., w(xi) = 1 for all i. Let φ be the mapping from Ω to RK such that for i = 1, 2, . . . , n,

φ(xi) = (z̃i,1, z̃i,2, . . . , z̃i,K). (142)

Also, let
g̃(x, y) = φ(x)Tφ(y). (143)

Note that the K-means algorithm in Step (3) of Algorithm 6 is to maximize

K∑
k=1

g̃(Sk, Sk)

|Sk|
. (144)

In other words, the spectral clustering algorithm simply transforms the optimization problem in
(135) to the optimization problem in (144) and hope that a good partition for the transformed
optimization problem is also a good partition of the original optimization problem. Such a
transformation would be exact if the matrix G is a positive definite (kernel) matrix and K = n. In
such a scenario, the spectral clustering algorithm reduces to the kernel K-means in [32]. However,
in practice K is much smaller than n, such a transform can be good if there is a significant spectral
gap so that the similarity matrix G can be well approximated by the matrix factorization

G ≈ Z̃Z̃T , (145)

where Z̃ is the n×K matrix in Step (2) of Algorithm 6. In view of (145), one might construct Z̃ by
using the largest L eigenvectors of G for some L 6= K. In particular, for K = 2, one might simply
select the largest eigenvector of G and cluster the positive elements of that vector in one set and
the rest in the other [66].



61

(a) Scale 1 (b) Scale 2 (c) Scale 3 (d) Scale 4

Fig. 20. A dataset plotted with different scales of the two axes.

8 CLUSTERING DATA POINTS IN A METRIC/SEMI-METRIC SPACE

Clustering is in general considered as an ill-posed problem. To see that there does not exist the
so-called “ground-truth” clusters for this ill-posed problem, in Fig. 20 we plot a set of 1250 data
points on a plane with different scales of the two axes. A quick glance at this figure might yield
five (resp. four, three and one) clusters in Fig. 20 (a) (resp. (b), (c) and (d)). As such, the answer of
the number of clusters in the same dataset depends on how one “views” this dataset.

To provide a viewpoint, one needs a sampling method for the dataset. For this, we consider a
set of data points Ω = {x1, x2, . . . , xn} in a semi-metric space, in which there is a semi-metric that
measures the distance between two points. Our idea of sampling the data points in a semi-metric
space is to consider a complete graph with n nodes and n self edges and then maps each data
point in Ω to a node in the graph with the edge weight between two nodes being the distance
between the corresponding two points in Ω. By doing so, the problem of clustering in a semi-
metric space is transformed to a community detection problem of a weighted graph. There are
several well-known sampling techniques developed for community detections as described in
the previous sections. In this section, we are particularly interested in the exponentially twisted
sampling technique in which one can specify the desired average distance from the sampling
distribution to detect clusters with various resolutions.

8.1 Exponentially twisted sampling
In this section, we use exponentially twisted sampling to sample the set of data points in a
semi-metric space.

We consider a set of n data points, Ω = {x1, x2, . . . , xn} and a distance measure d(x, y) for any
two points x and y in Ω. The distance measure d(·, ·) is said to be a semi-metric if it satisfies the
following three properties:

(D1) (Nonnegativity) d(x, y) ≥ 0.
(D2) (Null condition) d(x, x) = 0.
(D3) (Symmetry) d(x, y) = d(y, x).

If, furthermore, the triangular inequality in (D4) below is satisfied, then the distance measure is
said to be a metric.

(D4) (Triangular inequality) d(x, y) ≤ d(x, z) + d(z, y).

For this set of data points in a semi-metric space, we can view it as a weighted complete graph
with n self edges and the weight of an edge between two points is the corresponding distance of
the two points. If we sample two points Xand Y uniformly, then we have the following sampling
bivariate distribution:

p(x, y) =
1

n2
, (146)
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for all x, y ∈ Ω. Using such a sampling distribution, the average distance between two randomly
selected points is

Ep[d(X, Y )] =
1

n2

∑
x∈Ω

∑
y∈Ω

d(x, y). (147)

Suppose we would like to change another sampling distribution pλ(x, y) so that the average
distance between two randomly selected points, denoted by d̄, is smaller than Ep[d(X, Y )] in (147).
By doing so, a pair of two points with a shorter distance is selected more often than another pair
of two points with a larger distance. For this, we consider the following minimization problem:

min D(pλ‖p)
s.t.

∑
x∈Ω

∑
y∈Ω

pλ(x, y) = 1,∑
x∈Ω

∑
y∈Ω

d(x, y) · pλ(x, y) = d̄, (148)

where D(pλ‖p) is the Kullback-Leibler distance between the two probability mass functions
pλ(x, y) and p(x, y), i.e.,

D(pλ‖p) =
∑
x∈Ω

∑
y∈Ω

pλ(x, y) log(
pλ(x, y)

p(x, y)
). (149)

The solution of such a minimization problem is known to be the exponentially twisted distribu-
tion as follows (see [76]):

pλ(x, y) = C ∗ exp(λ · d(x, y)) ∗ p(x, y), (150)

where
C =

1∑
x∈Ω

∑
y∈Ω exp(λ · d(x, y)) ∗ p(x, y)

(151)

is the normalization constant. As the distance measure d(·, ·) is symmetric and p(x, y) = 1/n2, we
know that pλ(x, y) = pλ(y, x). Moreover, the parameter λ can be solved by the following equation:

∂F

∂λ
=
∑
x∈Ω

∑
y∈Ω

d(x, y) · pλ(x, y) = d̄, (152)

where F = log(1/C) is the free energy.
If we choose λ < 0, then d̄ ≤ Ep[d(X, Y )]. In Fig. 21, we plot the average distance d̄ as a function

of λ for the dataset in Fig. 20. Clearly, as λ→∞, d̄ approaches to the maximum distance between
a pair of two points. On the other hand, as λ → −∞, d̄ approaches to the minimum distance
between a pair of two points. The plot in Fig. 21 allows us to solve (152) numerically.

We note that the following transformation for data points in a Euclidean space to a graph was
previously proposed in [118] for spectral clustering and in [51] for support vector clustering :

Ax,y = exp(−‖x− y‖2/2σ2),

where ‖x − y‖ is the Euclidean distance between the two points x and y, and σ is the scaling
parameter. In view of this, ‖x− y‖2 is a semi-metric and our exponentially twisted sampling is a
generalization of the transformation in [118], [51] from data points in a Euclidean space to data
points in a semi-metric space.

Now with the exponentially twisted distribution, we can define sampled graphs as before.
Definition 35. (Sampled graph) Let G be the complete graph with n nodes and n self edges.

Each node in G corresponds to a specific data point in Ω and the edge weight between two
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Fig. 21. The average distance d̄ as a function of λ for the dataset in Fig. 20.

nodes is the distance measure between the corresponding two points in Ω. The graph G
sampled by randomly selecting an ordered pair of two nodes (X, Y ) according to the symmetric
bivariate distribution pλ(x, y) in (150) is called a sampled graph and it is denoted by the two-tuple
(G, pλ(·, ·)).
Let

pλ(x) =
∑
y∈Ω

pλ(x, y) (153)

be the marginal probability that the point x is selected by using the sampling distribution pλ(·, ·).
The higher the probability is, the more important that point is. As such, pλ(x) can be used for
ranking data points according to the sampling distribution pλ(·, ·), and it is called the centrality of
point x for the sampled graph (G, pλ(·, ·)). For example, if we choose very small λ < 0 and replace
exp(λd(x, y)) by 1 + λd(x, y) in (150), then it is easy to see that ranking by using pλ(x) is the same
as ranking by using

−
∑
y∈Ω

d(x, y). (154)

Such a ranking method is known as the closeness centrality in the literature (see e.g., the book [4]).
The exponentially twisted sampling technique embeds a set of data points in a semi-metric

space into a sampled graph in Definition 35. As before, various notions for structural analysis of a
sampled graph can be defined and analyzed, including centrality, community and modularity.
Moreover, the problem of clustering in a semi-metric space is transformed to a community
detection problem of a weighted graph and that can be solved by using modularity maximization
algorithms in Section 3.
Definition 36. (Correlation, Community and Modularity) For a sampled graph (G, pλ(·, ·)), the

correlation between two points x and y (cf. (58)) is defined as follows:

γλ(x, y) = pλ(x, y)− pλ(x)pλ(y), (155)

where pλ(x, y) is in (150). Using (146), (150), (151) and (153) in (155) yields

γλ(x, y) =
eλd(x,y)∑

z1∈Ω

∑
z2∈Ω e

λd(z1,z2)
−

∑
z1∈Ω e

λd(x,z1)∑
z1∈Ω

∑
z2∈Ω e

λd(z1,z2)

∑
z2∈Ω e

λd(z2,y)∑
z1∈Ω

∑
z2∈Ω e

λd(z1,z2)

=

∑
z1∈Ω

∑
z2∈Ω

(
eλ(d(z1,z2)+d(x,y)) − eλ(d(x,z1)+d(z2,y))

)
(
∑

z1∈Ω

∑
z2∈Ω e

λd(z1,z2))2
(156)
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(a) The dataset in Fig.
20

(b) λ = −0.5 (c) λ = −0.01 (d) λ = −0.0001

Fig. 22. An illustrating example for various resolutions of d̄ (data points in different clusters are marked with different colors).

Define the modularity matrix Q = (γλ(x, y)) be the n × n matrix with its (x, y)th element being
γλ(x, y). Moreover, the correlation between two sets S1 and S2 (cf. (59)) is defined as follows:

γλ(S1, S2) =
∑
x∈S1

∑
y∈S2

γλ(x, y). (157)

Two sets S1 and S2 are said to be positively correlated if γλ(S1, S2) ≥ 0. In particular, if a subset
of points S ⊂ Ω is positively correlated to itself, i.e., γλ(S, S) ≥ 0, then it is called a community
or a cluster.
Let P = {Sk, k = 1, 2, . . . , K}, be a partition of Ω, i.e., Sk ∩ Sk′ is an empty set for k 6= k′ and
∪Kk=1Sk = Ω. The modularity Q(P) with respect to the partition Sk, k = 1, 2, . . . , K, (cf. (61)) is
defined as

Q(P) =

K∑
k=1

γλ(Sk, Sk). (158)

As an illustrating example, we use the partitional-hierarchical algorithm in Section 3 for the
dataset in Fig. 20 (a). As shown in Fig. 21, one can select a particular λ for the sampling
distribution pλ(·, ·) so that the average distance is d̄. In Table 6, we list the average distance d̄ for
various choices of λ. Now we feed the modularity matrix obtained from the sampling distribution
pλ(·, ·) into the partitional-hierarchical Algorithm. It is clear to see from Fig. 22 that various choices
of λ lead to various resolutions of the partitional-hierarchical algorithm. Specifically, for λ = −0.5
(and d̄ = 2.6055), there are five clusters detected by the partitional-hierarchical algorithm. Data
points in different clusters are marked with different colors. For λ = −0.01 (and d̄ = 31.1958),
there are four clusters detected by the partitional-hierarchical algorithm. Finally, for λ = −0.0001
(and d̄ = 36.6545), there are only three clusters detected by the partitional-hierarchical algorithm.
These clustering results obtained by using different sampling distributions are in line with those
plotted by using different scales of the two axes in Fig. 20.

