
1

Coding Rate Analysis of Forbidden Overlap Codes in
High Speed Buses
CHENG-SHANG CHANG, JAY CHENG, TIEN-KE HUANG, DUAN-SHIN LEE and CHENG-YU
CHEN, National Tsing Hua University

One of the main problems in deep sub-micron designs of high speed buses is the propagation delay due to the crosstalk effect.
To alleviate the crosstalk effect, there are several types of crosstalk avoidance codes proposed in the literature. In this paper, we
analyze the coding rates of forbidden overlap codes (FOCs) that avoid “010 → 101” transition and “101 → 010” transition on any
three adjacent wires in a bus. We first compute the maximum achievable coding rate of FOCs and the maximum coding rate of
memoryless FOCs. Our numerical results show that there is a significant gap between the maximum coding rate of memoryless
FOCs and the maximum achievable rate. We then analyze the coding rates of FOCs generated from the bit-stuffing algorithm.
Our worse-case analysis yields a tight lower bound of the coding rate of the bit-stuffing algorithm. Under the assumption
of Bernoulli inputs, we use a Markov chain model to compute the coding rate of a bus with n wires under the bit-stuffing
algorithm. The main difficulty of solving such a Markov chain model is that the number of states grows exponentially with
respect to the number of wires n. To tackle the problem of the curse of dimensionality, we derive an approximate analysis
that leads to a recursive closed-form formula for the coding rate over the nth wire. Our approximations match extremely well
with the numerical results from solving the original Markov chain for n ≤ 10 and the simulation results for n ≤ 3000. Our
analysis of coding rates of FOCs could be helpful in understanding the tradeoff between propagation delay and coding rate
among various crosstalk avoidance codes in the literature. In comparison with the forbidden transition codes (FTCs) that have
shorter propagation delay than that of FOCs, our numerical results show that the coding rates of FOCs are much higher than
those of FTCs.

Categories and Subject Descriptors: G.3 [Probability and Statistics]: —Markov processes; C.4 [Performance of Systems]:
—Performance attributes

General Terms: Performance

Additional Key Words and Phrases: Bus encoding, bit-stuffing algorithm, maximum achievable rate

ACM Reference Format:
C.-S. Chang, J. Cheng, T.-K. Huang and D.-S. Lee, 2015. Coding Rate Analysis of Forbidden Overlap Codes in High Speed Buses.
jn 2, 3, Article 1 (March 2015), 25 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

This work was supported in part by Ministry of Science and Technology (MOST), Taiwan, under Grant Numbers 102-2221-E-
007-006-MY3, 103-2622-E-009-012 and 103-2218-E-007-022.
Author’s addresses: C.-S. Chang, J. Cheng, T.-K. Huang, D.-S. Lee and C.-Y. Chen, Institute of Communications Engineer-
ing, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.; email: cschang@ee.nthu.edu.tw, jcheng@ee.nthu.edu.tw,
d915601@oz.nthu.edu.tw, lds@cs.nthu.edu.tw, s100060021@m100.nthu.edu.tw.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c⃝ 2015 ACM 0000-0000/2015/03-ART1 $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

1:2 • C.-S. Chang et al.

Table I. The normalized delay of the ith wire Ti/τ0 for i ̸= 1, n

bits 000 001 010 011 100 101 110 111
000 0 0 1 + 2λ 1 + λ 0 0 1 + λ 1
001 0 0 1 + 3λ 1 + 2λ 0 0 1 + 2λ 1 + λ

010 1 + 2λ 1 + 3λ 0 0 1 + 3λ 1 + 4λ 0 0
011 1 + λ 1 + 2λ 0 0 1 + 2λ 1 + 3λ 0 0
100 0 0 1 + 3λ 1 + 2λ 0 0 1 + 2λ 1 + λ

101 0 0 1 + 4λ 1 + 3λ 0 0 1 + 3λ 1 + 2λ

110 1 + λ 1 + 2λ 0 0 1 + 2λ 1 + 3λ 0 0
111 1 1 + λ 0 0 1 + λ 1 + 2λ 0 0

1. INTRODUCTION

High speed buses are commonly used in many computing and networking systems for information
exchange. As the VLSI technology advances, it is possible to pack more wires in high speed buses.
However, according to the International Technology Roadmap for Semiconductors (ITRS) [ITRS 2003],
even though the gate delay decreases with the shrinking feature size, the global wire delay increases
as the feature size shrinks. Therefore, the propagation delay through long on-chip buses has become
a bottleneck in the overall system performance as the VLSI technology advances into the deep submi-
crometer (DSM) regime, and such an issue has been identified as one of the Grand Challenges in DSM
designs [ITRS 2005].

The propagation delay of a DSM bus is mainly due to the crosstalk effect that arises from the cou-
pling capacitance between adjacent wires in the bus, which in turn depends on the transition patterns
on the wires of the bus [Victor 2001; Sridhara 2006]. Note that the speed of a DSM bus is limited by
its worst-case propagation delay. To mitigate the crosstalk effect so as to reduce the worst-case prop-
agation delay and hence increase the speed of a DSM bus, it is suggested in the literature that one
should avoid certain transition patterns or bit patterns on the wires of the bus. Specifically, for a bus
of n parallel wires, it was shown in [Sotiriadis 2002] that the delay of the ith wire, denoted by Ti, can
be modelled by the following equation:

Ti =
{ τ0[(1 + λ)∆2

1 − λ∆1∆2], if i = 1,
τ0[(1 + 2λ)∆2

i − λ∆i(∆i−1 +∆i+1)], if i ̸= 1, n,
τ0[(1 + λ)∆2

n − λ∆n∆n−1], if i = n,
(1)

where λ is the ratio of the coupling capacitance between adjacent wires and the loading capacitance
between the ith wire and the ground, τ0 is the delay of a transition on a single wire, and

∆i =
{ 1, a transition from 0 to 1 on the ith wire,
−1, a transition from 1 to 0 on the ith wire,
0, no transition on the ith wire.

(2)

Using (1), one can calculate the normalized delay of the ith wire Ti/τ0 for i ̸= 1, n in Table I. The three
bits in the first column denote the previous bit values transmitted on the first three wires (the first
wire, the second wire and the third wire) and the three bits in the first row denote the current bit
values transmitted on the first three wires. For instance, if 1, 0, 1 are the previously transmitted bit
values on the first three wires, and they are followed by 0, 1, 0 on the first three wires, then the delay
of transmitting 1 on the second wire is τ0(1 + 4λ).

In view of Table I, there are many ways to reduce the maximum delay by avoiding certain transition
patterns or bit patterns on the wires of the bus. For instance, one can eliminate (1+ 4λ) from the table
if one can construct a set of codewords that avoid the following two types of transitions: 101 → 010 and
ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

Coding Rate Analysis of Forbidden Overlap Codes in High Speed Buses • 1:3

010 → 101. Codewords that have this property are known as forbidden overlap codes (FOCs) [Wu and
Yan 2011] and the maximum delay of FOCs in each wire is bounded by τ0(1 + 3λ). Similarly, one can
avoid the two types of transitions, 10 → 01 and 01 → 10, to eliminate all the normalized delay larger
than 1 + 2λ. Codewords that have this property are known as forbidden transition codes (FTCs) [Wu
and Yan 2011; Duan et al. 2008] and the maximum delay of FTCs in each wire is thus bounded by
τ0(1 + 2λ). Alternatively, one can achieve the same delay bound by avoiding the following two patterns
in the codewords: 010 and 101. Such codewords are called forbidden pattern codes (FPCs). One-lambda
codes (OLCs) [Wu and Yan 2011] can be deduced by further eliminating all the transitions that have
delay larger than τ0(1 + 2λ). All these codes, including FOCs, FTCs, FPCs, and OLCs, are known as
crosstalk avoidance codes.

One important performance issue for crosstalk avoidance codes is the tradeoff between coding rate
and maximum delay. The coding rate (or throughput) of a crosstalk avoidance code is generally defined
as the ratio of the number of (useful) data bits to the number of coded bits over a long period of time. As
mentioned before, one can add more restrictions on a set of codewords to reduce the maximum delay
and thus increase the bus speed. However, on the other hand, these restrictions also reduce the coding
rates of crosstalk avoidance codes. Thus, analyzing the coding rate of a crosstalk avoidance code is
crucial in understanding such a tradeoff.

There are several previous works on the coding rates of FTCs in the literature. In particular, the
coding rate of the “ground shielding” scheme [Ma and He 2001] (that only transmits data on odd-
numbered wires and transmits 0 all the time on even-numbered wires) is 0.5. In [Victor 2001] and
[Victor and Keutzer 2001], Victor and Keutzer showed that there exist FTCs that achieve the coding
rate log2

1+
√
5

2 ≈ 0.6942 when the number of wires is sufficiently large. Recursive constructions of FTC
codes with the coding rate log2

1+
√
5

2 were given in [Mutyam 2004; Moision et al. 2001] by using the
“Fibonacci representation.” By using the Fibonacci numeral system, Duan, Zhu, and Khatri [2008] de-
veloped an explicit construction of a set of memoryless FTCs that achieve the coding rate log2

1+
√
5

2 .
To further improve the coding rate, two-dimensional FTCs with block length larger than 1 were pro-
posed in [Wu et al. 2008], and it was shown that the coding rate could be increased to more than 0.8.
However, no explicit constructions of such codes were given in [Wu et al. 2008]. Mutyam [2012] used
the transition signaling technique [Stan and Burleson 1994] to construct FTCs that also achieve the
coding rate log2

1+
√
5

2 . In our recent paper [Chang et al. 2015], we proposed and analyzed a bit-stuffing
algorithm that can generate FPCs with coding rates larger than 0.82. We also showed that the differ-
ence between such a coding rate and the maximum achievable coding rate is only 2.2% for a bus with
n = 10 parallel wires.

Among all the families of crosstalk avoidance codes, we focus on analyzing the coding rates of FOCs
in this paper. Though the restrictions on codewords for FOCs are less stringent than those for FPCs.
The analysis for FOCs are much more difficult as the dependency among coded bits in FOCs is much
more complicated than that in FPCs. Perhaps, this is one of the reasons that there are few analytical
works on FOCs in the literature. In [Wu and Yan 2011], a suboptimal memoryless FOC with (asymp-
totic) coding rate 0.7925 was constructed. In our recent paper [Chang et al. 2014], we showed an explicit
construction of a set of memoryless FOCs that has the largest set of codewords. Such an optimal mem-
oryless FOC has the (asymptotic) coding rate 0.8791. In this paper, we first compute the maximum
achievable rate of FOCs in Section 2. For a bus with 10 wires, the maximum achievable rate is 0.9729
and the coding rate of the optimal memoryless FOC is only 0.8977. Clearly, there is still a significant
gap between the coding rate of the optimal memoryless FOC and its maximum achievable rate. Anal-
ogous to [Chang et al. 2015], we propose using the bit-stuff algorithm in Section 3 to generate FOCs
that can achieve higher coding rates. For this bit-stuffing algorithm, we perform a worst-case analysis

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

1:4 • C.-S. Chang et al.

