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Abstract—In this paper, we consider the constructions of an
N -to-K optical priority queue with buffer

∑M

i=1
di by using a

feedback system consisting of a single(M +max[N,K])× (M +
max[N,K]) (bufferless) optical crossbar switch,min[N,K] 1×2
(bufferless) optical crossbar switches, andM fiber delay lines
with delays d1, d2, . . . , dM , where N is the number of arrival
links and K is the number of departure links of the priority
queue. We first obtain two sufficient conditions (the conditions
(A1) and (A2) in Section I) for our constructions of N -to-K
optical priority queues. By establishing aspace-time advancement
property and a monotonically decreasing/increasing property for
the packets stored in the fiber delay lines, we then use these
sufficient conditions to show that with an appropriate choice
for the delays d1, d2, . . . , dM , we can achieve a buffer size of
O(M

3

N2 ) for the case that N = K. For the special case that
N = K = 1, our constructions achieve a buffer size ofO(M3),
which is much better than the O(M2) buffer size previously
known in the literature for single-input single-output opt ical
priority queues. Therefore, other than the extension from the
constructions of optical priority queues with a single input and
a single output to the constructions of optical priority queues
with multiple inputs and multiple outputs, our constructio ns also
achieve a larger buffer size than previous constructions ofsingle-
input single-output optical priority queues. Furthermore, we give
another sufficient condition (the condition (A3) in SectionI) for
our constructions of N -to-K optical priority queues and then
use that condition to obtain choices for the delaysd1, d2, . . . , dM
so that our constructions have the fault tolerant capability that
can tolerate up toF broken/malfunctioning fibers (e.g., fiber cut,
fiber shorting out, etc), where0 ≤ F ≤ M − 1.

Index Terms—Fault tolerant capability, multiple inputs and
multiple outputs (MIMO), optical buffers, optical queues, optical
switches, priority queues, survivability, switched delaylines.

I. I NTRODUCTION

One of the main problems in all-optical packet switching is
the lack of optical buffers to resolve conflicts among packets
competing for the same resources. Traditionally, such conflicts
are resolved by first converting optical packets into electronic
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packets, storing them in electronic random-access memory
(RAM), and then converting electronic packets back into opti-
cal packets when the resources can be accessed. However, such
an optical-electrical-optical (O-E-O) approach incurs serious
overheads so that it cannot keep up with the speed of the
optical links and hence the tremendous bandwidth afforded
by the optical links cannot be fully exploited. As the demand
for the transmission speed/bandwidth is ever increasing, it
has been well recognized that the design of optical buffers
has become one of the most critically sought after optical
technologies in all-optical packet-switched networks.

As optical packets, composed of a train of photons, cannot
be easily stopped, stored, and forwarded, currently the only
known way to “store” optical packets without converting them
into other media is to direct them through a set of (bufferless)
optical crossbar Switches and fiber Delay Lines (SDL) so
that fiber delay lines are used as the storage devices to store
optical packets. The main difference between such an optical
buffer and an electronic RAM is that packets stored in such an
optical buffer are constantly moving forward along the fiber
delay lines instead of being stored at fixed positions as in an
electronic RAM. Furthermore, an optical packet can only enter
a fiber delay line in the optical buffer from one end of that
optical fiber instead of from any position as in an electronic
RAM, and it can only be accessed when it appears at the other
end of that optical fiber instead of from any position as in an
electronic RAM. As it takes time for an optical packet to travel
through the optical fibers, such an optical buffer does not have
the random-access capability.

Fortunately, one of the key observations in packet-switched
networks is that we often do not need buffers with random-
access capability for contention resolution. In packet-switched
networks, many network elements have certain special ar-
rival/departure patterns, and the key idea in the SDL construc-
tions is to exploit such special patterns in the arrival/departure
process of a network element to design a customized optical
buffer for that network element. It has been shown in the
SDL literature [1]–[45] that with appropriate choices for the
delays of the fiber delay lines and appropriate designs for
the connection patterns of the (bufferless) optical crossbar
switches, optical packets can be routed to the right places at the
right times and exact emulations of various types of network
elements with certain special arrival/departure patternscan be
achieved.

Note that in this paper, we adopt the following basic
assumptions that are usually considered in the SDL literature:
(i) Packets are of the same size; (ii) Time is slotted and
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synchronized so that a packet can be transmitted within a time
slot; (iii) An M × M (bufferless) optical crossbar switch is
a network element withM input links andM output links
that realizes all of theM ! permutations between its inputs
and its outputs; (iv) A fiber delay line with delayd is an
optical link that requiresd time slots for a packet to traverse
through. As optical network elements are usually characterized
by their arrival/departure processes, they can be viewed as
special types of (discrete-time) optical queues. In the early
works on the SDL constructions of optical queues [1]–[4], the
focus is mainly on the feasibility of such an approach through
numerical simulations rather than rigorous analytical studies.
Recently, many interesting results on the theoretical SDL
constructions of optical queues have appeared in the literature,
including output-buffered switches in [5]–[10], FIFO multi-
plexers in [5] and [10]–[19], FIFO queues in [19]–[24], LIFO
queues in [21]–[22], priority queues in [25]–[28], time slot
interchanges in [19] and [29], and linear compressors, linear
decompressors, non-overtaking delay lines, and flexible delay
lines in [19] and [30]–[35], and FIFO, LIFO, and absolute
contractors in [36]. Furthermore, results on the fundamental
complexity of SDL constructions of optical queues can be
found in [37] and performance analysis for optical queues
has been addressed in [38]–[39]. For review articles on SDL
constructions of optical queues, we refer to [40]–[45] and the
references therein.