TABLE 6
The average distance d̄ for various choices of λ.

λ -0.5 -0.01 -0.0001 0 1
d̄ 2.6055 31.1958 36.6545 36.7121 87.8800
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8.2 Cohesion measure in a metric space
Let us consider the correlation measure γλ(x, y) in (156) when λ is very small. Using the first order
approximation eλz ≈ 1 + λz + o(λ) in (156) yeilds

γλ(x, y) ≈

∑
z1∈Ω

∑
z2∈Ω

(
(1 + λ(d(z1, z2) + d(x, y)) + o(λ))− (1 + λ(d(x, z1) + d(z2, y)) + o(λ))

)
(
∑

z1∈Ω

∑
z2∈Ω(1 + λd(z1, z2) + o(λ)))2

≈ (−λ)
( 1

n

∑
z2∈Ω

d(z2, y) +
1

n

∑
z1∈Ω

d(x, z1)− 1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1)− d(x, y)
)

+ o(λ). (159)

Thus, when we choose a very small negative λ, the correlation measure γλ(x, y) is proportional
to

γ(x, y) =
1

n

∑
z2∈Ω

d(z2, y) +
1

n

∑
z1∈Ω

d(x, z1)− 1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1)− d(x, y) (160)

=
1

n2

∑
z2∈Ω

∑
z1∈Ω

(
d(x, z1) + d(z2, y)− d(z1, z2)− d(x, y)

)
. (161)

The function γ(x, y) is called a cohesion measure (resp. semi-cohesion measure) if the distance
measure d(x, y) is a metric (resp. semi-metric) in [67], [78]. Moreover, two points x and y are said
to be cohesive (resp. incohesive) if γ(x, y) ≥ 0 (resp. γ(x, y) < 0). A cohesion measure satisfies the
following properties in Proposition 37 and its proof is given in Section 9.9.
Proposition 37.

(i) (Symmetry) The cohesion measure is symmetric, i.e., γ(x, y) = γ(y, x).
(ii) (Self-cohesiveness) Every data point is cohesive to itself, i.e., γ(x, x) ≥ 0.
(iii) (Self-centredness) Every data point is more cohesive to itself than to another point,

i.e., γ(x, x) ≥ γ(x, y) for all y ∈ Ω.
(iv) (Zero-sum) The sum of the cohesion measures between a data point to all the points

in Ω is zero, i.e.,
∑

y∈Ω γ(x, y) = 0.

These four properties can be understood intuitively by viewing a cohesion measure between
two points as a “binding force” between those two points. The symmetric property ensures
that the binding force is reciprocated. The self-cohesiveness property ensures that each point is
self-binding. The self-centredness property further ensures that the self binding force is always
stronger than the binding force to the other points. In view of the zero-sum property, we know
for every point x there are points that are incohesive to x and each of these points has a negative
binding force to x. Also, there are points that are cohesive to x (including x itself from the self-
cohesiveness property) and each of these points has a positive force to x. As such, the binding
force will naturally “push” points into “clusters.”

To further understand the intuition of the cohesion measure, we can think of z1 and z2 in (161)
as two random points that are used as reference points. Then two points x and y are cohesive if
d(x, z1) + d(z2, y) ≥ d(z1, z2) + d(x, y) for two reference points z1 and z2 that are randomly chosen
from Ω. In Figure 23, we show an illustrating example for such an intuition in R2. In Figure 23(a),
point x is close to one reference point z1 and point y is close to the other reference point z2. As
such, d(x, z1) + d(z2, y) ≤ d(z1, z2) and thus these two points x and y are incohesive. In Figure
23(b), point x is not that close to z1 and point y is not that close to z2. However, x and y are on
the two opposite sides of the segment between the two reference points z1 and z2. As such, there
are two triangles in this graph: the first triangle consists of the three points x, z1, and w, and the
second triangle consists of the three points y, z2, and w. From the triangular inequality, we then
have d(w, z1)+d(x,w) ≥ d(x, z1) and d(y, w)+d(w, z2) ≥ d(y, z2). Since d(w, z1)+d(w, z2) = d(z1, z2)
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and d(x,w) + d(y, w) = d(x, y), it then follows that d(z1, z2) + d(x, y) ≥ d(x, z1) + d(y, z2). Thus,
points x and y are also incohesive in Figure 23(b). In Figure 23(c), point x is not that close to z1

and point y is not that close to z2 as in Figure 23(b). Now x and y are on the same side of the
segment between the two reference points z1 and z2. There are two triangles in this graph: the
first triangle consists of the three points x, y, and w, and the second triangle consists of the three
points z1, z2, and w. From the triangular inequality, we then have d(x,w) + d(w, y) ≥ d(x, y) and
d(w, z1) + d(w, z2) ≥ d(z1, z2). Since d(x,w) + d(w, z1) = d(x, z1) and d(w, y) + d(w, z2) = d(z2, y), it
then follows that d(x, z1) +d(y, z2) ≥ d(z1, z2) +d(x, y). Thus, points x and y are cohesive in Figure
23(c). In view of Figure 23(c), it is intuitive to see that two points x and y are cohesive if they both
are far away from the two reference points and they both are close to each other.

Fig. 23. Illustrating examples of the cohesion measure in R2: (a) incohesive as d(x, z1) + d(y, z2) ≤ d(z1, z2), (b) incohesive as
d(w, z1)+d(x,w) ≥ d(x, z1) and d(y, w)+d(w, z2) ≥ d(y, z2), and (c) cohesive d(x,w)+d(w, y) ≥ d(x, y) and d(w, z1)+d(w, z2) ≥
d(z1, z2).

Analogous to Definition 36, we can extend the cohesion measure between two points to the
cohesion measure between two sets and define clusters in metric spaces.
Definition 38. (Cohesion measure between two sets and clusters) Define the cohesion measure

between two sets S1 and S2, denoted by γ(S1, S2), as the sum of the cohesion measures of all
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the pairs of two points (with one point in S1 and the other point in S2), i.e.,

γ(S1, S2) =
∑
x∈S1

∑
y∈S2

γ(x, y). (162)

Two sets S1 and S2 are said to be cohesive (resp. incohesive) if γ(S1, S2) ≥ 0 (resp. γ(S1, S2) < 0).
A nonempty set S is called a cluster if it is cohesive to itself, i.e.,

γ(S, S) ≥ 0. (163)

One can also show a theorem for various equivalent statements for what a cluster is in a metric
space.
Theorem 39. Consider a nonempty set S that is not equal to Ω. Let Sc = Ω\S be the set of points

that are not in S. Also, let d̄(S1, S2) be the average distance between two randomly selected
points with one point in S1 and another point in S2, i.e.,

d̄(S1, S2) =
1

|S1| × |S2|
∑
x∈S1

∑
y∈S2

d(x, y). (164)

The following statements are equivalent.

(i) The set S is a cluster, i.e., γ(S, S) ≥ 0.
(ii) The set Sc is a cluster, i.e., γ(Sc, Sc) ≥ 0.
(iii) The two sets S and Sc are incohesive, i.e., γ(S, Sc) ≤ 0.
(iv) The set S is more cohesive to itself than to Sc, i.e., γ(S, S) ≥ γ(S, Sc).
(v) 2d̄(S,Ω)− d̄(Ω,Ω)− d̄(S, S) ≥ 0.
(vi) 2d̄(S, Sc)− d̄(S, S)− d̄(Sc, Sc) ≥ 0.

One surprise finding in Theorem 39(ii) is that the set Sc is also a cluster. This shows that the
points inside S are cohesive and the points outside S are also cohesive. Thus, there seems a
boundary between S and Sc from the cohesion measure. Another surprise finding is in Theorem
39(vi). One usually would expect that a cluster S should satisfy d̄(S, S) ≤ d̄(S, Sc). But it seems
our definition of a cluster is much weaker than that.

Analogous to the definition of modularity in (158) for the correlation measure, we can also
define the modularity for the cohesion measure below.
Definition 40. (Modularity and normalized modularity) Let γ(x, y) be a semi-cohesion measure

of Ω = {x1, x2, . . . , xn}and P = {Sk, k = 1, 2, . . . , K} be a partition of Ω. The modularity Q(P)
with respect to the partition P = {Sk, k = 1, 2, . . . , K} is defined as follows

Q(P) =

K∑
k=1

γ(Sk, Sk). (165)

Moreover, the normalized modularity Qnor(P) with respect to the partition P = {Sk, k =
1, 2, . . . , K} is defined as follows:

Qnor(P) =

K∑
k=1

1

|Sk|
γ(Sk, Sk). (166)

The community detection algorithms in Section 3, including (i) the spectral modularity maxi-
mization algorithm, (ii) the hierarchical agglomerative algorithm, (iii) the partitional algorithm,
and (iv) the fast unfolding algorithm [68], can be applied by maximizing modularity in (165).
On the other hand, the spectral clustering algorithm in Section 7.4 can be applied by maximizing
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normalized modularity in (166) (if K is fixed and known in advance). The spectral clustering
algorithm in Section 7.4 consists of two steps: (i) embedding data points into a Euclidean space
by spectral decomposition and (ii) the K-means clustering algorithm. In the next section, we will
introduce a single step clustering algorithm like the K-means algorithm and it does not require
the step of embedding data points into a Euclidean space.

8.3 The K-sets algorithm: clustering data points in a metric space
In this section, we introduce a clustering algorithm, called the K-sets algorithm in [67], for
clustering data points in a metric space. The K-sets algorithm is similar to the classical K-means
algorithm by iteratively assigning each point to the nearest set (until it converges). Such an
approach requires a measure that can measure how close a point x to a set S is. In the K-means
algorithm, such a measure is defined as the square of the distance between x and the centroid of
S. However, there is no centroid for a set in a non-Euclidean space and we need to come up with
another measure.

Fig. 24. An illustration of the triangular distance in R2.

Our idea for measuring the distance from a point x to a set S is to randomly choose two points
z1 and z2 from S and consider the three sides of the triangle x, z1 and z2. Note that the triangular
inequality guarantees that d(x, z1) + d(x, z2) − d(z1, z2) ≥ 0. Moreover, if x is close to z1 and z2,
then d(x, z1) + d(x, z2)− d(z1, z2) should also be small. We illustrate such an intuition in Figure 24,
where there are two points x and y and a set S in R2. Such an intuition leads to the following
definition of triangular distance from a point x to a set S.
Definition 41. (Triangular distance) The triangular distance from a point x to a set S, denoted by

∆(x, S), is defined as follows:

∆(x, S) =
1

|S|2
∑
z1∈S

∑
z2∈S

(
d(x, z1) + d(x, z2)− d(z1, z2)

)
. (167)

In the following lemma, we show several properties of the triangular distance and its proof is
given in Section 9.11.
Lemma 42.