Table II. Coding rates of FOCs obtained in this paper: the maximum achievable rate Cn in
(7), the maximum coding rate of memoryless FOCs RM

n , the coding rate per wire Rn for the
bit-stuffing algorithm, the coding rate rn over the nth wire for the bit-stuffing algorithm in

(27), and the approximation of rn in (32) (in Section 6.) for 1 ≤ n ≤ 10.
n 1 2 3 4 5 6 7 8 9 10
Cn 1 1 0.9861 0.9816 0.9787 0.9768 0.9754 0.9743 0.9735 0.9729
RM

n 1 1 0.9358 0.9251 0.9170 0.9099 0.9057 0.9024 0.8998 0.8977
Rn 1 1 0.9815 0.9759 0.9723 0.9698 0.9681 0.9668 0.9657 0.9649
rn 1 1 0.9444 0.9591 0.9579 0.9575 0.9576 0.9576 0.9576 0.9576

rn by (32) 1 1 0.9444 0.9588 0.9578 0.9573 0.9575 0.9575 0.9575 0.9575

in Section 4 and a probabilistic analysis in Section 5. Our worse-case analysis shows that the coding
rate of our bit-stuffing algorithm is lower bounded by (2n+2)/3n for a bus with n ≥ 4 wires. Moreover,
there exists an input data stream that achieves the lower bound and thus the lower bound is tight. By
assuming that the input data stream is a sequence of independent and identically distributed (i.i.d.)
Bernoulli random variables (r.v.’s) with equal probabilities of being 0 and 1, the stochastic process of
coded bits can be modelled by a Markov chain. By solving the steady state probabilities of the Markov
chain, we can then compute the coding rate of our bit-stuffing algorithm. In particular, for a bus with
10 wires, the coding rate of the bit-stuffing algorithm is 0.9649, which is within 0.8% difference when
compared with the maximum achievable rate 0.9729.

In Section 6, we tackle the problem of the curse of dimensionality in the Markov chain model that
we use in our probabilistic analysis for the coding rate of the bit-stuffing algorithm. In such a Markov
chain model, the number of states grows exponentially with respect to the number of wires n. Thus, it
is difficult to compute the coding rate of the bit-stuffing algorithm for a large number of wires. To tackle
the problem of the curse of dimensionality, our idea is to propose an approximate analysis that limits
the dependency of coded bits in adjacent wires. By using various conditional independence properties,
we are able to approximate the original Markov chain model for n wires by a Markov chain with only 8
states that in turn can be solved explicitly. Our approximate analysis then leads to a recursive closed-
form formula for the coding rate over the nth wire. In particular, for a bus with 10 wires, the coding
rate of the 10th wire from our approximate analysis is 0.9575, which matches extremely well with the
exact result 0.9576 from solving the original Markov chain model. We also perform simulations for n
up to 3000, and the results all agree with 0.9576 for 6 ≤ n ≤ 3000.

In Table II, we summarize our numerical results for the coding rates of various FOCs obtained
in this paper. In comparison with the numerical results in [Chang et al. 2015] for the coding rates
of various FTCs in Table III, it is clear that the coding rates of FOCs are significantly higher than
their counterparts of FTCs. For instance, let us compare the coding rates for a bus with 10 wires. The
maximum achievable rate (denoted by Cn in both tables) of FOCs is 0.9729, while that of FTCs is
only 0.8630. The maximum coding rate of memoryless codes (denoted by RM

n in both tables) of FOCs
is 0.8977, while that of FTCs is only 0.7170. The coding rate per wire from the bit-stuffing algorithm
(denoted by Rn in both tables) of FOCs is 0.9649, while that of FTCs is only 0.8432. The coding rate on
the 10th wire from the bit-stuffing algorithm (denoted by rn in both tables) of FOCs is 0.9676, while that
of FTCs is only 0.8484. The reason that the coding rates of FOCs are higher than their counterparts
of FTCs is because the constraints for the codewords of FTCs are more stringent than those of FOCs.
However, on the other hand, the maximum delay of FOCs is only bounded above τ0(1 + 3λ) while the
maximum delay of FTCs is bounded above by τ0(1 + 2λ).

In Table IV, we compare various known crosstalk avoidance codes in the literature, including the
“ground shielding” scheme (GS) in [Ma and He 2001], the memoryless FTC (FTC-m) in [Victor 2001;
Victor and Keutzer 2001], the sequential bit-stuffing algorithm for FTC (FTC-sb) in [Chang et al.
ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

Coding Rate Analysis of Forbidden Overlap Codes in High Speed Buses • 1:5

Table III. Coding rates of FTCs in [Chang et al. 2015]: the maximum achievable rate Cn,
the maximum coding rate of memoryless FTCs RM

n , the coding rate per wire Rn for the
bit-stuffing algorithm in [Chang et al. 2015], the coding rate rn over the nth wire for the

bit-stuffing algorithm in [Chang et al. 2015] for 1 ≤ n ≤ 10.
n 1 2 3 4 5 6 7 8 9 10
Cn 1 0.9163 0.8941 0.8826 0.8757 0.8712 0.8679 0.8654 0.8635 0.8620
RM

n 1 0.7925 0.7740 0.7500 0.7401 0.7321 0.7268 0.7227 0.7195 0.7170
Rn 1 0.9 0.8779 0.8653 0.8580 0.8531 0.8495 0.8469 0.8448 0.8432
rn 1 0.8 0.8338 0.8275 0.8286 0.8284 0.8284 0.8284 0.8284 0.8284

Table IV. Comparison of various known crosstalk avoidance codes in the literature.
Code GS FTC-m FTC-sb FTC-pb FTC-2D FOC-m FOC-sb FOC-pb FPC OLC
Rate 0.5 0.6942 0.8284 0.8125 0.8250 0.8791 0.9576 0.9544 0.6942 0.4050

Delay×τ0 1 + 2λ 1 + 2λ 1 + 2λ 1 + 2λ 1 + 2λ 1 + 3λ 1 + 3λ 1 + 3λ 1 + 2λ 1 + λ

Complexity O(1) O(n2) O(n) O(n) unknown O(n2) O(n) O(n) O(n2) O(n2)

Memoryless Y Y N N Y Y N N Y Y

2015], the parallel bit-stuffing algorithm for FTC (FTC-pb) in [Chang et al. 2015], the two-dimensional
FTC (FTC-2D) in [Wu et al. 2008], the memoryless FOC (FOC-m) in [Chang et al. 2014], the sequential
bit-stuffing algorithm for FOC (FOC-sb) in this paper, the parallel bit-stuffing algorithm for FOC (FOC-
pb) in the conclusion section of this paper, the FPC (FPC) in [Wu and Yan 2011], and the OLC (OLC)
in [Wu and Yan 2011]. In the second row of Table IV, we compare the asymptotic coding rates for
these schemes (for a large number of wires). Clearly, the coding rates of the three FOC schemes are
significantly larger than the other schemes. In particular, the OLC has the smallest coding rate 0.4050
(which is computed by using the recursive equation in [Wu and Yan 2011] for n = 2500). In the third
row we compare the normalized delay of these schemes. The delays of the FOC schemes are longer
than the other schemes. The OLC has the smallest delay among all these schemes. In the fourth row,
we compare the implementation complexity of the encoders/decoders of these schemes (as a function
of the number of wires). Clearly, the ground shielding (GS) scheme (that only transmits data on odd-
numbered wires and transmits 0 all the time on the even-numbered wires) is the simplest scheme and
has the O(1) implementation complexity in encoding and decoding. As no explicit constructions (and
the associated encoders/decoders) were given for of FTC-2D in [Wu et al. 2008]. Its implementation
complexity for a large number of wires is unknown. The encoders and decoders for FTC-m, FOC-
m, FPC, and OLC are all based on numerical systems (e.g., the Fibonacci representation) and thus
the implementation complexity of their encoders is O(n2) for a bus with n wires (as there are n − 1
sequential stages in the encoder and each stage requires an O(n)-bit comparator). On the other hand,
the implementation complexity of the encoders/decoders of the bit-stuffing algorithms is only O(n).
In terms of the implementation complexity, the bit-stuffing algorithms are more scalable than the
numerical systems. However, the codes generated by the bit-stuffing algorithms are not memoryless, as
shown in the last row of Table IV. In view of this, error propagation should be contained in bit-stuffing
algorithms and that might limit their applicability. As discussed in [Chang et al. 2015], one possible
application for using bit-stuffing algorithms for crosstalk avoidance codes is transmitting variable
length packets through high-speed buses in packet switches. In such an application, bit errors are
contained in a single packet.

2. FORBIDDEN OVERLAP CHANNELS

In this section, we model a bus under the constraint that there is no “010 → 101” transition or
“101 → 010” transition on any three adjacent wires as a forbidden overlap channel defined as follows.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

1:6 • C.-S. Chang et al.

A forbidden overlap channel with n parallel wires, indexed from 1 to n, is a channel that is capable
of transmitting n binary sequences through the n parallel wires as long as there are no “010 → 101”
transition and “101 → 010” transition on any three adjacent wires. Specifically, let ci(t) be the bit trans-
mitted on the ith wire at time t in a forbidden overlap channel with n parallel wires for i = 1, 2, . . . , n
and t = 1, 2, Then for the reliable transmissions of the bits ci(t), i = 1, 2, . . . , n and t = 1, 2, . . ., over
the forbidden overlap channel, we must have ci−2(t− 1) ci−2(t)

ci−1(t− 1) ci−1(t)
ci(t− 1) ci(t)

 ̸=

 0 1
1 0
0 1

 or

 1 0
0 1
1 0

 , (3)

for i = 3, 4, . . . , n and t = 2, 3, Let ā be the complement of a, i.e., ā = 1 if a = 0 and ā = 0 if a = 1. It
is easy to see that the constraint in (3) is equivalent to the constraint that there are no 3 ≤ i ≤ n and
t ≥ 2 such that

c̄i−2(t− 1) = ci−2(t) = ci−1(t− 1) = c̄i−1(t) = c̄i(t− 1) = ci(t). (4)

In general, for two n-dimensional binary vectors c = (cn, cn−1, . . . , c1) ∈ {0, 1}n and c′ = (c′n, c
′
n−1, . . . , c

′
1)

∈ {0, 1}n, we say these two vectors satisfy the forbidden overlap constraint if the constraint in (4) is
satisfied when we replace ci(t− 1) by ci and ci(t) by c′i for all i = 1, 2, . . . , n.