In this paper, we focus on the constructions of optical
priority queues with multiple inputs and multiple outputs.
In a priority queue, every packet is associated with a label,
called priority. When the control input of the priority queue
is enabled, the packets with the highest priorities are always
the next ones to depart. When the buffer of the priority queue
is full, the packets with the lowest priorities are always the
next ones to be dumped. A formal definition of priority queues
with multiple inputs and multiple outputs and its application
to the implementation of optical output-buffered switchesthat
support quality of service (QoS) will be given in Section II-A.
Note that both FIFO queues and LIFO queues are special cases
of priority queues as one can simply use the arrival time of
a packet as its priority, i.e., the earliest arriving packethas
the highest priority in a FIFO queue and the latest arriving
packet has the highest priority in a LIFO queue. Therefore,
the construction of an optical priority queue is consideredto
be much more difficult than that of an optical FIFO queue or
LIFO queue.

The first construction of an optical priority queue with a
single input and a single output was proposed by Sarwate and
Anantharam [25]. In [25], they considered a feedback system
(see Figure 1) consisting of an(M +1)×(M+1) (bufferless)
optical crossbar switch, a1 × 2 (bufferless) optical crossbar
switch, andM fiber delay lines with delaysd1, d2, . . . , dM . If
M is an odd integer, sayM = 2k− 1 for somek ≥ 1, di = i
for i = 1, 2, . . . , k, anddi = 1 for i = k+1, k+2, . . . , 2k−1,
then it was shown in [25] that such a feedback system can be
used for exact emulation of a single-input single-output optical
priority queue with buffer

∑k
i=1 di = k(k + 1)/2. However,

the proof in [25] is quite elaborate. A simpler proof was given
in [26], and it was shown that ifM is an odd integer, say

M = 2k − 1 for somek ≥ 1, then one can choosedi = i for
i = 1, 2, . . . , k anddi = 2k− i for i = k+1, k+2, . . . , 2k−
1 for exact emulation of a single-input single-output optical
priority queue with buffer

∑M
i=1 di = k2. On the other hand,

if M is an even integer, sayM = 2k for somek ≥ 1, then one
can choosedi = i for i = 1, 2, . . . , k anddi = 2k+ 1− i for
i = k + 1, k+ 2, . . . , 2k for exact emulation of a single-input
single-output optical priority queue with buffer

∑M
i=1 di =

k(k + 1). We note that both constructions in [25] and [26]
show that one can construct a single-input single-output optical
priority queue withO(M2) buffer size by using the feedback
system in Figure 1.
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Fig. 1. A construction of an optical priority queue with a single input and a
single output by using an(M + 1) × (M + 1) (bufferless) optical crossbar
switch, a1× 2 (bufferless) optical crossbar switch, andM fiber delay lines
with delaysd1, d2, . . . , dM .

Our main contribution in this paper is to show that by using
a feedback system (see Figure 4(a) in Section II-B for the case
thatN ≥ K and Figure 5(a) in Section II-C for the case that
N < K) consisting of a single1 (M +max[N,K])× (M +
max[N,K]) (bufferless) optical crossbar switch,min[N,K]
1 × 2 (bufferless) optical crossbar switches, andM fiber
delay lines with appropriately chosen delaysd1, d2, . . . , dM ,
we can construct anN -to-K optical priority queue with buffer
∑M

i=1 di, whereN is the number of arrival links andK is the
number of departure links of the priority queue. An in [26],
the key idea in our constructions is to view empty time slots as
the arrivals offictitious packets, namely, if there is no packet
arriving from an arrival link, then we regard that there is a
fictitious packet arriving from that arrival link. Furthermore,
we assume that fictitious packets have priorities lower than
those of real packets, and the priorities among the fictitious
packets are decreasing in the order of their arrival times and in
the order of their arrival links (in the case of multiple fictitious
packets with the same arrival time). Therefore, every packet
in the queue has adistinct priority, meaning that we have a
total order for the priorities of all of the packets (including

1Note that the sorter and the shifter in Figure 4(a) and Figure5(a) can
be combined together so that they can be implemented by usinga single
(bufferless) optical crossbar switch.



3

both the real packets and the fictitious packets) in the queue.
We note that in the rest of this paper, a packet may refer to
either a real packet or a fictitious packet, and it should be clear
from the context whether a packet refers to a real packet or a
fictitious packet.