(i)
∆(x, S) = 2d̄({x}, S)− d̄(S, S) ≥ 0. (168)

(ii)
∆(x, S) = γ(x, x)− 2

|S|
γ({x}, S) +

1

|S|2
γ(S, S). (169)
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ALGORITHM 7: The K-sets Algorithm
Input: A data set Ω = {x1, x2, . . . , xn}, a distance metric d(·, ·), and the number of sets K.
Output: A partition of sets {S1, S2, . . . , SK}.
(0) Initially, choose arbitrarily K disjoint nonempty sets S1, . . . , SK as a partition of Ω.
(1) for i = 1, 2, . . . , n do

Compute the triangular distance ∆(xi, Sk) for each set Sk by using (168).
Find the set to which the point xi is closest in terms of the triangular distance.
Assign point xi to that set.

end
(2) Repeat from (1) until there is no further change.

(iii) Let P = {Sk, k = 1, 2, . . . , K} be a partition of Ω. Then

K∑
k=1

∑
x∈Sk

∆(x, Sk) =
∑
x∈Ω

γ(x, x)−Qnor(P). (170)

(iv) Let P = {Sk, k = 1, 2, . . . , K} be a partition of Ω, and c(x) be the index of the set to
which x belongs, i.e., x ∈ Sc(x). Then

K∑
k=1

∑
x∈Sk

∆(x, Sk) =

K∑
k=1

∑
x∈Sk

d̄({x}, Sk)

=
∑
x∈Ω

d̄({x}, Sc(x)). (171)

The first property of this lemma is to represent triangular distance by the average distance. The
second property is to represent the triangular distance by the cohesion measure. Such a property
plays an important role for the duality result in Section 8.4. The third property shows that the
optimization problem for maximizing the normalized modularity Qnor(P) is equivalent to the
optimization problem that minimizes the sum of the triangular distance of each point to its set.
The fourth property further shows that such an optimization problem is also equivalent to the
optimization problem that minimizes the sum of the average distance of each point to its set.
Note that d̄({x}, Sk) = 1

|Sk|
∑

y∈Sk d(x, y). The objective for maximizing the normalized modularity
Qnor(P) is also equivalent to minimize

K∑
k=1

1

|Sk|
∑
x∈Sk

∑
y∈Sk

d(x, y).

This is different from the K-median objective, the K-means objective and the min-sum objective
addressed in [57].

In the following, we propose a partitional clustering algorithm, called the K-sets algorithm in
Algorithm 7, based on the triangular distance. The algorithm is very simple. It starts from an
arbitrary partition of the data points that contains K disjoint sets. Then for each data point, we
assign the data point to the closest set in terms of the triangular distance. We repeat the process
until there is no further change. Unlike the Lloyd iteration that needs two-step minimization,
the K-sets algorithm only takes one-step minimization. This might give the K-sets algorithm the
computational advantage over the K-medoids algorithms [42], [38], [43], [44].

In the following theorem, we show the convergence of the K-sets algorithm. Moreover, for
K = 2, the K-sets algorithm yields two clusters. Its proof is given in Section 9.12.
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Theorem 43.

(i) In the K-sets algorithm (based on the triangular distance), the normalized modularity
is increasing when there is a change, i.e., a point is moved from one set to another.
Thus, the algorithm converges to a local optimum of the normalized modularity.

(ii) Let S1, S2, . . . , SK be the K sets when the algorithm converges. Then for all i 6= j,
the two sets Si and Sj are two clusters if these two sets are viewed in isolation (by
removing the data points not in Si ∪ Sj from Ω).

An immediate consequence of Theorem 43 (ii) is that for K = 2, the two sets S1 and S2 are
clusters when the algorithm converges. However, we are not able to show that for K ≥ 3 the K
sets, S1, S2, . . . , SK , are clusters in Ω. On the other hand, we are not able to find a counterexample
either. All the numerical examples that we have tested for K ≥ 3 yield K clusters.

8.4 Duality between a cohesion measure and a distance metric
In this section, we show the duality result between a cohesion measure and a distance metric. In
the following, we first provide a general definition for a cohesion measure.
Definition 44. A measure between two points x and y, denoted by β(x, y), is called a cohesion

measure for a set of data points Ω if it satisfies the following three properties:

(C1) (Symmetry) β(x, y) = β(y, x) for all x, y ∈ Ω.
(C2) (Zero-sum) For all x ∈ Ω,

∑
y∈Ω β(x, y) = 0.

(C3) (Triangular inequality) For all x, y, z in Ω,

β(x, x) + β(y, z)− β(x, z)− β(x, y) ≥ 0. (172)

In the following lemma, we show that the specific cohesion measure defined in Section 8.2
indeed satisfies (C1)–(C3) in Definition 44. Its proof is given in Section 9.13.
Lemma 45. Suppose that d(·, ·) is a distance metric for Ω, i.e., d(·, ·) satisfies (D1)–(D4). Let

β(x, y) =
1

n

∑
z2∈Ω

d(z2, y) +
1

n

∑
z1∈Ω

d(x, z1)

− 1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1)− d(x, y). (173)

Then β(x, y) is a cohesion measure for Ω.

We know from (160) that the cohesion measure γ(·, ·) defined in Section 8.2 has the following
representation:

γ(x, y) =
1

n

∑
z2∈Ω

d(z2, y) +
1

n

∑
z1∈Ω

d(x, z1)

− 1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1)− d(x, y).

As a result of Lemma 45, it also satisfies (C1)–(C3) in Definition 44. As such, we call the cohesion
measure γ(·, ·) defined in Section 8.2 the dual cohesion measure of the distance metric d(·, ·).

On the other hand, if β(x, y) is a cohesion measure for Ω, then there is an induced distance
metric and it can be viewed as the dual distance metric of the cohesion measure β(x, y). This is
shown in the following lemma and its proof is given in Section 9.14.
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ALGORITHM 8: The dual K-sets Algorithm
Input: A data set Ω = {x1, x2, . . . , xn}, a cohesion measure γ(·, ·), and the number of sets K.
Output: A partition of sets {S1, S2, . . . , SK}.
(0) Initially, choose arbitrarily K disjoint nonempty sets S1, . . . , SK as a partition of Ω.
(1) for i = 1, 2, . . . , n do

Compute the triangular distance ∆(xi, Sk) for each set Sk by using (178).
Find the set to which the point xi is closest in terms of the triangular distance.
Assign point xi to that set.

end
(2) Repeat from (1) until there is no further change.

Lemma 46. Suppose that β(·, ·) is a cohesion measure for Ω. Let

d(x, y) = (β(x, x) + β(y, y))/2− β(x, y). (174)

Then d(·, ·) is a distance metric that satisfies (D1)–(D4).

In the following theorem, we show the duality result. Its proof is given in Section 9.15.
Theorem 47. Consider a set of data points Ω. For a distance metric d(·, ·) that satisfies (D1)–(D4),

let

d∗(x, y) =
1

n

∑
z2∈Ω

d(z2, y) +
1

n

∑
z1∈Ω

d(x, z1)

− 1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1)− d(x, y) (175)

be the dual cohesion measure of d(·, ·). On the other hand, For a cohesion measure β(·, ·) that
satisfies (C1)–(C3), let

β∗(x, y) = (β(x, x) + β(y, y))/2− β(x, y) (176)

be the dual distance metric of β(·, ·). Then d∗∗(x, y) = d(x, y) and β∗∗(x, y) = β(x, y) for all
x, y ∈ Ω.

8.5 The dual K-sets algorithm
For the K-sets algorithm, we need to have a distance metric. In view of the duality theorem
between a cohesion measure and a distance metric, we propose the dual K-sets algorithm in
Algorithm 8 that uses a cohesion measure. As before, for a cohesion measure γ(·, ·) between two
points, we define the cohesion measure between two sets S1 and S2 as

γ(S1, S2) =
∑
x∈S1

∑
y∈S2

γ(x, y). (177)

Also, note from (169) that the triangular distance from a point x to a set S can be computed by
using the cohesion measure as follows:

∆(x, S) = γ(x, x)− 2

|S|
γ({x}, S) +

1

|S|2
γ(S, S). (178)

As a direct result of the duality theorem in Theorem 47 and the convergence result of the K-sets
algorithm in Theorem 43, we have the following convergence result for the dual K-sets algorithm.
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Corollary 48. As in (166), we define the normalized modularity as
∑K

k=1
1
|Sk|

γ(Sk, Sk). For the dual
K-sets algorithm, the normalized modularity is increasing when there is a change, i.e., a point
is moved from one set to another. Thus, the algorithm converges to a local optimum of the
normalized modularity. Moreover, for K = 2, the dual K-sets algorithm yields two clusters
when the algorithm converges.

8.6 Connections to the kernel K-means algorithm
In this section, we show the connection between the dual K-sets algorithm and the kernel K-
means algorithm in the literature (see e.g., [117], [119]). As shown in Section 7.4, the kernel
K-means algorithm is a special case of the spectral clustering algorithm when the similarity
measure is a positive definite matrix. In [119], it was shown that a general weighted kernel K-
means objective is mathematically equivalent to a weighted graph clustering objective, including
the ratio cut, normalized cut, and ratio association criteria.

Let us consider the n × n matrix Γ = (γi,j) with γi,j = γ(xi, xj) being the cohesion measure
between xi and xj . Call the matrix Γ the cohesion matrix (corresponding to the cohesion measure
γ(·, ·)). Since γ(xi, xj) = γ(xj, xi), the matrix Γ is symmetric and thus has real eigenvalues λk, k =
1, 2, . . . , n. Let I be the n× n identity matrix and σ ≥ −min1≤k≤n λk. Then the matrix Γ̃ = σI+ Γ is
positive semi-definite as its n eigenvalues λ̃k = σ+λk, k = 1, 2, . . . , N are all nonnegative. Let vk =
(vk,1, vk,2, . . . , vk,n)T , k = 1, 2, . . . , n, be the eigenvector of Γ corresponding to the eigenvalue λk.
Then vk is also the eigenvector of Γ̃ corresponding to the eigenvalue λ̃k. Thus, we can decompose
the matrix Γ̃ as follows:

Γ̃ =

n∑
k=1

λ̃kvkv
T
k , (179)

where vTk is the transpose of vk. Now we choose the mapping φ : Ω 7→ Rn as follows:

φ(xi) =
(√

λ̃1v1,i,

√
λ̃2v2,i, . . . ,

√
λ̃nvn,i

)T
, (180)

for i = 1, 2 . . . , n. Note that

φ(xi)
T · φ(xj) =

n∑
k=1

λ̃kvk,ivk,j

= (Γ̃)i,j = σδi,j + γ(xi, xj), (181)

where δi,j = 1 if i = j and 0 otherwise.
The “centroid” of a set S can be represented by the corresponding centroid in Rn, i.e.,

1

|S|
∑
y∈S

φ(y), (182)

and the square of the “distance” between a point x and the “centroid” of a set S is(
φ(x)− 1

|S|
∑
y∈S

φ(y)
)T
·
(
φ(x)− 1

|S|
∑
y∈S

φ(y)
)

= (1− 2

|S|
1{x∈S} +

1

|S|
)σ + γ(x, x)− 2

|S|
γ({x}, S)

+
1

|S|2
γ(S, S), (183)
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where 1{x∈S} is the indicator function that has value 1 if x is in S and 0 otherwise. In view of
(169), we then have (

φ(x)− 1

|S|
∑
y∈S

φ(y)
)T
·
(
φ(x)− 1

|S|
∑
y∈S

φ(y)
)

= (1− 2

|S|
1{x∈S} +

1

|S|
)σ + ∆(x, S), (184)

where ∆(x, S) is the triangular distance from a point x to a set S. Thus, the square of the “distance”
between a point x and the “centroid” of a set S is (1 − 1

|S|)σ + ∆(x, S) for a point x ∈ S and
(1 + 1

|S|)σ + ∆(x, S) for a point x 6∈ S. In particular, when σ = 0, the dual K-sets algorithm is the
same as the sequential kernel K-means algorithm for the kernel Γ̃. Unfortunately, the matrix Γ̃
may not be positive semi-definite if σ is chosen to be 0. As indicated in [117], a large σ decreases
(resp. increases) the distance from a point x to a set S that contains (resp. does not contain) that
point. As such, a point is more unlikely to move from one set to another set and the kernel
K-means algorithm is thus more likely to be trapped in a local optimum.