2.1 Maximum achievable rate

In this section, we first perform the analysis for the maximum achievable rate of the forbidden overlap
channel. Denote c(t) = (cn(t), cn−1(t), . . . , c1(t)), t = 1, 2, . . ., as the n-vector transmitted on the n paral-
lel wires at time t. Let Xn(t), t = 1, 2, . . ., be the number of sequences (c(1), c(2), . . . , c(t)) that satisfy
the constraint in (3) up to time t. Then it is well-known (see e.g., [Shannon 1948; Cover and Thomas
1991; Orcutt and Marcellin 1993; Weeks and Blahut 1998]) that the maximum achievable rate of a
forbidden overlap channel with n parallel wires is the entropy rate of these constrained sequences (see
e.g., pp. 94 of [Cover and Thomas 1991]) and this is given by

Cn =
1

n
lim
t→∞

log2 Xn(t)

t
bits/wire/time unit. (5)

Note that the maximum achievable rate in (5) is achieved when every sequence is selected with
an equal probability. To compute Xn(t), let us order the n-dimensional binary vector c = (cn, cn−1,
. . . , c1) ∈ {0, 1}n in the standard lexicographic order, i.e., in the increasing order of the integers∑n

i=1 ci2
i−1 ∈ {0, 1, . . . , 2n − 1}. Denote by 0n = (0, 0, . . . , 0) (resp., 1n = (1, 1, . . . , 1)) the n-vector whose

entries are all equal to 0 (resp., 1). Also, let Xn,c(t) be the number of sequences (c(1), c(2), . . . , c(t))
that satisfy the constraint in (3) up to time t and end in the state c at time t, i.e., c(t) = c, and
Xn(t) = (Xn,0n(t), . . . , Xn,1n(t)) be the 2n-vector whose entries are the numbers Xn,c(t), c ∈ {0, 1}n,
ordered in the standard lexicographic order with respect to the states c. From the definition of Xn,c(t),
clearly we have

Xn(t) =
∑

c∈{0,1}n

Xn,c(t) = Xn(t)1
T
2n ,

where 1T
2n is the 2n-column vector with all its elements being 1. Furthermore, it is straightforward to

see that Xn(t) can be derived recursively by

Xn(t) = Xn(t− 1)An, (6)
ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

Coding Rate Analysis of Forbidden Overlap Codes in High Speed Buses • 1:7

where An is the 2n×2n adjacency matrix associated with the forbidden overlap channel with n parallel
wires, i.e., (An)c,c′ = 1 if the forbidden overlap constraint is satisfied for the two n-vectors c and c′,
and (An)c,c′ = 0 otherwise.

In view of the recursive equation in (6), it follows from the Perron-Frobenius theorem (see e.g., [Horn
and Johnson 1985]) that the maximum achievable rate Cn in (5) can also be given by

Cn =
1

n
log2 λn,max, (7)

where λn,max is the maximum eigenvalue of the adjacency matrix An.
As in [Weeks and Blahut 1998] for the study of the capacity of certain checkerboard codes, we first

identify a recursive expression for the adjacency matrix An in the following lemma. Its proof is given
in Appendix A.

LEMMA 2.1. Let Oi be the zero matrix of size 2i × 2i for i ≥ 0. Then the adjacency matrix An

associated with the forbidden overlap channel is a symmetric matrix and it can be given recursively by

An =

[
An−1 Bn−1

BT
n−1 An−1

]
, for n ≥ 1, (8)

where A0 = B0 = 1 and

Bn−1 =

[
An−2 Bn−2

Cn−2 An−2

]
, for n ≥ 2, (9)

in which C0 = 1 and

Cn−2 =

[
An−3 On−3

BT
n−3 An−3

]
, for n ≥ 3. (10)

In the second row of Table II, we use the recursion in Lemma 2.1 and (7) to compute the maximum
achievable rate Cn of a forbidden overlap channel with n parallel wires for 1 ≤ n ≤ 10.

2.2 Maximum coding rate of memoryless forbidden overlap codes

Note that the maximum achievable rate Cn serves as the fundamental limit on the coding rate of any
FOC and it is achieved with an infinite code length (t → ∞ in (5)). In general, the implementation
complexity of encoders/decoders increases with respect to the length of codes. The simplest one is the
memoryless codes that has the code length 1. An explicit construction of the memoryless FOC that
has the largest set of codewords was recently reported in [Chang et al. 2014]. The key insight of the
construction in [Chang et al. 2014] is that the forbidden overlap constraint in (4) for memoryless FOCs
is equivalent to the constraint that there are no 3 consecutive 1’s in each “modified” codeword when
the even numbered bits of the original codeword are inverted. As such, one can first construct a set of
modified codewords by using a greedy numeral system, called the C-transform in [Chou et al. 2006;
Cheng et al. 2008], to generate binary representations for integers that do not have 3 consecutive 1’s.
Then invert every even numbered bit to construct the desired FOC.

The maximum number of n-bit codewords that do not have 3 consecutive 1’s, denoted by Nn, can be
derived from the recursive equation

Nn = Nn−1 +Nn−2 +Nn−3, (11)

with N1 = 2, N2 = 4 and N3 = 7. This is because we can obtain an n-bit codeword by adding a prefix 0 in
front of the (n−1)-bit codewords, a prefix 10 in front of the (n−2)-bit codewords and a prefix 110 in front
of the (n− 3)-bit codewords. The maximum coding rate of the n-bit memoryless FOCs, denoted by RM

n ,
ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

1:8 • C.-S. Chang et al.

is then 1
n log2(Nn). Letting n → ∞ yields the maximum asymptotic coding rate 0.8791 for memoryless

FOCs. In the third row of Table II, we also show the maximum coding rate of memoryless FOCs for
1 ≤ n ≤ 10. Clearly there is still a significant gap between the maximum coding rate of memoryless
FOCs and the maximum achievable rate. In the next section, we will use the bit-stuffing algorithm to
generate FOCs that have much higher coding rates than those of the memoryless codes.

3. THE BIT-STUFFING ALGORITHM

1
1

0
 1

0

i

i-1

i-2

t
t-1

1

0
0

1
 0

1

i

i-1

i-2

t
t-1

0

(b)
(a)

Fig. 1. Illustration of the bit-stuffing algorithm: (a) If the coded bits ci−2(t − 1) = 1, ci−2(t) = 0, ci−1(t − 1) = 0, ci−1(t) = 1
and ci(t− 1) = 1, then the coded bit ci(t) = 1 is a stuffed bit. (b) If the coded bits ci−2(t− 1) = 0, ci−2(t) = 1, ci−1(t− 1) = 1,
ci−1(t) = 0 and ci(t− 1) = 0, then the coded bit ci(t) = is a stuffed bit.

In this section, we use the bit-stuffing encoding scheme for generating forbidden overlap codes. The
idea of our bit-stuffing algorithm is to add a redundant bit on the ith wire at time t if c̄i−2(t − 1) =
ci−2(t) = ci−1(t−1) = c̄i−1(t) = c̄i(t−1), and in that case the redundant bit ci(t) is set as ci(t) = ci−1(t) so
that the coded bits ci(t), i = 1, 2, . . . , n and t = 1, 2, . . ., always satisfy the forbidden overlap constraint in
(3). There are two cases for this and they are illustrated in Figure 1: (a) If the coded bits ci−2(t−1) = 1,
ci−2(t) = 0, ci−1(t− 1) = 0, ci−1(t) = 1 and ci(t− 1) = 1, then the coded bit ci(t) = 1 is a stuffed bit. (b)
If the coded bits ci−2(t− 1) = 0, ci−2(t) = 1, ci−1(t− 1) = 1, ci−1(t) = 0 and ci(t− 1) = 0, then the coded
bit ci(t) = is a stuffed bit.

This bit-stuffing algorithm is described below.
ALGORITHM 1: Encoder–Bit-stuffing algorithm
Given an input data bit stream {b1, b2, . . .}. Initially at time t = 1, set ci(1) = bi for i = 1, 2, . . . , n. For every time
t ≥ 2, generate the coded bit ci(t) by the following bit-stuffing rule for i = 1, 2, . . . , n:
(i) Set c1(t) and c2(t) as the next two input data bits.
(ii) For i = 3, 4, . . . , n,

(a). (Bit-stuffing condition) If c̄i−2(t− 1) = ci−2(t) = ci−1(t− 1) = c̄i−1(t) = c̄i(t− 1), then we set
ci(t) = ci−1(t), i.e., ci(t) is a stuffed bit.

(b). Otherwise, set ci(t) as the next input data bit.

As we assume that there are no transmission errors in a forbidden overlap channel as long as there
are no forbidden overlap transitions, it follows that the original input data bits b1, b2, . . . can be decoded
from the coded bits ci(t), by simply removing the coded bit ci(t) whenever the stuffed bit condition
c̄i−2(t − 1) = ci−2(t) = ci−1(t − 1) = c̄i−1(t) = c̄i(t − 1) is satisfied. This is described in the following
bit-removing algorithm.
ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

Coding Rate Analysis of Forbidden Overlap Codes in High Speed Buses • 1:9

ALGORITHM 2: Decoder–the bit-removing algorithm
Given received coded bits ci(t), i = 1, 2, . . . , n and t = 1, 2, Initially, set bi = ci(1) for i = 1, 2, . . . , n. For every
time t ≥ 2, decode the received coded bit ci(t), i = 1, 2, . . . , n, by the following bit-removing rule:
(i) Decode c1(t) and c2(t) as the next data bit.
(ii) For i = 3, . . . , n,

(a). (Bit-removing condition) If c̄i−2(t− 1) = ci−2(t) = ci−1(t− 1) = c̄i−1(t) = c̄i(t− 1), then ci(t) is a
stuffed bit and it is discarded.

(b). Otherwise, decode ci(t) as the next data bit.

In the following lemma, we show an interesting property of the bit-stuffing algorithm, called no
adjacent stuffed bits property in this paper. This property states that a set of “neighboring” bits of a
stuffed bit must be data bits (see the illustration in Figure 2). Such a property will be used to derive a
lower bound on the coding rate of the bit-stuffing algorithm.

S
D

D
 D

D

D

D
 D

D

i

i+1

i+2

i-1

i-2

t
t-1
 t+1

Fig. 2. If the coded bit ci(t) is a stuffed bit (marked with a “S”), then the coded bits ci−2(t), ci−1(t − 1), ci−1(t), ci(t − 1),
ci(t+ 1), ci+1(t) and ci+1(t+ 1), and ci+2(t) are all data bits (marked with a “D”).

LEMMA 3.1. (No adjacent stuffed bits property) Under the bit-stuffing algorithm, if the coded
bit ci(t) is a stuffed bit, then the coded bits ci−2(t), ci−1(t − 1), ci−1(t), ci(t − 1), ci(t + 1), ci+1(t) and
ci+1(t+ 1) (in the case that i ≤ n− 1), and ci+2(t) (in the case that i ≤ n− 2) cannot be stuffed bits, i.e.,
they are all data bits.

Proof. If the coded bit ci(t) is a stuffed bit, then it follows from (4) that 3 ≤ i ≤ n, t ≥ 2, and

c̄i−2(t− 1) = ci−2(t) = ci−1(t− 1) = c̄i−1(t) = c̄i(t− 1) = c̄i(t). (12)

In the following, we show by contradiction that ci−2(t) cannot be a stuffed bit. The proof that ci−1(t−1),
ci−1(t), ci(t − 1), ci(t + 1), ci+1(t) and ci+1(t) (in the case that i ≤ n − 1), and ci+2(t) (in the case that
i ≤ n− 2) cannot be stuffed bits is similar.

Suppose that ci−2(t) is a stuffed bit. Then it follows from (4) (with i replaced by i−2) that 3 ≤ i−2 ≤ n,
t ≥ 2, and

c̄i−4(t− 1) = ci−4(t) = ci−3(t− 1) = c̄i−3(t) = c̄i−2(t− 1) = c̄i−2(t). (13)

As we have c̄i−2(t− 1) = ci−2(t) in (12) and c̄i−2(t− 1) = c̄i−2(t) in (13), a contradiction is reached.
From Lemma 3.1, we obtain the following properties on the number of stuffed bits in certain blocks

of coded bits (see the illustration in Figure 2).

LEMMA 3.2. Under the bit-stuffing algorithm, we have that
(i) For any 3 ≤ i ≤ n and t ≥ 2, there is at most one stuffed bit among ci(t) and ci(t+ 1).

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

1:10 • C.-S. Chang et al.

(ii) For any 3 ≤ i ≤ n− 2 and t ≥ 2, there is at most one stuffed bit among ci(t), ci+1(t), and ci+2(t).
(iii) For any 3 ≤ i ≤ n− 1 and t ≥ 2, there are at most two stuffed bits among ci(t), ci(t+ 1), ci(t+ 2),

ci+1(t), ci+1(t+ 1), and ci+1(t+ 2).

Proof. The proof of (i) and (ii) is omitted as they follow immediately from Lemma 3.1.
(iii) Consider the coded bits ci(t), ci(t+1), ci(t+2), ci+1(t), ci+1(t+1), and ci+1(t+2). In the following,

we show that given ci(t) is a stuffed bit, there are at most two stuffed bits among the six coded bits.
The proof for other cases that one of the coded bits ci(t+ 1), ci(t+ 2), ci+1(t), ci+1(t+ 1), and ci+1(t+ 2)
is a stuffed bit is similar.

If ci(t) is a stuffed bit, then it follows from Lemma 3.1 that ci(t + 1), ci+1(t), ci+1(t + 1) are all
data bits. Now, there is at most one stuffed bit among the two coded bits ci(t + 2) and ci+1(t + 2) by
Lemma 3.1. Therefore, we have at most two stuffed bits among the coded bits ci(t), ci(t + 1), ci(t + 2),
ci+1(t), ci+1(t+ 1), and ci+1(t+ 2).

4. WORST-CASE ANALYSIS

In the following theorem, we derive a tight lower bound on the coding rate of our bit-stuffing encoding
scheme for forbidden overlap channels. The coding rate is defined as the (asymptotic) ratio of the
number of data bits to the total number of coded bits.

THEOREM 4.1. The coding rate Rn of our bit-stuffing encoding scheme for any input data bit stream
over a forbidden overlap channel with n parallel wires satisfies

R1 = R2 = 1 and Rn ≥
{

5
6 , if n = 3,
2n+2
3n , if n ≥ 4,

bits/wire/time unit. (14)

Furthermore, the lower bound in (14) is tight as there exists an input data bit stream that achieves
the lower bound. In other words, the worst case coding rate R∗

n of our bit-stuffing encoding scheme for
forbidden overlap channels is given by R∗

1 = R∗
2 = 1, R∗

3 = 5
6 , and R∗

n = 2n+2
3n for n ≥ 4.

Proof. (i) Consider a forbidden overlap channel with n wires and with an input data bit stream
{b1, b2, . . .}. From the bit-stuffing algorithm, it is clear that the n coded bits at time t = 1 and all of
the coded bits on the first two wires are data bits, i.e., ci(t) is a data bit for i = 1, 2 or t = 1. It follows
immediately that R1 = R2 = 1.

Let Rn(t) be the number of data bits among the first nt coded bits ci(t
′), i = 1, 2, . . . , n and t′ =

1, 2, . . . , t. For the case that n = 3, we have from Lemma 3.2(i) that at least one of the two coded bits
c3(t

′) and c3(t
′ + 1) is a data bit for t′ = 2, 3, Thus, we have

R3(t) ≥ 3 + 2(t− 1) +

⌊
t− 1

2

⌋
. (15)

For the case that n = 2k + 1, where k ≥ 2, it follows from Lemma 3.2(iii) that there are at least four
data bits among ci(t), ci(t + 1), ci(t + 2), ci+1(t), ci+1(t + 1), and ci+1(t + 2), for i = 3, 5, . . . , 2k − 3 and
t = 2, 5, . . ., and from Lemma 3.2(ii) that there are at least two data bits among c2k−1(t), c2k(t), c2k+1(t)
for t = 2, 3, Thus, we have

R2k+1(t)≥(2k + 1) + 2(t− 1) + 4(k − 2)

⌊
t− 1

3

⌋
+ 2(t− 1)

=(2k + 1) + 4(t− 1) + 4(k − 2)

⌊
t− 1

3

⌋
. (16)

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

Coding Rate Analysis of Forbidden Overlap Codes in High Speed Buses • 1:11

Table V. A worst case for n = 3 and t = 1, 2, . . . , 12. Note
that the stuffed bits are in boldface.

i \t 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 0 1 0 1 0 1 0 1 0 1
2 1 0 1 0 1 0 1 0 1 0 1 0
3 0 0 0 0 0 0 0 0 0 0 0 0

Similarly, for the case that n = 2k, where k ≥ 2, we have

R2k(t) ≥ 2k + 2(t− 1) + 4(k − 1)

⌊
t− 1

3

⌋
. (17)

It follows from (15)–(17) that

Rn =
1

n
lim
t→∞

Rn(t)

t
≥

{
5
6 , if n = 3,
2n+2
3n , if n ≥ 4.

(ii) Now, we give input data bit streams that achieve the lower bounds in (14) for n ≥ 3. As the
input data bits can be uniquely decoded from their coded bits under the bit-stuffing encoding scheme,
it suffices to show the coded bits of the input data bits.

For the case that n = 3, let c(t) = (c3(t), c2(t), c1(t)) be given by c(t) = (0, 1, 0) for t = 1, 3, . . ., and
c(t) = (1, 0, 0) for t = 2, 4, In Table V, we show the coded bits ci(t) for i = 1, 2, 3 and t = 1, 2, . . . , 12. It
is easy to see that ci(t), i = 1, 2, 3 and t = 1, 2, . . ., are valid coded bits as there are no forbidden overlaps
on the three wires. Furthermore, ci(t) is a stuffed bit if and only if i = 3 and t = 2, 4, As such, the
number of data bits R3(t) among the first 3t coded bits is given by the right-hand side of (15), and it
follows that

R3 =
1

3
lim
t→∞

R3(t)

t
=

5

6
.

For the case that n ≥ 4, let

x = (0, 1, 0, 0, 1, 0, 0, 1, 0, . . .),

y = (1, 0, 0, 1, 0, 0, 1, 0, 0, . . .),

z = (0, 0, 1, 0, 0, 1, 0, 0, 1, . . .)

be three infinite binary periodic sequences with period 3. For 1 ≤ i ≤ n, let

(ci(1), ci(2), . . .) =

 x, if i = 1 (mod 3),
y, if i = 2 (mod 3),
z, if i = 0 (mod 3).

(18)

In Table VI, we show the coded bits ci(t) given by (18) for 1 ≤ i ≤ n and 1 ≤ t ≤ 12, where n = 9. It is
clear that ci(t) given by (18) is periodic with period 3 (both in space and in time).

It is easy to see that ci(t), i = 1, 2, . . . , n and t = 1, 2, . . ., are valid coded bits as there are no forbidden
overlaps on any three adjacent wires. Furthermore, ci(t) is a stuffed bit if and only if i ≥ 3, t ≥ 2, and
i + t = 2 (mod 3) (note that the stuffed bits in Table VI are in boldface). As such, the number of data
bits Rn(t) among the first nt coded bits satisfies (16), (17), and

Rn(t) ≤
{
n+ 4(t− 1) + 2(n− 5)

⌊
t−1
3

⌋
+ 2(n− 2), if n = 2k + 1, where k ≥ 2,

n+ 2(t− 1) + 2(n− 2)
⌊
t−1
3

⌋
+ 2(n− 2), if n = 2k, where k ≥ 2,

(19)

It follows that

Rn =
1

n
lim
t→∞

Rn(t)

t
=

2n+ 2

3n
ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

1:12 • C.-S. Chang et al.

Table VI. The coded bits ci(t) given by (18) for 1 ≤ i ≤ n
and 1 ≤ t ≤ 12, where n = 9. Note that the stuffed bits

are in boldface.
i \t 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 0 0 1 0 0 1 0 0 1 0
2 1 0 0 1 0 0 1 0 0 1 0 0
3 0 0 1 0 0 1 0 0 1 0 0 1
4 0 1 0 0 1 0 0 1 0 0 1 0
5 1 0 0 1 0 0 1 0 0 1 0 0
6 0 0 1 0 0 1 0 0 1 0 0 1
7 0 1 0 0 1 0 0 1 0 0 1 0
8 1 0 0 1 0 0 1 0 0 1 0 0
9 0 0 1 0 0 1 0 0 1 0 0 1

for n ≥ 4. The proof is completed.

5. PROBABILISTIC ANALYSIS

In this section, we give a probabilistic analysis for the coding rate of our bit-stuffing algorithm. For
our probabilistic analysis, we assume that the input data bit stream {b1, b2, . . .} is a sequence of i.i.d.
Bernoulli random variables with equal probabilities of being 0 or 1. Under such an assumption, it
is easy to see that the stochastic process {c(t), t ≥ 1} is a time-homogeneous Markov chain. Let Pn

be the transition probability matrix of the Markov chain {c(t), t ≥ 1}. Now we specify the transition
probability (Pn)c,c′ = P (c(t) = c′|c(t − 1) = c) for c, c′ ∈ {0, 1}n. As the input data bits are i.i.d.
Bernoulli random variables with equal probabilities of being 0 or 1, it is easy to see from the bit-
stuffing algorithm that

P1 =

[
1
2

1
2

1
2

1
2

]
,P2 =


1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

 . (20)

For n ≥ 3, we have from the chain rule and the bit-stuffing rule that

(Pn)c,c′=P (c(t) = c′|c(t− 1) = c)

=
n∏

i=1

P (ci(t) = c′i|cj(t− 1) = c′j , j = 1, 2, . . . , i− 1, c(t− 1) = c)

=
1

4

n∏
i=3

P (ci(t) = c′i|ci(t− 1) = ci, ci−1(t− 1) = ci−1, ci−1(t) = c′i−1,

ci−2(t− 1) = ci−2, ci−2(t) = c′i−2)

=
1

4

n∏
i=3

q(ci, ci−1, ci−2, c
′
i, c

′
i−1, c

′
i−2), (21)

where

q(ci, ci−1, ci−2, c
′
i, c

′
i−1, c

′
i−2)

= P (ci(t) = c′i|ci(t− 1) = ci, ci−1(t− 1) = ci−1, ci−1(t) = c′i−1, ci−2(t− 1) = ci−2, ci−2(t) = c′i−2) (22)

is a function of ci, ci−1, ci−2, c
′
i, c

′
i−1, c

′
i−2 and it is independent of time t. The values of q(ci, ci−1, ci−2, c

′
i,

c′i−1, c
′
i−2) are shown in Table VII. Note that there are two entries of q(ci, ci−1, ci−2, c

′
i, c

′
i−1, c

′
i−2) that

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

Coding Rate Analysis of Forbidden Overlap Codes in High Speed Buses • 1:13

Table VII. The values of q(ci, ci−1, ci−2, c
′
i, c

′
i−1, c

′
i−2).

cici−1ci−2 \c′ic
′
i−1c

′
i−2 000 001 010 011 100 101 110 111

000 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

001 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

010 1
2

1 1
2

1
2

1
2

0 1
2

1
2

011 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

100 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

101 1
2

1
2

0 1
2

1
2

1
2

1 1
2

110 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

are equal to 0. These two entries correspond to the forbidden overlap constraint in (3). Also, there are
two entries of q(ci, ci−1, ci−2, c

′
i, c

′
i−1, c

′
i−2) that are equal to 1. In each of these two entries, the coded bit

c′i is a stuffed bit. The rest of the entries are all equal to 1/2 (from the assumption of Bernoulli i.i.d.
random variables with equal probabilities of being 0 and 1) as the coded bit c′i is a data bit in each of
these entries.