To summarize, the dual K-sets algorithm operates in the same way as a sequential version
of the classical kernel K-means algorithm by viewing the matrix Γ as a kernel. However, there
are two key differences between the dual K-sets algorithm and the classical kernel K-means
algorithm: (i) the dual K-sets algorithm guarantees the convergence even though the matrix Γ
from a cohesion measure is not positive semi-definite, and (ii) the dual K-sets algorithm can only
be operated sequentially and the kernel K-means algorithm can be operated in batches. To further
illustrate the difference between these two algorithms, we show in the following two examples
that a cohesion matrix may not be positive semi-definite and a positive semi-definite matrix may
not be a cohesion matrix.

Example 49. In this example, we show there is a cohesion matrix Γ that is not a positive semi-definite
matrix.

Γ =


0.44 0.04 0.04 0.04 −0.56
0.04 0.64 −0.36 −0.36 0.04
0.04 −0.36 0.64 −0.36 0.04
0.04 −0.36 −0.36 0.64 0.04
−0.56 0.04 0.04 0.04 0.44

 . (185)

The eigenvalues of this matrix are −0.2, 0, 1, 1, and 1.

Example 50. In this example, we show there is a positive semi-definite matrix M = (mi,j) that is not an
cohesion matrix.

M =


0.375 −0.025 −0.325 −0.025
−0.025 0.875 −0.025 −0.825
−0.325 −0.025 0.375 −0.025
−0.025 −0.825 −0.025 0.875

 . (186)

The eigenvalues of this matrix are 0, 0.1, 0.7, and 1.7. Even though the matrix M is symmetric and has
all its row sums and column sums being 0, it is still not a cohesion matrix as m1,1−m1,2−m1,4 +m2,4 =
−0.4 < 0.
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8.7 Constructing a cohesion measure from a similarity measure
A similarity measure is in general defined as a bivariate function of two distinct data points
and it is often characterized by a square matrix without specifying the diagonal elements. In
the following, we show how one can construct a cohesion measure from a symmetric bivariate
function by further specifying the diagonal elements. Its proof is given in Section 9.16.
Proposition 51. Suppose a bivariate function β0 : Ω×Ω 7→ R is symmetric, i.e., β0(x, y) = β0(y, x).

Let β1(x, y) = β0(x, y) for all x 6= y and specify β1(x, x) such that

β1(x, x) ≥ max
x 6=y 6=z

[β1(x, z) + β1(x, y)− β1(y, z)]. (187)

Also, let

β(x, y) = β1(x, y)− 1

n

∑
z1∈Ω

β1(z1, y)

− 1

n

∑
z2∈Ω

β1(x, z2) +
1

n2

∑
z1∈Ω

∑
z2∈Ω

β1(z1, z2). (188)

Then β(x, y) is a cohesion measure for Ω.

We note that one simple choice for specifying β1(x, x) in (187) is to set

β1(x, x) = 2βmax − βmin, (189)

where
βmax = max

x 6=y
β(x, y), (190)

and
βmin = min

x 6=y
β(x, y). (191)

In particular, if the similarity measure β(x, y) only has values 0 and 1 as in the adjacency matrix
of a simple undirected graph, then one can simply choose β1(x, x) = 2 for all x.

Example 52. (A cohesion measure for a graph) As an illustrating example, suppose A = (ai,j) is the
n × n adjacency matrix of a simple undirected graph with ai,j = 1 if there is an edge between node i
and node j and 0 otherwise. Let ki =

∑n
j=1 ai,j be the degree of node i and m = 1

2

∑n
i=1 ki be the total

number of edges in the graph. Then one can simply let β1(i, j) = 2δi,j + ai,j , where δi,j = 1 if i = j and
0 otherwise. By doing so, we then have the following cohesion measure

β(i, j) = 2δi,j + ai,j −
2 + ki
n
− 2 + kj

n
+

2m+ 2n

n2
. (192)

We note that such a cohesion measure is known as the deviation to indetermination null model in [120].
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8.8 The K-sets+ algorithm: clustering data points in a semi-metric space
Though the extensions of the duality result and the equivalent statements for clusters to semi-
metric spaces are basically the same as those in [67], one problem arises when extending the K-
sets algorithm to a semi-metric space. The key problem is that the triangular distance (∆-distance)
defined in the K-sets algorithm (see Definition 53 below) might not be nonnegative in a semi-
metric space.
Definition 53. (∆-distance [67]) For a symmetric bivariate function γ(·, ·) on a set of data points

Ω = {x1, x2, . . . , xn}, the ∆-distance from a point x to a set S, denoted by ∆(x, S), is defined as
follows:

∆(x, S) = γ(x, x)− 2

|S|
γ(x, S) +

1

|S|2
γ(S, S), (193)

where γ(S1, S2) is defined (162).

Note from (173) that the ∆-distance from a point x to a set S in a semi-metric space can also be
written as follows:

∆(x, S) =
1

|S|2
∑
z1∈S

∑
z2∈S

(
d(x, z1) + d(x, z2)− d(z1, z2)

)
. (194)

Now consider the data set of three points Ω = {x, y, z} with the semi-metric d(·, ·) in Table 7. For
S = {y, z}, one can easily compute from (194) that ∆(x, S) = −1 < 0.

TABLE 7
A data set of three points Ω = {x, y, z} with a semi-metric d(·, ·).

d(·, ·) x y z
x 0 1 1
y 1 0 6
z 1 6 0

Since the ∆-distance might not be nonnegative in a semi-metric space, the proofs for the
convergence and the performance guarantee of the K-sets algorithm in [67] are no longer valid.
Fortunately, the ∆-distance in a semi-metric space has the following (weaker) nonnegative prop-
erty that will enable us to prove the performance guarantee of the K-sets+ algorithm (defined in
Algorithm 9 later) for clustering data points in a semi-metric space.
Proposition 54. Consider a data set Ω = {x1, x2, . . . , xn} with a semi-metric d(·, ·). For any subset
S of Ω, ∑

x∈S

∆(x, S) = |S|d̄(S, S) ≥ 0. (195)

The proof of (195) in Proposition 54 follows directly from (194) and (164). To introduce the
K-sets+ algorithm, we first define the adjusted ∆-distance in Definition 55 below.
Definition 55. (Adjusted ∆-distance) The adjusted ∆-distance from a point x to a set S, denoted

by ∆a(x, S), is defined as follows:

∆a(x, S) =


|S|
|S|+1

∆(x, S), if x 6∈ S,
|S|
|S|−1

∆(x, S), if x ∈ S and |S| > 1,

−∞, if x ∈ S and |S| = 1.

(196)

Instead of using the ∆-distance for the assignment of a data point in the K-sets algorithm, we
use the adjusted ∆-distance for the assignment in the K-sets+ algorithm. We outline the K-sets+
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ALGORITHM 9: The K-sets+ Algorithm
Input: A data set Ω = {x1, x2, . . . , xn}, a symmetric matrix Γ = (γ(·, ·)) and the number of

sets K.
Output: A partition of sets {S1, S2, . . . , SK}.
(0) Initially, choose arbitrarily K disjoint nonempty sets S1, . . . , SK as a partition of Ω.
(1) for i = 1, 2, . . . , n do

Compute the adjusted ∆-distance ∆a(xi, Sk) for each set Sk by using (193) and (196).
Find the set to which the point xi is closest in terms of the adjusted ∆-distance. Assign
that point xi to that set.

end
(2) Repeat from (1) until there is no further change.

algorithm in Algorithm 9. Note that in Algorithm 9, the bivariate function γ(·, ·) is required to
be symmetric, i.e., γ(x, y) = γ(y, x). If γ(·, ·) is not symmetric, one may consider using γ̂(x, y) =
(γ(x, y) + γ(y, x))/2.

In the following theorem, we show the convergence and the performance guarantee of the
K-sets+ algorithm. The proof of Theorem 56 is given in Section 9.17.
Theorem 56. For a data set Ω = {x1, x2, . . . , xn} with a symmetric matrix Γ = (γ(·, ·)), consider the

clustering problem that finds a partition {S1, S2, . . . , SK} of Ω with a fixed K that maximizes
the objective function

∑K
k=1

1
|Sk|

γ(Sk, Sk).

(i) The K-sets+ algorithm in Algorithm 9 converges monotonically to a local optimum of
the optimization problem in a finite number of iterations.

(ii) Suppose that γ(·, ·) is a semi-cohesion measure. Let S1, S2, . . . , SK be the K sets when
the algorithm converges. Then for all i 6= j, the two sets Si and Sj are two clusters if
these two sets are viewed in isolation (by removing the data points not in Si∪Sj from
Ω).

In particular, if K = 2, it then follows from Theorem 56(ii) that the K-sets+ algorithm yields two
clusters for data points in a semi-metric space.