Since the state with all its values being 0 is able to communicate with any other states, i.e., (Pn)0n,c >
0 and (Pn)c,0n > 0 for all c ∈ {0, 1}n, it follows that the Markov chain {c(t), t ≥ 1} is irreducible and
aperiodic. As its state space {0, 1}n is finite, it is well-known [Nelson 1995] that there exist unique
steady state probabilities πn = (πn,0n , . . . , πn,1n) for the Markov chain {c(t), t ≥ 1} that could be ob-
tained by solving the following system of linear equations:

πn = πnPn, (23)∑
c∈{0,1}n

πn,c = 1. (24)

Once we solve the steady state probabilities of the Markov chain, we can use those to compute the
coding rate. In particular, the total coding rate Dn over the n wires is equal to the entropy rate H(Pn)
of the Markov chain {c(t), t ≥ 1} [Cover and Thomas 1991], that is,

Dn = H(Pn) = −
∑

c,c′∈{0,1}n

πn,c(Pn)c,c′ log2(Pn)c,c′ . (25)

Using (25), one can then compute the coding rate per wire

Rn =
Dn

n
. (26)

Also, the coding rate rn over the nth wires is given by r1 = r2 = 1 and

rn = −
∑

c,c′∈{0,1}n

πn,c(Pn)c,c′ log2 q(cn, cn−1, cn−2, c
′
n, c

′
n−1, c

′
n−2), for n ≥ 3, (27)

where the values of q(cn, cn−1, cn−2, c
′
n, c

′
n−1, c

′
n−2) are given in Table VII.

In Table II, we show the maximum achievable rate Cn in (7), the coding rate per wire Rn = Dn

n ,
the coding rate rn over the nth wire in (27), and the approximation of rn in (32) (this will be given in
Section 6) for 1 ≤ n ≤ 10. Several observations can be drawn from these numerical results: (i) There
is still some gap between the coding rate Rn of the bit-stuffing encoding scheme and the maximum
achievable rate Cn. This shows that the bit-stuffing encoding scheme does not achieve the maximum
achievable rate when n is small. However, the difference is very small. For the case with n = 10, the
difference is only 0.8%. (ii) It seems that the coding rate rn over the nth wire converges to a constant
near 0.9576, i.e., limn→∞ rn ≈ 0.9576 (this will be further addressed in Section 6).

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

1:14 • C.-S. Chang et al.

6. APPROXIMATE PROBABILISTIC ANALYSIS

In the previous section, we derive a Markov chain model to compute the coding rate of the bit-stuffing
algorithm. However, the number of states grows exponentially with respect to the number of wires n.
Thus, it is difficult to compute the coding rate of the bit-stuffing algorithm for a large number of wires.
To tackle the problem of the curse of dimensionality, our idea is to propose an approximate analysis
that limits the dependency of coded bits in adjacent wires as in [Chang et al. 2015]. Note from the
bit-stuffing condition in our bit-stuffing algorithm, whether the coded bit ci(t) is a stuffed bit or a data
bit depends on the other five coded bits ci−2(t− 1), ci−1(t− 1), ci(t− 1), ci−2(t) and ci−1(t). In Figure 3,
we show the dependency graph of coded bits on the five wires: the (n− 4)th wire, the (n− 3)th wire, the
(n− 2)th wire, the (n− 1)th wire and the nth wire. If we neglect the dependency from the coded bits on
the (n − 4)th wire and the (n − 3)th wire, then it is much easier to analyze the remaining dependency
graph (the subgraph under the dotted line in Figure 3) for the coded bits on the (n − 2)th wire, the
(n − 1)th wire and the nth wire. In view of the remaining dependency graph, we have the following
properties:

(P1). The stochastic process {cn−2(t), t ≥ 1} is a Markov chain. Specifically, given cn−2(t − 1), the
coded bit cn−2(t) is conditionally independent of the coded bits cn−2(τ), τ = 1, 2, . . . , t− 2.
(P2). The stochastic process {(cn−1(t), cn−2(t)), t ≥ 1} is a Markov chain. Specifically, given (cn−1(t−
1), cn−2(t− 1)), the coded bits (cn−1(t), cn−2(t)) are conditionally independent of the coded bits
(cn−1(τ), cn−2(τ)), τ = 1, 2, . . . , t− 2.
(P3). The stochastic process {(cn(t), cn−1(t), cn−2(t)), t ≥ 1} is a Markov chain. Specifically, given
(cn(t−1), cn−1(t−1), cn−2(t−1)), the coded bits (cn(t), cn−1(t), cn−2(t)) are conditionally independent
of the coded bits (cn(τ), cn−1(τ), cn−2(τ)), τ = 1, 2, . . . , t− 2.
(P4). Given cn−2(t− 1), the coded bits cn−2(t) and cn−1(t− 1) are conditionally independent.
(P5). Given (cn−1(t− 1), cn−2(t− 1)), the coded bits (cn−1(t), cn−2(t)) and cn(t− 1) are conditionally
independent.

n

t
t-1
 t+1

n-2

n-3

n-4

n-1

Fig. 3. The dependency graph of coded bits. The approximate probability analysis is to neglect the dependency above the dotted
line.

We note that the approximate analysis for FPCs in [Chang et al. 2015] neglects the dependency
from the coded bits above the (n − 2)th wire. In comparison with the approximate analysis for FPCs
in [Chang et al. 2015], our approximate analysis for FOCs is much more difficult as it adds another
ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

Coding Rate Analysis of Forbidden Overlap Codes in High Speed Buses • 1:15

level of dependency in the dependency graph of coded bits in Figure 3. Also, these five properties (P1)-
(P5) are in fact true for n = 3. However, it is only an approximation for n > 3. In fact, the stochastic
processes {cn−2(t), t ≥ 1}, {(cn−1(t), cn−2(t)), t ≥ 1}, and {(cn(t), cn−1(t), cn−2(t)), t ≥ 1} are hidden
Markov chains (Markov modulated processes) and they are not necessarily Markov chains. However,
as will be seen shortly, these five properties lead to a very good approximation for the coding rate rn
for the nth wire when n is large.

Our analysis consists of the following five steps:
(S1) Derive the transition probability matrix P′

n = [(P′
n)cn−2,c′n−2

]cn−2,c′n−2
∈{0,1} for the Markov chain

{cn−2(t), t ≥ 1}. This is given by

P′
n =

[
1− rn−2

2
rn−2

2
rn−2

2 1− rn−2

2

]
. (28)

The detailed derivation is shown in Appendix B. Note that rn−2 is the coding rate over the (n − 2)th

wire and intuitively it can be viewed as a summarized statistic for the dependency of the coded bits
above the (n−2)th wire. Now the Markov chain {cn−2(t), t ≥ 1} here is an approximation of the original
hidden Markov chain {cn−2(t), t ≥ 1}.

(S2) Use the conditional independence property in (P4) to derive the transition probability matrix
P′′

n = [(P′′
n)cn−1cn−2,c′n−1

c′
n−2

](cn−1,cn−2),(c′n−1
,c′

n−2
)∈{0,1}2 for the Markov chain {(cn−1(t), cn−2(t)), t ≥ 1}.

This is given by

P′′
n =


1
2 − rn−2

4
rn−2

4
1
2 − rn−2

4
rn−2

4
rn−2

4 + 1−rn−1

rn−1

1
2 − rn−2

4
rn−2

4 − 1−rn−1

rn−1

1
2 − rn−2

4
1
2 − rn−2

4
rn−2

4 − 1−rn−1

rn−1

1
2 − rn−2

4
rn−2

4 + 1−rn−1

rn−1
rn−2

4
1
2 − rn−2

4
rn−2

4
1
2 − rn−2

4

 . (29)

The detailed derivation is shown in Appendix C. Again, rn−1 is the coding rate over the (n− 1)th wire
and intuitively it can be viewed as a summarized statistic for the dependency of the coded bits above
the (n − 1)th wire. Now the Markov chain {(cn−1(t), cn−2(t)), t ≥ 1} here is an approximation of the
original hidden Markov chain {(cn−1(t), cn−2(t)), t ≥ 1}.

(S3) Use the conditional independence property in (P5) to derive the transition probability matrix

P′′′
n = [(P′′′

n)cncn−1cn−2,c′nc
′
n−1

c′
n−2

](cn,cn−1,cn−2),(c′n,c
′
n−1

,c′
n−2

)∈{0,1}3

for the Markov chain {(cn(t), cn−1(t), cn−2(t)), t ≥ 1}. This is given by

P′′′
n=



1
4 − rn−2

8
rn−2

8
1
4 − rn−2

8
rn−2

8
rn−2

8 + 1−rn−1

2rn−1

1
4 − rn−2

8
rn−2

8 − 1−rn−1

2rn−1

1
4 − rn−2

8
1
4 − rn−2

8
rn−2

4 − 1−rn−1

rn−1

1
4 − rn−2

8
rn−2

8 + 1−rn−1

2rn−1
rn−2

8
1
4 − rn−2

8
rn−2

8
1
4 − rn−2

8
1
4 − rn−2

8
rn−2

8
1
4 − rn−2

8
rn−2

8
rn−2

8 + 1−rn−1

2rn−1

1
4 − rn−2

8 0 1
4 − rn−2

8
1
4 − rn−2

8
rn−2

8 − 1−rn−1

2rn−1

1
4 − rn−2

8
rn−2

8 + 1−rn−1

2rn−1
rn−2

8
1
4 − rn−2

8
rn−2

8
1
4 − rn−2

8

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

1:16 • C.-S. Chang et al.

1
4 − rn−2

8
rn−2

8
1
4 − rn−2

8
rn−2

8
rn−2

8 + 1−rn−1

2rn−1

1
4 − rn−2

8
rn−2

8 − 1−rn−1

2rn−1

1
4 − rn−2

8
1
4 − rn−2

8 0 1
4 − rn−2

8
rn−2

8 + 1−rn−1

2rn−1
rn−2

8
1
4 − rn−2

8
rn−2

8
1
4 − rn−2

8
1
4 − rn−2

8
rn−2

8
1
4 − rn−2

8
rn−2

8
rn−2

8 + 1−rn−1

2rn−1

1
4 − rn−2

8
rn−2

4 − 1−rn−1

rn−1

1
4 − rn−2

8
1
4 − rn−2

8
rn−2

8 − 1−rn−1

2rn−1

1
4 − rn−2

8
rn−2

8 + 1−rn−1

2rn−1
rn−2

8
1
4 − rn−2

8
rn−2

8
1
4 − rn−2

8


. (30)

The detailed derivation is shown in Appendix D. Now the Markov chain {(cn(t), cn−1(t), cn−2(t)), t ≥ 1}
here is an approximation of the original hidden Markov chain {(cn(t), cn−1(t), cn−2(t)), t ≥ 1}.

(S4) Solve the steady state probabilities π′′′
n = (π′′′

n,000, π
′′′
n,001, . . . , π

′′′
n,111) of the Markov chain

{(cn(t), cn−1(t), cn−2(t)), t ≥ 1} from the system of linear equations π′′′
n = π′′′

n P′′′
n and π′′′

n,000 + π′′′
n,001 +

· · ·+ π′′′
n,111 = 1. They are given by

π′′′
n =

(
1

4
− rn−1

8
,
rn−1

4
−

r2n−1

rn−1rn−2 + 4(3rn−1 − 1)
,

r2n−1

rn−1rn−2 + 4(3rn−1 − 1)
,
1

4
− rn−1

8
,

1

4
− rn−1

8
,

r2n−1

rn−1rn−2 + 4(3rn−1 − 1)
,
rn−1

4
−

r2n−1

rn−1rn−2 + 4(3rn−1 − 1)
,
1

4
− rn−1

8

)
. (31)

(S5) Compute the coding rate rn from the steady state probabilities of the Markov chain {(cn(t),
cn−1(t), cn−2(t)), t ≥ 1}. This then leads to the following recursive equation for rn:

rn =
rn−1rn−2

(
1− rn−1

2

)
+ 4(3rn−1 − 1) + 2rn−1(1− rn−1)

rn−1rn−2 + 4(3rn−1 − 1)
, (32)

where r1 = 1 and r2 = 1. The detailed derivation is shown in Appendix E.
The approximation of rn in (32) is shown in the last row of Table II. From Table II, we can see that

for n = 3, the approximation in (32) is the same as the exact value of rn in (27). This is no coincidence
as we have mentioned earlier that the five properties (P1)-(P5) are true for n = 3. Furthermore, the
approximation of rn in (32) matches very well to the exact value of rn in (27) for 4 ≤ n ≤ 10. As n → ∞,
the coding rate r∞ = limn→∞ rn can be obtained by solving

r∞ =
r2∞

(
1− r∞

2

)
+ 4(3r∞ − 1) + 2r∞(1− r∞)

r2∞ + 4(3r∞ − 1)

with the constraint that 2/3 ≤ r∞ ≤ 1. The result is r∞ ≈ 0.9575, which matches very well to the exact
value of rn in (27) for 6 ≤ n ≤ 10. Moreover, we also perform simulations for n up to 3000. In our simu-
lations, the input streams are all i.i.d. Bernoulli random variables with equal probabilities of being 0
and 1. The total number coded bits in each wire is 10001000, i.e., t = 1, 2, . . . , 10001000. Thus, the total
number of coded bits on the 3000 wires is approximately 3× 1010. We run our simulations on a server
with an Intel Xeon processor (3.00Ghz) and the Ubuntu Linux operating system. The total simulation
time is 17 days, 3 hours and 7 mins. To obtain the 95% confidence interval, we discard the simula-
tion results for the first 1000 coded bits (to reduce the transient effect) and then apply the standard
batch means method [Alexopoulos and Seila 1996] by viewing the average coding rate for each block of
1000 coded bits as an “independent” observation. We then compute the sample mean and the standard
deviation of these “independent” observations and use those to compute the confidence interval. In Ta-
ble VIII, we show the simulation results for the coding rate per wire Rn (see the fourth row of Table II)
for 3 ≤ n ≤ 10. The simulation results match the theoretical results (that are obtained from solving the
ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

Coding Rate Analysis of Forbidden Overlap Codes in High Speed Buses • 1:17

Table VIII. The simulation results for the coding rate per wire Rn, 3 ≤ n ≤ 10.
n 3 4 5 6 7 8 9 10

Rn (theory) 0.9815 0.9759 0.9723 0.9698 0.9681 0.9668 0.9657 0.9649
Sample mean 0.9815 0.9759 0.9723 0.9698 0.9681 0.9668 0.9658 0.9649

Standard deviation 0.0023 0.0022 0.0021 0.0020 0.0019 0.0018 0.0017 0.0016

Markov chain numerically). The coding rates for 2000 ≤ n ≤ 3000 are all 0.9576 with 95% confidence
intervals smaller than 0.0002. The simulation results also show that our approximation r∞ ≈ 0.9575
is very good.

7. CONCLUSION

In this paper, we analyzed the coding rates of for various FOCs, including the maximum achievable
rate, the memoryless FOCs, and the FOCs generated from the bit stuffing algorithm. For the coding
rate of the bit-stuffing algorithm, we performed a worst-case analysis and a probabilistic analysis
(under the assumption of Bernoulli inputs). To cope with the problem of the curse of dimensionality,
we proposed an approximate probabilistic analysis that limits the dependency of coded bits in adjacent
wires. In comparison with the approximate analysis for FTCs in [Chang et al. 2015], our approximate
analysis is much more difficult as it adds another level of dependency among coded bits. Also, our
numerical results obtained in this paper could be useful for further understanding the tradeoff between
maximum delay and coding rate in the designs of DSM buses. In particular, our numerical results
show that the coding rates for various FOCs are significantly higher than their counterparts for FTCs
in [Chang et al. 2015].

One possible extension of the bit-stuffing algorithm is to use parallel encoding/decoding as in [Chang
et al. 2015]. Consider a bus with n parallel wires and n data bit streams. Index the n wires from 1 to
n and let S = {3, 6, 9, . . . , 3⌊n/3⌋}. For a bus i ̸∈ S, we simply set ci(t) to be the next data bit of the ith

data bit stream. On the other hand, for a bus i ∈ S, we set ci(t) = ci(t− 1) as a stuffed bit if one of the
following three bit-stuffing conditions holds: (i) ci−2(t−1) = c̄i−2(t) = c̄i−1(t−1) = ci−1(t) = ci(t−1), (ii)
c̄i−1(t− 1) = ci−1(t) = ci(t− 1) = c̄i+1(t− 1) = ci+1(t), (iii) ci+2(t− 1) = c̄i+2(t) = c̄i+1(t− 1) = ci+1(t) =
ci(t− 1). Otherwise, we also set ci(t) to be the next data bit of the ith data bit stream.

The coding rate of a wire i ̸∈ S is certainly 1. To compute the coding rate of a wire i ∈ S, let
ĉ(t) = (ci−2(t), ci−1(t), ci(t), ci+1(t), ci+2(t)). Under the assumption that all the n data bit streams consist
of i.i.d. Bernoulli random variables with equal probabilities of being 0 or 1, the stochastic process ĉ(t) is
also a time-homogeneous Markov chain. Solving such a Markov chain with 32 states yields the coding
rate 0.8634 for a wire in S. Thus, when n is large, the coding rate per wire is (1+1+0.8634)/3 ≈ 0.9544
for the parallel bit-stuffing algorithm.

A. PROOF OF LEMMA 2.1

As the relation that there are no “010 → 101” and “101 → 010” transitions between three adjacent wires
is symmetric, it is clear from the definition of the adjacency matrix An associated with the forbidden
overlap channel that it is a symmetric matrix for all n ≥ 1.

For n = 1, the two possible states are 0 and 1, and it is clear that

A1 =

[
1 1
1 1

]
. (33)

It follows from (33) and A0 = B0 = 1 that (8) holds for n = 1.
ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

1:18 • C.-S. Chang et al.

For n = 2, the four possible states are (0, 0), (0, 1), (1, 0), and (1, 1), and it is easy to see that

A2 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 =

[
A1 B1

BT
1 A1

]
, where B1 =

[
1 1
1 1

]
. (34)

It follows from (34) and C0 = 1 that (8) holds for n = 2.
For n = 3, the eight possible states are (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0),

(1, 1, 1), and it is clear that

A3 =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1


=

[
A2 B2

BT
2 A2

]
, (35)

where

B2 =


1 1 1 1
1 1 1 1
1 0 1 1
1 1 1 1

 =

[
A1 B1

C1 A1

]
, (36)

in which

C1 =

[
1 0
1 1

]
=

[
A0 O0

BT
0 A0

]
. (37)

It follows from (35)–(37) that (8) holds for n = 3.
Assume as the induction hypothesis that (8) holds for some n− 1 ≥ 3 and n− 2 ≥ 2, i.e.,

An−1 =

[
An−2 Bn−2

BT
n−2 An−2

]
(38)

and

An−2 =

[
An−3 Bn−3

BT
n−3 An−3

]
. (39)

To ease the presentation in the rest of the proof, we denote

c(n−1) = (cn−1, cn−2, . . . , c1),

c(n−2) = (cn−2, cn−3, . . . , c1),

c(n−3) = (cn−3, cn−4, . . . , c1).

Also, we denote

cnc
(n−1) = (cn, cn−1, . . . , c1),

cncn−1c
(n−2) = (cn, cn−1, . . . , c1),

cncn−1cn−2c
(n−3) = (cn, cn−1, cn−2, . . . , c1).

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

Coding Rate Analysis of Forbidden Overlap Codes in High Speed Buses • 1:19

For c(n−3) = (cn−3, cn−4, . . . , c1) ∈ {0, 1}n−3 and c′(n−3) = (c′n−3, c
′
n−4, . . . , c

′
1) ∈ {0, 1}n−3, it is easy to

see from the definition of the adjacency matrix An and (38)–(39) that

(An)000c(n−3),000c′(n−3) = (An)000c(n−3),010c′(n−3) = (An)000c(n−3),100c′(n−3)

= (An)000c(n−3),110c′(n−3) = (An)001c(n−3),001c′(n−3) = (An)001c(n−3),011c′(n−3)

= (An)001c(n−3),101c′(n−3) = (An)001c(n−3),111c′(n−3) = (An)010c(n−3),000c′(n−3)

= (An)010c(n−3),010c′(n−3) = (An)010c(n−3),100c′(n−3) = (An)010c(n−3),110c′(n−3)

= (An)011c(n−3),001c′(n−3) = (An)011c(n−3),011c′(n−3) = (An)011c(n−3),101c′(n−3)

= (An)011c(n−3),111c′(n−3) = (An)100c(n−3),000c′(n−3) = (An)100c(n−3),010c′(n−3)

= (An)100c(n−3),100c′(n−3) = (An)100c(n−3),110c′(n−3) = (An)101c(n−3),001c′(n−3)

= (An)101c(n−3),011c′(n−3) = (An)101c(n−3),101c′(n−3) = (An)101c(n−3),111c′(n−3)

= (An)110c(n−3),000c′(n−3) = (An)110c(n−3),010c′(n−3) = (An)110c(n−3),100c′(n−3)

= (An)110c(n−3),110c′(n−3) = (An)111c(n−3),001c′(n−3) = (An)111c(n−3),011c′(n−3)