8.9 Clustering with a symmetric similarity measure
In this section, we further extend the applicability of the K-sets+ algorithm to the clustering
problem with a symmetric similarity measure. A similarity measure is generally referred to as
a bivariate function that measures how similar two data points are. The clustering problem
with a similarity measure is to cluster data points so that similar data points are clustered
together. For a symmetric similarity measure γ(·, ·), we have shown in Theorem 56(i) that the
K-sets+ algorithm in Algorithm 9 converges monotonically to a local optimum of the optimization
problem

∑K
k=1

1
|Sk|

γ(Sk, Sk) within a finite number of iterations. Thus, the K-sets+ algorithm can
be applied for clustering with a symmetric similarity measure. But what is the physical meaning
of the sets returned by the K-sets+ algorithm for such a symmetric similarity measure? In order
to answer this question, we show there is a natural semi-cohesion measure from a symmetric
similarity measure and the K-sets+ algorithm that uses this semi-cohesion measure converges
to the same partition as that using the original symmetric similarity measure (if they both use
the same initial partition). As a direct consequence of Theorem 56(ii), any two sets returned by
the K-sets+ algorithm for such a symmetric similarity measure are clusters with respect to the
semi-cohesion measure when they are viewed in isolation.
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In Lemma 57 below, we first show how one can map a symmetric similarity measure to a
semi-cohesion measure. The proof is given in Section 9.18.
Lemma 57. For a symmetric similarity measure γ(·, ·), let

γ̃(x, y) = γ(x, y)− 1

n
γ(x,Ω)− 1

n
γ(y,Ω)

+
1

n2
γ(Ω,Ω) + σδ(x, y)− σ

n
, (197)

where δ(x, y) is the usual δ function (that has value 1 if x = y and 0 otherwise), and σ is a
constant that satisfies

σ ≥ max
x 6=y

[γ(x, y)− (γ(x, x) + γ(y, y))/2]. (198)

Then the bivariate function γ̃(·, ·) in (198) is a semi-cohesion measure for Ω, i.e., it satisfies (C1),
(C2) and (C3).

In the following lemma, we further establish the connections for the ∆-distance and the adjusted
∆-distance between the original symmetric similarity measure γ(·, ·) and the semi-cohesion mea-
sure γ̃(·, ·) in (197). The proof is given in Section 9.19.
Lemma 58. Let ∆(x, S) (resp. ∆̃(x, S)) be the ∆-distance from a point x to a set S with respect to
γ(·, ·) (resp. γ̃(·, ·)). Also, let ∆a(x, S) (resp. ∆̃a(x, S)) be the adjusted ∆-distance from a point x
to a set S with respect to γ(·, ·) (resp. γ̃(·, ·)). Then

∆̃(x, S) =

{
∆(x, S) + σ(1− 1

|S|), if x 6∈ S,
∆(x, S) + σ(1 + 1

|S|), if x ∈ S. (199)

Moreover,
∆̃a(x, S) = ∆a(x, S) + σ. (200)

It is easy to see that for any partition S1, S2, . . . , , SK

K∑
k=1

1

|Sk|
γ̃(Sk, Sk)

=

K∑
k=1

1

|Sk|
γ(Sk, Sk)−

1

n
γ(Ω,Ω) + (K − 1)σ. (201)

Thus, optimizing
∑K

k=1
1
|Sk|

γ(Sk, Sk) with respect to the symmetric similarity measure γ(·, ·) is
equivalent to optimizing

∑K
k=1

1
|Sk|

γ̃(Sk, Sk) with respect to the semi-cohesion measure γ̃(·, ·).
Since

∆̃a(x, S) = ∆a(x, S) + σ, (202)

we conclude that for these two optimization problems, the K-sets+ algorithm converges to the
same partition if they both use the same initial partition.

Note that the K-means algorithm needs the data points to be in a Euclidean space, the kernel
K-means algorithm needs the data points to be mapped into some Euclidean space, and the K-sets
algorithm needs the data points to be in a metric space. The result in Lemma 58 shows that the
K-sets+ algorithm lifts all the constraints on the data points and it can be operated merely by a
symmetric similarity measure.
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8.10 Clustering of a real network
In this section, we test the K-sets+ algorithm on the real network from the WonderNetwork
website [121]. In this dataset, there are 216 servers in different locations and the latency (measured
by the round trip time) between any two servers of these 216 servers are recorded in real time.
The dataset in our experiment is a snapshot on Sept. 24, 2016. For this dataset, the triangular
inequality is not always satisfied. For example, we notice that latency(Adelaide, Athens)=250,
latency(Athens, Albany)=138, latency(Adelaide, Albany)=400, and 250 + 138 ≤ 400. In addition
to the latency data, the WonderNetwork website also provides the geographic location of each
server. We then use the Haversine formula to compute the distance between any two servers.
In the WonderNetwork dataset, the latency measure from location L1 to location L2 is slightly
different from that from location L2 to location L1. To ensure that the latency measure is a semi-
metric, we simply symmetrize the latency matrix by taking the average of the latency measures
from both directions. In our experiments, the number of clusters K is set to 5. We run 20 times
of the K-sets+ algorithm by using the distance matrix and the latency matrix, respectively. In
each of the 20 trials, the initial partition is randomly selected. The output partition that has the
best objective value from these 20 trials is selected. The results for the distance matrix and the
latency matrix are shown in Figure 25(a) and (b), respectively. In Figure 25(a) and (b), the servers
that are in the same cluster are marked with the same colored marker. In view of Figure 25(a),
we can observe that almost all the servers are partitioned into densely packed clusters except
for the servers in South America and Africa. On the other hand, as shown in Figure 25(b), the
servers in South America and Africa are merged into other clusters. To shed more light on these
interesting differences, we compare the findings in Figure 25(b) to the Submarine Cable Map
[122] (which records the currently active submarine cables). We notice that there are many cables
placed around South America, connecting to the Caribbean and then to the East Coast of the
United States. These cables greatly reduce the latency from South America to North America
and thus cause the servers in South America to be clustered with the servers in North America.
Similarly, there are a few connected cables between Africa and Europe. Therefore, the servers
in Africa and Europe are clustered together. Due to many directly connected cables from Dubai
to the Singapore Strait, servers around India are not clustered with the other servers in Asia. In
particular, there are two servers marked with green dots, located in Jakarta and Singapore, that
are clustered with servers in India even though they are geographically closer to the East Asia.
These outliers have low latency to communicate with those servers in India. Finally, there are
three servers, two in Russia and one in Lahore, that have low latency to the servers in Europe
and they are clustered with the servers in Europe.
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Fig. 25. Clustering for the WonderNetwork dataset: (a) the (geographic) distance matrix and (b) the latency matrix.

9 PROOFS

9.1 Proof of Proposition 7
Since the relative centrality is a conditional probability and the centrality is a probability, the
properties in (i),(ii) and (iii) follow trivially from the property of probability measures.

(iv) From the symmetric property of p(·, ·), the definitions of relative centrality and centrality in
(18) and (16), it follows that

C(S1)C(S2|S1) = P(W ∈ S1)P(W ∈ S2|V ∈ S1)

= P(V ∈ S1)P(W ∈ S2|V ∈ S1) = P(V ∈ S1,W ∈ S2)

= P(V ∈ S2,W ∈ S1). (203)

Similarly, we also have

C(S2)C(S1|S2) = P(V ∈ S1,W ∈ S2) = P(V ∈ S2,W ∈ S1). (204)

Thus,
C(S1)C(S2|S1) = C(S2)C(S1|S2).

9.2 Proof of Theorem 12
We first prove that the first four statements are equivalent by showing (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i).

(i)⇒ (ii): Note from Proposition 7 (i) and (ii) that C(S|S) + C(Sc|S) = C(Vg|S) = 1 and C(S) +
C(Sc) = C(Vg) = 1. It then follows from the reciprocal property in Proposition 7(iv) that

C(Sc)(C(S|S)− C(S|Sc))
= C(Sc)C(S|S)− C(Sc)C(S|Sc)
= (1− C(S))C(S|S)− C(S)C(Sc|S)

= (1− C(S))C(S|S)− C(S)(1− C(S|S))

= C(S|S)− C(S) = Str(S) ≥ 0.



80

As we assume that 0 < C(S) < 1, we also have 0 < C(Sc) < 1. Thus,

C(S|S)− C(S|Sc) ≥ 0.

(ii)⇒ (iii): Since we assume that C(S|S) ≥ C(S|Sc), we have from C(S|S)+C(Sc|S) = C(Vg|S) =
1 that

1 = C(S|S) + C(Sc|S) ≥ C(S|Sc) + C(Sc|S).

Multiplying both sides by C(Sc) yields

C(Sc) ≥ C(Sc)C(S|Sc) + C(Sc)C(Sc|S).

From the reciprocal property in Proposition 7(iv) and C(S) + C(Sc) = C(Vg) = 1, it follows that

C(Sc) ≥ C(S)C(Sc|S) + C(Sc)C(Sc|S)

= (C(S) + C(Sc))C(Sc|S)

= C(Sc|S).

(iii)⇒ (iv): Note from the reciprocal property in Proposition 7(iv) that

C(S)C(Sc|S) = C(Sc)C(S|Sc). (205)

It then follows from C(Sc|S) ≤ C(Sc) that C(S|Sc) ≤ C(S).
(iv)⇒ (i): Since we assume that C(S|Sc) ≤ C(S), it follows from (205) that C(Sc|S) ≤ C(Sc). In

conjunction with C(S|S) + C(Sc|S) = C(Vg|S) = 1 and C(S) + C(Sc) = C(Vg) = 1, we have

C(S|S)− C(S) = C(Sc)− C(Sc|S) ≥ 0.

Now we show that and (iv) and (v) are equivalent. Since C(S|Sc) + C(Sc|Sc) = C(Vg|Sc) = 1
and C(S) + C(Sc) = C(Vg) = 1, we have

C(S|Sc)− C(S) = C(Sc)− C(Sc|Sc) = −Str(Sc).

Thus, C(S|Sc) ≤ C(S) if and only if Str(Sc) ≥ 0.
Replacing S by Sc, we see that (v) and (vi) are also equivalent because (i) and (ii) are equivalent.

9.3 Proof of Theorem 18
(i) Since we choose two sets that have a nonnegative correlation measure, i.e., q(Si, Sj) ≥ 0, to
merge, it is easy to see from (67) and (61) that the modularity is non-decreasing in every iteration.

(ii) Suppose that there is only one set left. Then this set is Vg and it is the trivial community.
On the other hand, suppose that there are C ≥ 2 sets {S1, S2, . . . , SC} left when the algorithm
converges. Then we know that q(Si, Sj) < 0 for i 6= j.

Note from (58) and (59) that for any node v,

q(v, Vg) =
∑
w∈Vg

q(v, w) = 0. (206)

Thus,
q(Si, Vg) =

∑
v∈Si

q(v, Vg) = 0. (207)

Since {S1, S2, . . . , SC} is a partition of Vg, it then follows that

0 = q(Si, Vg) = q(Si, Si) +
∑
j 6=i

q(Si, Sj). (208)

Since q(Si, Sj) < 0 for i 6= j, we conclude that q(Si, Si) > 0 and thus Si is a community.
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9.4 Proof of Corollary 20
Suppose that Si and Sj are merged into the new set Sk. According to the update rules in (68) and
the symmetric property of q(·, ·), we know that

q(Sk, S`) = q(S`, Sk) = q(Si, S`) + q(Sj, S`) = q(Si, S`) + q(S`, Sj),

for all ` 6= k. Thus,

q̄(Sk, S`) =
|Si|

|Si|+ |Sj|
q̄(Si, S`) +

|Sj|
|Si|+ |Sj|

q̄(S`, Sj).