= (An)111c(n−3),101c′(n−3) = (An)111c(n−3),111c′(n−3)

= (An−3)c(n−3),c′(n−3) , (40)
(An)000c(n−3),001c′(n−3) = (An)000c(n−3),011c′(n−3) = (An)000c(n−3),101c′(n−3)

= (An)000c(n−3),111c′(n−3) = (An)010c(n−3),011c′(n−3) = (An)010c(n−3),111c′(n−3)

= (An)100c(n−3),001c′(n−3) = (An)100c(n−3),011c′(n−3) = (An)100c(n−3),101c′(n−3)

= (An)100c(n−3),111c′(n−3) = (An)110c(n−3),011c′(n−3) = (An)110c(n−3),111c′(n−3)

= (An−2)0c(n−3),1c′(n−3) = (Bn−3)c(n−3),c′(n−3) , (41)
(An)001c(n−3),000c′(n−3) = (An)001c(n−3),100c′(n−3) = (An)011c(n−3),000c′(n−3)

= (An)011c(n−3),010c′(n−3) = (An)011c(n−3),100c′(n−3) = (An)011c(n−3),110c′(n−3)

= (An)101c(n−3),000c′(n−3) = (An)101c(n−3),100c′(n−3) = (An)111c(n−3),000c′(n−3)

= (An)111c(n−3),010c′(n−3) = (An)111c(n−3),100c′(n−3) = (An)111c(n−3),110c′(n−3)

= (An−2)1c(n−3),0c′(n−3) = (BT
n−3)c(n−3),c′(n−3) , (42)

(An)001c(n−3),010c′(n−3) = (An)001c(n−3),110c′(n−3) = (An)101c(n−3),110c′(n−3)

= (An−1)01c(n−3),10c′(n−3) = (Bn−2)1c(n−3),0c′(n−3) = (Cn−3)c(n−3),c′(n−3) , (43)
(An)010c(n−3),001c′(n−3) = (An)110c(n−3),001c′(n−3) = (An)110c(n−3),101c′(n−3)

= (An−1)10c(n−3),01c′(n−3) = (BT
n−2)0c(n−3),1c′(n−3) = (CT

n−3)c(n−3),c′(n−3) , (44)
(An)010c(n−3),101c′(n−3) = (An)101c(n−3),010c′(n−3) = 0. (45)

Therefore, we have from (40)–(45), (39), AT
n−3 = An−3, (38), and AT

n−2 = An−2 that

An=



An−3 Bn−3 An−3 Bn−3 An−3 Bn−3 An−3 Bn−3

BT
n−3 An−3 Cn−3 An−3 BT

n−3 An−3 Cn−3 An−3

An−3 CT
n−3 An−3 Bn−3 An−3 On−3 An−3 Bn−3

BT
n−3 An−3 BT

n−3 An−3 BT
n−3 An−3 BT

n−3 An−3

An−3 Bn−3 An−3 Bn−3 An−3 Bn−3 An−3 Bn−3

BT
n−3 An−3 On−3 An−3 BT

n−3 An−3 Cn−3 An−3

An−3 CT
n−3 An−3 Bn−3 An−3 CT

n−3 An−3 Bn−3

BT
n−3 An−3 BT

n−3 An−3 BT
n−3 An−3 BT

n−3 An−3


ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

1:20 • C.-S. Chang et al.

=


An−2 Bn−2 An−2 Bn−2

BT
n−2 An−2 Cn−2 An−2

An−2 CT
n−2 An−2 Bn−2

BT
n−2 An−2 BT

n−2 An−2

 =

[
An−1 Bn−1

BT
n−1 An−1

]
,

where

Bn−1 =

[
An−2 Bn−2

Cn−2 An−2

]
, in which Cn−2 =

[
An−3 On−3

BT
n−3 An−3

]
.

The induction is completed.

B. THE TRANSITION PROBABILITY MATRIX FOR THE MARKOV CHAIN IN (S1)

Let Dn−2(t) (resp., Sn−2(t)) be the event that cn−2(t) is a data (resp., stuffed) bit. Then we have

lim
t→∞

P (Dn−2(t)) = rn−2, (46)

lim
t→∞

P (Sn−2(t)) = lim
t→∞

(1− P (Dn−2(t))) = 1− rn−2. (47)

As the bit-stuffing algorithm is symmetric, we also have

lim
t→∞

P (cn−2(t) = 0) = lim
t→∞

P (cn−2(t) = 1) =
1

2
, (48)

lim
t→∞

P (cn−2(t− 1) = cn−2(t) = 0) = lim
t→∞

P (cn−2(t− 1) = cn−2(t) = 1). (49)

Note from the law of total probability that

P (cn−2(t) = cn−2(t− 1))

= P (Dn−2(t))P (cn−2(t) = cn−2(t− 1)|Dn−2(t))

+P (Sn−2(t))P (cn−2(t) = cn−2(t− 1)|Sn−2(t)). (50)

Given that cn−2(t) is a stuffed bit, we know from the bit-stuffing rule that cn−2(t) = cn−2(t− 1), and so
we have

P (cn−2(t) = cn−2(t− 1)|Sn−2(t)) = 1. (51)

Given that cn−2(t) is a data bit, cn−2(t) is a Bernoulli random variable with equal probabilities of being
0 or 1, and is conditionally independent of cn−2(t− 1), and thus we have

P (cn−2(t) = cn−2(t− 1)|Dn−2(t))

=
∑

cn−2∈{0,1}

P (cn−2(t− 1) = cn−2|Dn−2(t))

×P (cn−2(t) = cn−2|Dn−2(t), cn−2(t− 1) = cn−2)

=
∑

cn−2∈{0,1}

1

2
P (cn−2(t− 1) = cn−2) =

1

2
. (52)

As such, it follows from (50)–(52) and (46)–(47) that

lim
t→∞

P (cn−2(t) = cn−2(t− 1))

=
1

2
· rn−2 + 1 · (1− rn−2) = 1− rn−2

2
. (53)

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

Coding Rate Analysis of Forbidden Overlap Codes in High Speed Buses • 1:21

Therefore, we have from (48), (49), and (53) that

(P′
n)0,0 = lim

t→∞
P (cn−2(t) = 0|cn−2(t− 1) = 0)

= lim
t→∞

P (cn−2(t) = cn−2(t− 1) = 0)

P (cn−2(t− 1) = 0)

=
1
2 (1−

rn−2

2)
1
2

= 1− rn−2

2
.

By symmetry, we have (P′
n)1,1 = 1− rn−2

2 . Finally, (P′
n)0,1 = 1−(P′

n)0,0 = rn−2

2 and (P′
n)1,0 = 1−(P′

n)1,1 =
rn−2

2 .

C. THE TRANSITION PROBABILITY MATRIX FOR THE MARKOV CHAIN IN (S2)

Let Dn−1(t−1) (resp., Dn−1(t)) be the event that cn−1(t−1) (resp, cn−1(t)) is a data bit and let Sn−1(t−1)
(resp., Sn−1(t)) be the event that cn−1(t− 1) (resp, cn−1(t)) is a stuffed bit. Then we have

lim
t→∞

P (Dn−1(t− 1)) = lim
t→∞

P (Dn−1(t)) = rn−1, (54)

lim
t→∞

P (Sn−1(t− 1)) = lim
t→∞

P (Sn−1(t)) = lim
t→∞

(1− P (Dn−1(t))) = 1− rn−1. (55)

Analogous to the arguments in Appendix B, we have

lim
t→∞

P (cn−1(t− 1) = cn−2(t− 1)) = 1− rn−1

2
. (56)

Also,

lim
t→∞

P (cn−1(t− 1) = 0|cn−2(t− 1) = 0) = 1− rn−1

2
. (57)

lim
t→∞

P (cn−1(t− 1) = 1|cn−2(t− 1) = 1) = 1− rn−1

2
. (58)

lim
t→∞

P (cn−1(t− 1) = 1|cn−2(t− 1) = 0) =
rn−1

2
. (59)

lim
t→∞

P (cn−1(t− 1) = 0|cn−2(t− 1) = 1) =
rn−1

2
. (60)

From the conditional independence property in (P4), we see that

P (cn−1(t− 1) = cn−2(t− 1) = cn−2(t))

=
∑

cn−2∈{0,1}

P (cn−2(t− 1) = cn−2)P (cn−1(t− 1) = cn−2, cn−2(t) = cn−2|cn−2(t− 1) = cn−2)

=
∑

cn−2∈{0,1}

P (cn−2(t− 1) = cn−2)P (cn−1(t− 1) = cn−2|cn−2(t− 1) = cn−2)

×P (cn−2(t) = cn−2|cn−2(t− 1) = cn−2). (61)

As such, we have from (61), (57)–(58), and (28) that

lim
t→∞

P (cn−1(t− 1) = cn−2(t− 1) = cn−2(t)) =
(
1− rn−1

2

)(
1− rn−2

2

)
. (62)

Similarly, we have

lim
t→∞

P (cn−1(t− 1) = cn−2(t− 1) = c̄n−2(t)) =
(
1− rn−1

2

) rn−2

2
, (63)

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

1:22 • C.-S. Chang et al.

lim
t→∞

P (cn−1(t− 1) = c̄n−2(t− 1) = cn−2(t)) =
rn−1rn−2

4
, (64)

lim
t→∞

P (cn−1(t− 1) = c̄n−2(t− 1) = c̄n−2(t)) =
rn−1

2

(
1− rn−2

2

)
. (65)

Note that

P (cn−1(t− 1) = cn−2(t− 1) = cn−1(t) = cn−2(t))

= P (Dn−1(t))P (cn−1(t− 1) = cn−2(t− 1) = cn−1(t) = cn−2(t)|Dn−1(t))

+P (Sn−1(t))P (cn−1(t− 1) = cn−2(t− 1) = cn−1(t) = cn−2(t)|Sn−1(t)). (66)

Given that cn−1(t) is a data bit, cn−1(t) is a Bernoulli random variable with equal probabilities of being
0 or 1, and is conditionally independent of cn−1(t− 1), cn−2(t− 1), and cn−2(t), and thus we have

P (cn−1(t− 1) = cn−2(t− 1) = cn−1(t) = cn−2(t)|Dn−1(t))

=
∑

c′
n−1

∈{0,1}

P (cn−1(t− 1) = cn−2(t− 1) = cn−2(t) = c′n−1|Dn−1(t))

×P (cn−1(t) = c′n−1|Dn−1(t), cn−1(t− 1) = cn−2(t− 1) = cn−2(t) = c′n−1)

=
1

2
P (cn−1(t− 1) = cn−2(t− 1) = cn−2(t)|Dn−1(t)). (67)

Given that cn−1(t) is a stuffed bit, we know from the bit-stuffing rule of our bit-stuffing algorithm that
cn−1(t) = cn−1(t− 1) = cn−2(t) = c̄n−2(t− 1), and thus we have

P (cn−1(t− 1) = cn−2(t− 1) = cn−1(t) = cn−2(t)|Sn−1(t)) = 0. (68)

It follows from (66)–(68), the bit-stuffing rule of our bit-stuffing algorithm, and (62) that

lim
t→∞

P (cn−1(t− 1) = cn−2(t− 1) = cn−1(t) = cn−2(t))