Since we select the two sets with the largest average correlation measure in each merge operation,
we have q̄(Si, S`) ≤ q̄(Si, Sj) and q̄(S`, Sj) ≤ q̄(Si, Sj). These then lead to

q̄(Sk, S`) ≤ q̄(Si, Sj).

Thus, q̄(Si, Sj) is not less than the average correlation measure between any two sets after the
merge operation. As such, the average correlation measure at each merge is non-increasing.

9.5 Proof of Theorem 21
It suffices to show that if node v is in a set S1 and q0(v, S2) > q0(v, S1), then move node v from
S1 to S2 increases the value of the modularity. Also let P (resp. P ′) be the partition before (resp.
after) the change. Since q0(·, ·) is symmetric and q0(v, v) = 0, it follows from (71) that

Q(P ′)−Q(P)

= q0(S1\{v}, S1\{v}) + q0(S2 ∪ {v}, S2 ∪ {v})
−q0(S1, S1)− q0(S2, S2)

= 2
(
q0(v, S2)− q0(v, S1)

)
> 0.

As the modularity is non-decreasing after a change of the partition, there is no loop in the
algorithm. Since the number of partitions is finite, the partitional algorithm thus converges in
a finite number of steps.

9.6 Proof of Lemma 23
Note from (53) that

Q̂(Pa) =

K∑
k=1

∑
c1∈Sk

∑
c2∈Sk

(p̂(c1, c2)− p̂V (c1)p̂W (c2)), (209)

where

p̂V (c1) = p̂W (c1) =

C∑
c2=1

p̂(c1, c2) (210)

is the marginal distribution of the bivariate distribution p̂(·, ·). In view of (75) and (76), it is easy
to verify that ∑

c1∈Sk

∑
c2∈Sk

p̂(c1, c2) =
∑
u∈Sok

∑
v∈Sok

p(u, v). (211)

Similarly, ∑
c1∈Sk

p̂V (c1) =
∑
c1∈Sk

C∑
c2=1

p̂(c1, c2)

=
∑
u∈Sok

∑
v∈Vg

p(u, v) =
∑
u∈Sok

pV (u). (212)

From (209), (211) and (212), it then follows that Q̂(Pa) = Q(Po).
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9.7 Proof of Theorem 24
(i) This is a direct consequence of the modularity increasing result in Theorem 21 and the
modularity preserving result in Lemma 23.

(ii) Suppose that Algorithm 3 returns a partition {S1, S2, . . . , SC}. Observe from (F2) of Al-
gorithm 3 that the algorithm terminates when the deepest level of the partitional algorithm
returns the same partition as its input partition. Let p∗(u, v), p̃∗(u, v), and q∗(u, v) be the bivariate
distribution that has the same marginal distributions, the symmetric bivariate distribution and
the correlation measure (see (58)) at the deepest level, respectively. Also, let q∗0(u, v) = q∗(u, v) for
u 6= v and 0 otherwise. As the initial partition in (F0) is the partition that contains a single element
in each set, the condition that the output partition is the same as the input partition (see (P1) in
Algorithm 2) implies that

q∗(u, v) = q∗0(u, v) ≤ q∗0(v, v) = 0

for all u 6= v and p̃∗(u, v) > 0. On the other hand, if p̃∗(u, v) = 0, then q∗(u, v) ≤ 0. Thus, we
conclude that in the deepest level q∗(u, v) ≤ 0 for all u 6= v. Let Su be the set recursively expanded
from the (super)giant node u in the deepest level. Analogous to the modularity preserving proof
in Lemma 23, one can easily show that q(Su, Sv) = q∗(u, v) and thus q(Su, Sv) ≤ 0 for all Su 6= Sv.
For a correlation measure, we know that

∑C
v=1 q(Su, Sv) = 0. Thus, q(Su, Su) ≥ 0 and Su is indeed

a community (cf. the proof of Theorem 18(ii)).

9.8 Proof of Lemma 33
Since pV (v) = pW (v) for all v, it then follows from (93) that

Q(P) =

C∑
c=1

∑
v∈Sc

∑
w∈Sc

(p(v, w)− pV (v)pV (w)) (213)

=

C∑
c=1

∑
v∈Sc

∑
w∈Sc

(p(w, v)− pV (w)pV (v)). (214)

Adding (213) and (214) yields

2Q(P) =

C∑
c=1

∑
v∈Sc

∑
w∈Sc

(p(v, w) + p(w, v)− 2pV (v)pV (w)). (215)

As p̃(v, w) = (p(v, w) + p(w, v))/2, we have

p̃V (v) =
∑
w∈Vg

p̃(v, w) = pV (v).

Thus,

Q(P) =

C∑
c=1

∑
v∈Sc

∑
w∈Sc

(p̃(v, w)− p̃V (v)p̃V (w)) = Q̃(P).

9.9 Proof of Proposition 37
(i) Since the distance measure d(·, ·) is symmetric, we have from (160) that γ(x, y) = γ(y, x). Thus,
the cohesion measure between two points is symmetric.

(ii) We note from (161) that

γ(x, x) =
1

n2

∑
z2∈Ω

∑
z1∈Ω

(
d(x, z1) + d(z2, x)− d(z1, z2)− d(x, x)

)
. (216)
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Since d(x, x) = 0, we have from the triangular inequality that γ(x, x) ≥ 0.
(iii) Note from (216) and (161) that

γ(x, x)− γ(x, y)

=
1

n

∑
z2∈Ω

(
d(z2, x)− d(x, x) + d(x, y)− d(z2, y)

)
.

Since d(x, x) = 0, we have from the triangular inequality that

γ(x, x) ≥ γ(x, y).

(iv) This can be easily verified by summing y in (160).

9.10 Proof of Theorem 39
We first show several properties that will be used in the proof of Theorem 39.
Proposition 59.

(i) Suppose that S2 and S3 are two disjoint subsets of Ω. Then

d̄(S1, S2 ∪ S3)

=
|S2|

|S2|+ |S3|
d̄(S1, S2) +

|S3|
|S2|+ |S3|

d̄(S1, S3).

(217)

(ii) The cohesion measure between two sets can be represented in terms of the average
distance as follows:

γ(S1, S2) = |S1| · |S2| ·
(
d̄(Ω, S2) + d̄(S1,Ω)

−d̄(Ω,Ω)− d̄(S1, S2)
)
. (218)

(iii) Suppose that S is a nonempty set and it is not equal to Ω. Let Sc = Ω\S be the set of
points that are not in S. Then

γ(S, S) = −γ(Sc, S) = γ(Sc, Sc). (219)

Proof. (i) This is trivial from the definition of the average distance in (164).
(ii) From (160), one can represent the cohesion measure between two points in terms of the

average distance as follows:

γ(x, y) = d̄(Ω, y) + d̄(x,Ω)− d̄(Ω,Ω)− d(x, y). (220)

That (218) holds then follows from (162) and (220).
(iii) From (218), we know that γ(Ω, S) = γ(S ∪ Sc, S) = 0. Thus, γ(S, S) + γ(Sc, S) = 0. We then

have
γ(S, S) = −γ(Sc, S). (221)

From (221), we also have
γ(Sc, Sc) = −γ(S, Sc). (222)

From the symmetric property of the cohesion measure, we have γ(Sc, S) = γ(S, Sc). As a result of
(221) and (222), we then have

γ(S, S) = γ(Sc, Sc).
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Proof. (Theorem 39) (i)⇒ (ii): If γ(S, S) ≥ 0, we then have from (219) that

γ(Sc, Sc) = γ(S, S) ≥ 0. (223)

(ii)⇒ (iii): If γ(Sc, Sc) ≥ 0, then it follows from (219) that

γ(Sc, S) = −γ(Sc, Sc) ≤ 0. (224)

(iii) ⇒ (iv): If γ(Sc, S) ≤ 0, then we have from (219) that γ(S, S) = −γ(Sc, S) ≥ 0. Thus,
γ(S, S) ≥ γ(S, Sc).

(iv)⇒ (v): If γ(S, S) ≥ γ(S, Sc), then it follows from (224) that

γ(S, S) ≥ γ(S, Sc) = −γ(S, S).

This then leads to γ(S, S) ≥ 0. From (218), we know that

γ(S, S) = |S|2 ·
(

2d̄(S,Ω)− d̄(Ω,Ω)− d̄(S, S)
)
≥ 0. (225)

Thus, 2d̄(S,Ω)− d̄(Ω,Ω)− d̄(S, S) ≥ 0.
(v)⇒ (vi): Observe from (217) that

d̄(S,Ω) = d̄(S, S ∪ Sc) =
|S|
n
d̄(S, S) +

|Sc|
n
d̄(S, Sc),

and that

d̄(Ω,Ω) = d̄(S ∪ Sc, S ∪ Sc) =
|S|2

n2
d̄(S, S) +

2|S||Sc|
n2

d̄(S, Sc) +
|Sc|2

n2
d̄(Sc, Sc).

Thus,

2d̄(S,Ω)− d̄(Ω,Ω)− d̄(S, S) = (
(|Sc|)
n

)2
(

2d̄(S, Sc)− d̄(S, S)− d̄(Sc, Sc)
)
. (226)

Clearly, if 2d̄(S,Ω)− d̄(Ω,Ω)− d̄(S, S) ≥ 0, then 2d̄(S, Sc)− d̄(S, S)− d̄(Sc, Sc) ≥ 0.
(vi)⇒ (i): From (225) and (226), we know that γ(S, S) ≥ 0 if 2d̄(S, Sc)− d̄(S, S)− d̄(Sc, Sc) ≥ 0.

9.11 Proof of Lemma 42
(i) From the triangular inequality, it is easy to see from the definition of the triangular distance in
(167) that ∆(x, S) ≥ 0. Note that

1

|S|2
∑
z1∈S

∑
z2∈S

d(x, z1) =
1

|S|
∑
z1∈S

d(x, z1) = d̄({x}, S).

Similarly,
1

|S|2
∑
z1∈S

∑
z2∈S

d(x, z2) = d̄({x}, S).

Thus, the triangular distance in (167) can also be written as ∆(x, S) = 2d̄({x}, S)− d̄(S, S).
(ii) Recall from (218) that

γ(S1, S2) = |S1| · |S2| ·
(
d̄(Ω, S2) + d̄(S1,Ω)

−d̄(Ω,Ω)− d̄(S1, S2)
)
.
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Thus,

γ(x, x)− 2

|S|
γ({x}, S) +

1

|S|2
γ(S, S)

= 2d̄({x},Ω)− d̄(Ω,Ω)− 2
(
d̄({x},Ω) + d̄(S,Ω)

−d̄(Ω,Ω)− d̄({x}, S)
)

+
(

2d̄(Ω, S)− d̄(Ω,Ω)− d̄(S, S)
)

= 2d̄({x}, S)− d̄(S, S) = ∆(x, S),

where we use (i) of the lemma in the last equality.
(iii) Note from (ii) that

K∑
k=1

∑
x∈Sk

∆(x, Sk)

=

K∑
k=1

∑
x∈Sk

(
γ(x, x)− 2

|Sk|
γ({x}, Sk)

+
1

|Sk|2
γ(Sk, Sk)

)
=

K∑
k=1

∑
x∈Sk

γ(x, x)−
K∑
k=1

1

|Sk|
γ(Sk, Sk)

=
∑
x∈Ω

γ(x, x)−Qnor(P). (227)

(iv) From (i) of this lemma, we have
K∑
k=1

∑
x∈Sk

∆(x, Sk) =

K∑
k=1

∑
x∈Sk

(2d̄({x}, Sk)− d̄(Sk, Sk)).

Observe that ∑
x∈Sk

d̄({x}, Sk) = |Sk|d̄(Sk, Sk).

Thus,
K∑
k=1

∑
x∈Sk

∆(x, Sk) =

K∑
k=1

|Sk| · (2d̄(Sk, Sk)− d̄(Sk, Sk))

=

K∑
k=1

|Sk| · d̄(Sk, Sk) =

K∑
k=1

∑
x∈Sk

d̄({x}, Sk)

=
∑
x∈Ω

d̄(x, Sc(x)).

9.12 Proof of Theorem 43
In this section, we prove Theorem 43. For this, we need to prove the following two inequalities.
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Lemma 60. For any set S and any point x that is not in S,∑
y∈S∪{x}

∆(y, S ∪ {x}) ≤
∑

y∈S∪{x}

∆(y, S), (228)

and ∑
y∈S

∆(y, S) ≤
∑
y∈S

∆(y, S ∪ {x}). (229)

Proof. We first show that for any set S and any point x that is not in S,

d̄(S ∪ {x}, S ∪ {x})− 2d̄(S ∪ {x}, S) + d̄(S, S) ≤ 0. (230)

From the symmetric property and the weighted average property in Proposition 59(i), we have

d̄(S ∪ {x}, S ∪ {x}) =
|S|2

(|S|+ 1)2
d̄(S, S)

+
2|S|

(|S|+ 1)2
d̄({x}, S) +

1

(|S|+ 1)2
d̄({x}, {x}),

and
d̄(S ∪ {x}, S) =

|S|
|S|+ 1

d̄(S, S) +
1

|S|+ 1
d̄({x}, S).

Note that
d̄({x}, {x}) = d(x, x) = 0.

Thus,

d̄(S ∪ {x}, S ∪ {x})− 2d̄(S ∪ {x}, S) + d̄(S, S)

=
1

(|S|+ 1)2

(
d̄(S, S)− 2d̄({x}, S)

)
≤ 0,

where we use (168) in the last inequality.
Note from (168) that ∑

y∈S2

∆(y, S1) =
∑
y∈S2

(2d̄({y}, S1)− d̄(S1, S1))

= |S2| ·
(

2d̄(S1, S2)− d̄(S1, S1)
)
. (231)

Using (231) yields ∑
y∈S∪{x}

∆(y, S ∪ {x})−
∑

y∈S∪{x}

∆(y, S)

= |S ∪ {x}| ·
(

2d̄(S ∪ {x}, S ∪ {x})

−d̄(S ∪ {x}, S ∪ {x})
)

−|S ∪ {x}| ·
(

2d̄(S, S ∪ {x})− d̄(S, S)
)

= |S ∪ {x}| ·
(
d̄(S ∪ {x}, S ∪ {x})

−2d̄(S, S ∪ {x}) + d̄(S, S)
)
. (232)
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As a result of (230), we then have∑
y∈S∪{x}

∆(y, S ∪ {x})−
∑

y∈S∪{x}

∆(y, S) ≤ 0.

Similarly, using (231) and (230) yields∑
y∈S

∆(y, S)−
∑
y∈S

∆(y, S ∪ {x})

= |S| ·
(

2d̄(S, S)− d̄(S, S)
)

−|S| ·
(

2d̄(S ∪ {x}, S)− d̄(S ∪ {x}, S ∪ {x})
)

= |S| ·
(
d̄(S ∪ {x}, S ∪ {x})

−2d̄(S ∪ {x}, S) + d̄(S, S)
)

≤ 0 (233)

Proof. (Theorem 43) (i) Let Sk (resp. S ′k), k = 1, 2, . . . , K, be the partition before (resp. after)
the change. Also let c(x) be the index of the set to which x belongs. Suppose that ∆(xi, Sk∗) <
∆(xi, Sc(xi)) and xi is moved from Sc(xi) to Sk∗ for some point xi and some k∗. In this case, we
have S ′k∗ = Sk∗ ∪ {xi}, S ′c(xi) = S ′c(xi)\{x} and S ′k = Sk for all k 6= c(xi), k

∗. It then follows from
∆(xi, Sk∗) < ∆(xi, Sc(xi)) that

K∑
k=1

∑
x∈Sk

∆(x, Sk)

=
∑

k 6=c(xi),k∗

∑
x∈Sk

∆(x, Sk)

+
∑

x∈Sc(xi)

∆(x, Sc(xi)) +
∑
x∈Sk∗

∆(x, Sk∗)

=
∑

k 6=c(xi),k∗

∑
x∈Sk

∆(x, Sk) +
∑

x∈Sc(xi)\{xi}

∆(x, Sc(xi))

+∆(xi, Sc(xi)) +
∑
x∈Sk∗

∆(x, Sk∗)

>
∑

k 6=c(xi),k∗

∑
x∈Sk

∆(x, Sk) +
∑

x∈Sc(xi)\{xi}

∆(x, Sc(xi))

+∆(xi, Sk∗) +
∑
x∈Sk∗

∆(x, Sk∗)

=
∑

k 6=c(xi),k∗

∑
x∈S′k

∆(x, S ′k) +
∑

x∈Sc(xi)\{xi}

∆(x, Sc(xi))

+
∑

x∈Sk∗∪{xi}

∆(x, Sk∗), (234)
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where we use the fact that S ′k = Sk for all k 6= c(xi), k
∗, in the last equality. From (228) and

S ′k∗ = Sk∗ ∪ {xi}, we know that∑
x∈Sk∗∪{xi}

∆(x, Sk∗) ≥
∑

x∈Sk∗∪{xi}

∆(x, Sk∗ ∪ {xi})

=
∑
x∈S′

k∗

∆(x, S ′k∗). (235)

Also, it follows from (229) and S ′c(xi) = S ′c(xi)\{xi} that∑
x∈Sc(xi)\{xi}

∆(x, Sc(xi)) ≥
∑

x∈Sc(xi)\{xi}

∆(x, Sc(xi)\{xi})

=
∑

x∈S′
c(xi)

∆(x, S ′c(xi)). (236)

Using (235) and (236) in (234) yields
K∑
k=1

∑
x∈Sk

∆(x, Sk)

>
∑

k 6=c(xi),k∗

∑
x∈S′k

∆(x, S ′k) +
∑
x∈S′

k∗

∆(x, S ′k∗)

+
∑

x∈S′
c(xi)

∆(x, S ′c(xi))

=

K∑
k=1

∑
x∈S′k

∆(x, S ′k). (237)

In view of (170) and (237), we then conclude that the normalized modularity is increasing
when there is a change. Since there is only a finite number of partitions for Ω, the algorithm thus
converges to a local optimum of the normalized modularity.

(ii) The algorithm converges when there are no further changes. As such, we know for any
x ∈ Si and j 6= i, ∆(x, Si) ≤ ∆(x, Sj). Summing up all the points x ∈ Si and using (168) yields

0 ≥
∑
x∈Si

(
∆(x, Si)−∆(x, Sj)

)
=
∑
x∈Si

(
2d̄({x}, Si)− d̄(Si, Si)

)
−
∑
x∈Si

(
2d̄({x}, Sj)− d̄(Sj, Sj)

)
= |Si| ·

(
d̄(Si, Si)− 2d̄(Si, Sj) + d̄(Sj, Sj)

)
. (238)

When the two sets Si and Sj are viewed in isolation (by removing the data points not in Si ∪ Sj
from Ω), we have Sj = Sci . Thus,

d̄(Si, Si)− 2d̄(Si, S
c
i ) + d̄(Sci , S

c
i ) ≤ 0.

As a result of Theorem 39(viii), we conclude that Si is a cluster when the two sets Si and Sj are
viewed in isolation. Also, Theorem 39(ii) implies that Sj = Sci is also a cluster when the two sets
Si and Sj are viewed in isolation.
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9.13 Proof of Lemma 45
We first show (C1). Since d(x, y) = d(y, x) for all x 6= y, we have from (173) that β(x, y) = β(y, x)
for all x 6= y.

To verify (C2), note from (173) that∑
y∈Ω

β(x, y) =
1

n

∑
y∈Ω

∑
z2∈Ω

d(z2, y) +
∑
z1∈Ω

d(x, z1)

− 1

n

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1)−
∑
y∈Ω

d(x, y)

= 0. (239)

Now we show (C3). Note from (173) that

β(x, x) + β(y, z)− β(x, z)− β(x, y)

= −d(x, x)− d(y, z) + d(x, z) + d(x, y). (240)

Since d(x, x) = 0, it then follows from the triangular inequality for d(·, ·) that

β(x, x) + β(y, z)− β(x, z)− β(x, y) ≥ 0.

9.14 Proof of Lemma 46
Clearly, d(x, x) = 0 from (174) and thus (D2) holds trivially. That (D3) holds follows from the
symmetric property in (C1) of Definition 44.

To see (D1), choosing z = y in (172) yields

0 ≤ β(x, x) + β(y, y)− β(x, y)− β(x, y) = 2d(x, y).

For the triangular inequality in (D4), note from (174) and (172) in (C3) that

d(x, z) + d(z, y)− d(x, y)

=
(β(x, x) + β(z, z))

2
− β(x, z) +

(β(z, z) + β(y, y))

2

−β(z, y)− (β(x, x) + β(y, y))

2
+ β(x, y)

= β(z, z) + β(x, y)− β(z, x)− β(z, y) ≥ 0.