= lim
t→∞

1

2
P (cn−1(t− 1) = cn−2(t− 1) = cn−2(t), Dn−1(t))

= lim
t→∞

1

2
P (cn−1(t− 1) = cn−2(t− 1) = cn−2(t))

=
1

2

(
1− rn−1

2

)(
1− rn−2

2

)
. (69)

By similar arguments, we can obtain

lim
t→∞

P (cn−1(t− 1) = cn−2(t− 1) = c̄n−1(t) = cn−2(t))

= lim
t→∞

P (cn−1(t− 1) = cn−2(t− 1) = cn−1(t) = cn−2(t))

=
1

2

(
1− rn−1

2

)(
1− rn−2

2

)
, (70)

lim
t→∞

P (cn−1(t− 1) = cn−2(t− 1) = c̄n−1(t) = c̄n−2(t))

= lim
t→∞

P (cn−1(t− 1) = cn−2(t− 1) = cn−1(t) = c̄n−2(t))

=
(
1− rn−1

2

) rn−2

4
, (71)

lim
t→∞

P (cn−1(t− 1) = c̄n−2(t− 1) = c̄n−1(t) = c̄n−2(t))

= lim
t→∞

P (cn−1(t− 1) = c̄n−2(t− 1) = cn−1(t) = c̄n−2(t))

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

Coding Rate Analysis of Forbidden Overlap Codes in High Speed Buses • 1:23

=
rn−1

4

(
1− rn−2

2

)
, (72)

lim
t→∞

P (cn−1(t− 1) = c̄n−2(t− 1) = c̄n−1(t) = cn−2(t))

= lim
t→∞

1

2
P (cn−1(t− 1) = c̄n−2(t− 1) = cn−2(t), Dn−1(t)),

lim
t→∞

P (cn−1(t− 1) = c̄n−2(t− 1) = cn−1(t) = cn−2(t))

= lim
t→∞

1

2
P (cn−1(t− 1) = c̄n−2(t− 1) = cn−2(t), Dn−1(t)) + (1− rn−1).

Since we have

P (cn−1(t− 1) = cn−2(t− 1) = c̄n−1(t) = cn−2(t))

+P (cn−1(t− 1) = cn−2(t− 1) = cn−1(t) = cn−2(t))

+P (cn−1(t− 1) = cn−2(t− 1) = c̄n−1(t) = c̄n−2(t))

+P (cn−1(t− 1) = cn−2(t− 1) = cn−1(t) = c̄n−2(t))

+P (cn−1(t− 1) = c̄n−2(t− 1) = c̄n−1(t) = c̄n−2(t))

+P (cn−1(t− 1) = c̄n−2(t− 1) = cn−1(t) = c̄n−2(t))

+P (cn−1(t− 1) = c̄n−2(t− 1) = c̄n−1(t) = cn−2(t))

+P (cn−1(t− 1) = c̄n−2(t− 1) = cn−1(t) = cn−2(t)) = 1,

it follows that

lim
t→∞

P (cn−1(t− 1) = c̄n−2(t− 1) = cn−2(t), Dn−1(t)) =
rn−1rn−2

4
− (1− rn−1).

As such, we have

lim
t→∞

P (cn−1(t− 1) = c̄n−2(t− 1) = c̄n−1(t) = cn−2(t)) =
rn−1rn−2

8
− 1

2
(1− rn−1), (73)

lim
t→∞

P (cn−1(t− 1) = c̄n−2(t− 1) = cn−1(t) = cn−2(t)) =
rn−1rn−2

8
− 1

2
(1− rn−1). (74)

Finally, it is easy to see that (29) follows from the symmetry of the bit-stuffing algorithm, (70)–(74),
and (56).

D. THE TRANSITION PROBABILITY MATRIX FOR THE MARKOV CHAIN IN (S3)

From the chain rule and the conditional independence property in (P5), we immediately see that

(P′′′
n)cncn−1cn−2,c′nc

′
n−1

c′
n−2

=lim
t→∞

P (cn(t) = c′n, cn−1(t) = c′n−1, cn−2(t) = c′n−2

|cn(t− 1) = cn, cn−1(t− 1) = cn−1, cn−2(t− 1) = cn−2)

=lim
t→∞

P (cn−1(t) = c′n−1, cn−2(t) = c′n−2

|cn(t− 1) = cn, cn−1(t− 1) = cn−1, cn−2(t− 1) = cn−2)

×P (cn(t) = c′n|cn−1(t) = c′n−1, cn−2(t) = c′n−2,

cn(t− 1) = cn, cn−1(t− 1) = cn−1, cn−2(t− 1) = cn−2)

=lim
t→∞

P (cn−1(t) = c′n−1, cn−2(t) = c′n−2|cn−1(t− 1) = cn−1, cn−2(t− 1) = cn−2)

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

1:24 • C.-S. Chang et al.

×q(cn, cn−1, cn−2, c
′
n, c

′
n−1, c

′
n−2)

=(P′′
n)cn−1cn−2,c′n−1

c′
n−2

q(cn, cn−1, cn−2, c
′
n, c

′
n−1, c

′
n−2). (75)

It is easy to see that (30) follows from (75), (29), and Table VII.

E. COMPUTING THE CODING RATE RN IN (S5)

From (30), (31), and Table VII, we see that

rn=−
∑

cn,cn−1,cn−2∈{0,1}

π′′′
n,cncn−1cn−2

×
∑

c′n,c
′
n−1

,c′
n−2

∈{0,1}

(P′′′
n)cncn−1cn−2,c′nc

′
n−1

c′
n−2

log2 q(cn, cn−1, cn−2, c
′
n, c

′
n−1, c

′
n−2)

=(π′′′
n,000 + π′′′

n,001 + π′′′
n,011 + π′′′

n,100 + π′′′
n,110 + π′′′

n,111) · 1

+(π′′′
n,010 + π′′′

n,101) ·
[
1−

(
rn−2

4
− 1− rn−1

rn−1

)]
=
rn−1rn−2

(
1− rn−1

2

)
+ 4(3rn−1 − 1) + 2rn−1(1− rn−1)

rn−1rn−2 + 4(3rn−1 − 1)
.

REFERENCES

C. Alexopoulos and A. Seila, “Implementing the batch means method in simulation experiments,” Proceedings of the 28th con-
ference on Winter simulation. IEEE Computer Society, 1996.

C.-S. Chang, J. Cheng, T.-K. Huang, X.-C. Huang, D.-S. Lee, and C.-Y. Chen, ”Bit-stuffing algorithms for crosstalk avoidance in
high speed switching,” IEEE Transactions on Computers, vol. 22, no. 9, pp. 2030–2033, December 2015.

C.-S. Chang, J. Cheng, T.-K. Huang and D.-S. Lee, “Explicit constructions of memoryless crosstalk avoidance codes via C-
transform,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 64, no. 12, pp. 3404–3416, September
2014.

J. Cheng, C.-S. Chang, T.-H. Chao, D.-S. Lee, and C.-M. Lien, ”On constructions of optical queues with a limited number of
recirculations,” in Proceedings of IEEE INFOCOM 2008.

C.-C. Chou, C.-S. Chang, D.-S. Lee and J. Cheng, “A necessary and sufficient condition for the construction of 2-to-1 optical FIFO
multiplexers by a single crossbar switch and fiber delay lines,” IEEE Transactions on Information Theory, vol. 52, pp. 4519–
4531, October 2006.

T. M. Cover and J. A. Thomas, Elements of Information Theory, New York, NY: John Wiley & Sons, 1991.
C. Duan, C. Zhu, and S. P. Khatri, “Forbidden transition free crosstalk avoidance CODEC design,” in Proceedings 45th Annual

Design Automation Conference (DAC’08), Anaheim, CA, USA, June 8–13, 2008, pp. 986–991.
S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wolf, “Improved bit-stuffing bounds on two-dimensional constraints,” IEEE

Transactions on Information Theory, vol. 50, pp. 824–838, May 2004.
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge, UK: Cambridge University Press, 1985.
International Technology Roadmap for Semiconductors, 2003, Semiconductor Industry Association. [Online]. Available:

http://www.itrs.net/Links/2003ITRS/Home2003.htm
International Technology Roadmap for Semiconductors, 2005, Semiconductor Industry Association. [Online]. Available:

http://www.itrs.net/Links/2005ITRS/ExecSum2005.pdf
J. D. Z. Ma and L. He, “Formulae and applications of interconnect estimation considering shield insertion and net ordering,” in

Proceedings IEEE/ACM International Conference on Computer-Aided Design (ICCAD’01), San Jose, CA, USA, November 4–8,
2001, pp. 327–332.

B. E. Moision, A. Orlitsky, and P. H. Siegel, “On codes that avoid specified differences,” IEEE Transactions on Information
Theory, vol. 47, pp. 433–442, January 2001.

M. Mutyam, “Preventing crosstalk delay using Fibonacci representation,” in Proceedings International Conference on VLSI
Design (VLSID’04), Mumbai, India, January 5–9, 2004, pp. 685–688.

M. Mutyam, “Fibonacci codes for crosstalk avoidance,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 20, pp. 1899-1903, 2012.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

Coding Rate Analysis of Forbidden Overlap Codes in High Speed Buses • 1:25

R. Nelson. Probability, stochastic processes, and queueing theory: the mathematics of computer performance modeling. Springer
Science and Business Media, 1995.

E. K. Orcutt and W. M. Marcellin, “Redundant multitrack (d, k) codes,” IEEE Transactions on Information Theory, vol. 39,
pp. 1744–1750, 1993.

C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, pp. 379–423 (Part I), 623–
656 (Part II), July, October 1948.

P. P. Sotiriadis, “Interconnect modeling and optimization in deep submicron technologies,” Ph.D. Dissertation, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2002.

S. R. Sridhara, “Communication inspired design of on-chip buses,” Ph.D. Dissertation, University of Illinois, Urbana, IL, USA,
2006.

M. Stan and W. Burleson, “Limited-weight codes for low power I/O,” in Proc. IEEE/ACM Int. Workshop Low Power Design, 1994.
pp. 209–214.

B. Victor, “Bus encoding to prevent crosstalk delay,” M. S. Thesis, University of California, Berkeley, CA, USA, 2001.
B. Victor and K. Keutzer, “Bus encoding to prevent crosstalk delay,” in Proceedings IEEE/ACM International Conference on

Computer-Aided Design (ICCAD’01), San Jose, CA, USA, November 4–8, 2001, pp. 57–63.
W. Weeks and R.E. Blahut, “The capacity and coding gain of certain checkerboard codes,” IEEE Transactions on Information

Theory, vol. 44, pp. 1193–1203, 1998.
X. Wu and Z. Yan, Efficient CODEC designs for crosstalk avoidance codes based on numeral systems, IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, pp. 548–558, 2011.
X. Wu, Z. Yan, and Y. Xie, “Two-dimensional crosstalk avoidance codes,” in Proceedings IEEE Workshop on Signal Processing

Systems (SiPS’08), Washington, D. C., USA, October 8–10, 2008, pp. 106–111.

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: March 2015.