9.15 Proof of Theorem 47
We first show that d∗∗(x, y) = d(x, y) for a distance measure d(·, ·). Note from (175) and d(x, x) = 0
that

d∗(x, x) =
1

n

∑
z2∈Ω

d(z2, x) +
1

n

∑
z1∈Ω

d(x, z1)

− 1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1). (241)

From the symmetric property of d(·, ·), it then follows that

d∗(x, x) =
2

n

∑
z1∈Ω

d(x, z1)− 1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1). (242)
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Similarly,

d∗(y, y) =
2

n

∑
z2∈Ω

d(z2, y)− 1

n2

∑
z2∈Ω

∑
z1∈Ω

d(z2, z1). (243)

Using (175), (242) and (243) in (176) yields

d∗∗(x, y) = (d∗(x, x) + d∗(y, y))/2− d∗(x, y) = d(x, y). (244)

Now we show that β∗∗(x, y) = β(x, y) for a cohesion measure β(·, ·). Note from (176) that

β∗(z2, y) + β∗(x, z1)− β∗(z1, z2)− β∗(x, y)

= −β(z2, y)− β(x, z1) + β(z1, z2) + β(x, y). (245)

Also, we have from (175) that

β∗∗(x, y)

=
1

n

∑
z2∈Ω

β∗(z2, y) +
1

n

∑
z1∈Ω

β∗(x, z1)

− 1

n2

∑
z2∈Ω

∑
z1∈Ω

β∗(z2, z1)− β∗(x, y)

=
1

n2

∑
z2∈Ω

∑
z1∈Ω

(
β∗(z2, y) + β∗(x, z1)

−β∗(z1, z2)− β∗(x, y)
)
. (246)

Using (245) in (246) yields

β∗∗(x, y)

=
1

n2

∑
z2∈Ω

∑
z1∈Ω

(
β(x, y) + β(z1, z2)

−β(x, z1)− β(z2, y)
)

= β(x, y) +
1

n2

∑
z2∈Ω

∑
z1∈Ω

β(z1, z2)− 1

n

∑
z1∈Ω

β(x, z1)

− 1

n

∑
z1∈Ω

β(z2, y). (247)

Since β(·, ·) is a cohesion measure that satisfies (C1)–(C3), we have from (C1) and (C2) that the
last three terms in (247) are all equal to 0. Thus, β∗∗(x, y) = β(x, y).

9.16 Proof of Proposition 51
We first show (C1). Since β1(x, y) = β0(x, y) for all x 6= y, we have from the symmetric property
of β0(·, ·) that β1(x, y) = β1(y, x) for all x 6= y. In view of (188), we then also have β(x, y) = β(y, x)
for all x 6= y.

To verify (C2), note from (188) that∑
y∈Ω

β(x, y) =
∑
y∈Ω

β1(x, y)− 1

n

∑
y∈Ω

∑
z1∈Ω

β1(z1, y)

−
∑
z2∈Ω

β1(x, z2) +
1

n

∑
z1∈Ω

∑
z2∈Ω

β1(z1, z2)

= 0. (248)
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Now we show (C3). Note from (188) that

β(x, x) + β(y, z)− β(x, z)− β(x, y)

= β1(x, x) + β1(y, z)− β1(x, z)− β1(x, y). (249)

It then follows from (187) that for all x 6= y 6= z that

β(x, x) + β(y, z)− β(x, z)− β(x, y) ≥ 0. (250)

If either x = y or x = z, we also have

β(x, x) + β(y, z)− β(x, z)− β(x, y) = 0.

Thus, it remains to show the case that y = z and x 6= y. For this case, we need to show that

β(x, x) + β(y, y)− β(x, y)− β(x, y) ≥ 0. (251)

Note from (250) that

β(y, y) + β(x, z)− β(y, z)− β(y, x) ≥ 0. (252)

Summing the two inequalities in (250) and (252) and using the symmetric property of β(·, ·) yields
the desired inequality in (251).

9.17 Proof of Theorem 56
(i) It suffices to show that if x is in a set S1 with |S1| > 1 and ∆a(x, S2) < ∆a(x, S1), then move
point x from S1 to S2 increases the value of the objective function. Let Sk (resp. S ′k), k = 1, 2, . . . , K,
be the partition before (resp. after) the change. Also let R (resp. R′) be the value of the objective
function before (resp. after) the change. Then

R′ −R

=
γ(S1\{x}, S1\{x})

|S1| − 1
+
γ(S2 ∪ {x}, S2 ∪ {x})

|S2|+ 1

−γ(S1, S1)

|S1|
− γ(S2, S2)

|S2|
.

Since

γ(S2 ∪ {x}, S2 ∪ {x})
= γ(S2, S2) + 2γ(x, S2) + γ(x, x),

we have from (193) and (196) that

γ(S2 ∪ {x}, S2 ∪ {x})
|S2|+ 1

− γ(S2, S2)

|S2|

=
2|S2|γ(x, S2) + |S2|γ(x, x)− γ(S2, S2)

|S2| · (|S2|+ 1)

= γ(x, x)− |S2|
|S2|+ 1

∆(x, S2)

= γ(x, x)−∆a(x, S2).

On the other hand, we note that

γ(S1\{x}, S1\{x}) = γ(S1, S1)− 2γ(x, S1) + γ(x, x). (253)
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Using (253), (193) and (196) yields

γ(S1\{x}, S1\{x})
|S1| − 1

− γ(S1, S1)

|S1|

=
−2|S1|γ(x, S1) + |S1|γ(x, x) + γ(S1, S1)

|S1| · (|S1| − 1)

= −γ(x, x) +
|S1|
|S1| − 1

∆(x, S1)

= −γ(x, x) + ∆a(x, S1).

Thus,
R′ −R = ∆a(x, S1)−∆a(x, S2) > 0.

As the objective value is non-increasing after a change of the partition, there is no loop in the
algorithm. Since the number of partitions is finite, the algorithm thus converges in a finite number
of steps (iterations).
(ii) Let d(·, ·) be the induced semi-metric. In view of Theorem 39(vi), it suffices to show that for
all i 6= j

2d̄(Si, Sj)− d̄(Si, Si)− d̄(Sj, Sj) ≥ 0. (254)

If the set Si contains a single element x, then

d̄(Si, Si) = d(x, x) = 0.

Thus, the inequality in (254) holds trivially if |Si| = |Sj| = 1.
Now suppose that min(|Si|, |Sj|) ≥ 2. Without loss of generality, we assume that |Si| ≥ 2. When

the K-sets+ algorithm converges, we know that for any x ∈ Si,

∆a(x, Si) ≤ ∆a(x, Sj).

Summing over x ∈ Si yields ∑
x∈Si

∆a(x, Si) ≤
∑
x∈Si

∆a(x, Sj). (255)

Note from (196) that for any x ∈ Si,

∆a(x, Si) =
|Si|
|Si| − 1

∆(x, Si),

and
∆a(x, Sj) =

|Sj|
|Sj|+ 1

∆(x, Sj).

Thus, it follows from (255) that

|Si|
|Si| − 1

∑
x∈Si

∆(x, Si) ≤
|Sj|
|Sj|+ 1

∑
x∈Si

∆(x, Sj). (256)

Note from (194) that ∑
x∈Si

∆(x, Si) = |Si|d̄(Si, Si), (257)

and that ∑
x∈Si

∆(x, Sj) = |Si|(2d̄(Si, Sj)− d̄(Sj, Sj)). (258)
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Since d(·, ·) is the induced semi-metric, we know from Proposition 54 that∑
x∈Si

∆(x, Si) ≥ 0.

Using this in (256) yields ∑
x∈Si

∆(x, Sj) ≥ 0.

Thus, we have from (256) that ∑
x∈Si

∆(x, Si) ≤
|Si|
|Si| − 1

∑
x∈Si

∆(x, Si)

≤ |Sj|
|Sj|+ 1

∑
x∈Si

∆(x, Sj) ≤
∑
x∈Si

∆(x, Sj). (259)

That the inequality in (254) holds follows directly from (257), (258) and (259).

9.18 Proof of Lemma 57
Since γ(·, ·) is symmetric, clearly γ̃(·, ·) is also symmetric. Thus, (C1) is satisfied trivially. To see
that (C2) is satisfied, observe from (197) that∑

y∈Ω

γ̃(x, y) = γ(x,Ω)− γ(x,Ω)− 1

n
γ(Ω,Ω)

+
1

n
γ(Ω,Ω) + σ − σ = 0. (260)

To see that (C3) holds, we note that

γ̃(x, x) = γ(x, x)− 2

n
γ(x,Ω) +

1

n2
γ(Ω,Ω) +

(n− 1)

n
σ, (261)

and that

γ̃(y, y) = γ(y, y)− 2

n
γ(y,Ω) +

1

n2
γ(Ω,Ω) +

(n− 1)

n
σ,

Thus, for x 6= y, we have from (198) that

γ̃(x, x) + γ̃(y, y)− 2γ̃(x, y)

= γ(x, x) + γ(y, y)− 2γ(x, y) + 2σ ≥ 0.

9.19 Proof of Lemma 58
Note from Definition 53 and Definition 55 that

∆̃(x, S) = γ̃(x, x)− 2

|S|
γ̃(x, S) +

1

|S|2
γ̃(S, S), (262)

and that

∆̃a(x, S) =


|S|
|S|+1

∆̃(x, S), if x 6∈ S,
|S|
|S|−1

∆̃(x, S), if x ∈ S and |S| > 1,

−∞, if x ∈ S and |S| = 1.

(263)
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To show (199), we need to consider two cases: (i) x ∈ S and (ii) x 6∈ S. For both cases, we have
from (197) that

γ̃(x, x) = γ(x, x)− 2

n
γ(x,Ω) +

1

n2
γ(Ω,Ω) +

(n− 1)

n
σ, (264)

and

γ̃(S, S) = γ(S, S)− |S|
n
γ(S,Ω)− |S|

n
γ(S,Ω)

+
|S|2

n2
γ(Ω,Ω) + σ|S| − σ |S|

2

n
. (265)

Now we consider the first case that x ∈ S. In this case, note that for x ∈ S

γ̃(x, S) = γ(x, S)− |S|
n
γ(x,Ω)− 1

n
γ(S,Ω)

+
|S|
n2
γ(Ω,Ω) + σ − σ |S|

n
. (266)

Using (264), (266) and (265) in (262) yields

∆̃(x, S) = γ̃(x, x)− 2

|S|
γ̃(x, S) +

1

|S|2
γ̃(S, S)

= γ(x, x)− 2

|S|
γ(x, S) +

1

|S|2
γ(S, S)

+σ(1− 1

|S|
)

= ∆(x, S) + σ(1− 1

|S|
). (267)

From (263), it then follows that

∆̃a(x, S) =
|S|
|S| − 1

∆̃(x, S)

=
|S|
|S| − 1

(
∆(x, S) + σ(1− 1

|S|
)
)

= ∆a(x, S) + σ. (268)

Now we consider the second case that x 6∈ S. In this case, note that for x 6∈ S

γ̃(x, S) = γ(x, S)− |S|
n
γ(x,Ω)− 1

n
γ(S,Ω)

+
|S|
n2
γ(Ω,Ω)− σ |S|

n
. (269)

Using (264), (269) and (265) in (262) yields

∆̃(x, S) = γ̃(x, x)− 2

|S|
γ̃(x, S) +

1

|S|2
γ̃(S, S)

= γ(x, x)− 2

|S|
γ(x, S) +

1

|S|2
γ(S, S)

+σ(1 +
1

|S|
)

= ∆(x, S) + σ(1 +
1

|S|
). (270)
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From (263), it then follows that

∆̃a(x, S) =
|S|
|S|+ 1

∆̃(x, S)

=
|S|
|S|+ 1

(
∆(x, S) + σ(1 +

1

|S|
)
)

= ∆a(x, S) + σ. (271)
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