We show in Theorem 2 (in Section II-B) and Theorem 3 (in
Section II-C) that the construction in Figure 4(a) or Figure5(a)
can be operated as anN -to-K optical priority queue with
buffer

∑M
i=1 di if the condition in (A1) below is satisfied at

all times:

(A1) Any packet stored in the fiber delay lines in Fig-
ure 4(a) or Figure 5(a) cannot be either one of the
K highestpriority packets or one of theN lowest
priority packets among all of the packets (including
both the real packets and the fictitious packets) stored
in the fiber delay lines until it appears at the firstM
inputs of the sorter.

It is clear that if the condition in (A1) is satisfied at all
times, then at the beginning of any time slot, theK highest
priority packets and theN lowest priority packets in the queue
will appear at the inputs of the sorter. The main idea in
our constructions is to use the sorter to sort the packets at
the inputs of the sorter according to their priorities so that
the priorities of the packets at the outputs of the sorter are
decreasing in the indices of the sorter’s output links. Thenthe
shifter and the1× 2 switches are used to route theK highest
priority packets to theK departure links when the control
input is enabled, and route theN lowest priority packets to
the N loss links when the control input is disabled. By so
doing, we show in the proofs of Theorem 2 and Theorem 3 that
we achieve an exact emulation of anN -to-K optical priority
queue with buffer

∑M
i=1 di.

In order to give appropriate choices for the fiber delays
d1, d2, . . . , dM in Figure 4(a) or Figure 5(a) so that the
condition in (A1) is satisfied at all times, we show in Lemma 4
in Section III-A that the condition in (A2) below is a sufficient
condition for the condition in (A1):

(A2) For 1 ≤ i ≤ M , consider a packet that enters theith

fiber delay line at timet. Call this packet the tagged
packet. There are at leastK(di − 1) packets stored
in the M fiber delay lines at timet (at the end of
the tth time slot) with prioritieshigher than that of
the tagged packet, and there are at leastN(di − 1)
packets in theM fiber delay lines at timet (at the
end of thetth time slot) with prioritieslower than
that of the tagged packet.

Furthermore, we show that if the fiber delaysd1, d2, . . . , dM
are given as in Theorem 5 in Section III-A, then the condition
in (A2) is satisfied at all times, implying that the conditionin
(A1) is also satisfied at all times and hence the feedback sys-
tem in Figure 4(a) or Figure 5(a) can be operated as anN -to-
K optical priority queue with buffer

∑M
i=1 di. Such choices of

the fiber delays rely on establishing aspace-time advancement
property and amonotonically decreasing/increasing property
for the packets stored in the fiber delay lines (see (35), (37),
(57), and (58) in Appendix A) which are the key properties
to showing that the condition in (A2) holds at all times if the

fiber delaysd1, d2, . . . , dM are given as in Theorem 5.
In Section III-B, we find from numerical computations that

in the case thatN = K, the optimal choice of the valuem1

in Theorem 5 to maximize the buffer size is roughly0.433M
for largeM , and the maximum buffer size is approximately
0.000929M3

N2 for largeM , i.e., the buffer size isO(M
3

N2 ). These
are further verified by approximating sums by integrals. Note
that in the special case thatN = K = 1, our constructions
achieve a buffer size ofO(M3), which is much better than
the O(M2) buffer size previously obtained in [25] and [26].
As such, our constructions not only extend the previous con-
structions from a single input and a single output to multiple
inputs and multiple outputs, but also improve (in the sense of
achieving a larger buffer size) on the previous constructions
of single-input single-output optical priority queues.

Another contribution of our constructions is their fault toler-
ant capability. Such a survivability issue is of great concern to
a practical system designer as a system consisting of hundreds
or thousands of components may be in a total breakdown
even if only a single component fails to function properly.
For this, we show in Lemma 7 in Section IV that if the fiber
delaysd1, d2, . . . , dM satisfy the condition in (A3) below, then
the condition in (A2) is satisfied at all times and hence the
feedback system in Figure 4(a) or Figure 5(a) can be operated
as anN -to-K optical priority queue with buffer

∑M
i=1 di:

(A3) 1 ≤ di ≤ min
[

⌊ i−1
K ⌋, ⌊M−i

N ⌋
]

+ 1, for all i =
1, 2, . . . ,M .

We use the condition in (A3) to show that if the fiber delays
d1, d2, . . . , dM are given as in Theorem 8 in Section IV, then
the feedback system in Figure 4(a) or Figure 5(a) can still be
operated as anN -to-K optical priority queue even when up to
F of theM fibers are broken/malfunctioning (e.g., fiber cut,
fiber shorting out, etc), where0 ≤ F ≤ M − 1.

This paper is organized as follows. In Section II, we first
give the definition ofN -to-K priority queues and show that
optical priority queues with multiple inputs and multiple
outputs can be used to implement optical output-buffered
switches that support QoS. Then we show that the condition
in (A1) is a sufficient condition for our constructions ofN -
to-K optical priority queues in Figure 4(a) or Figure 5(a).
In Section III, we first show that the condition in (A2) is a
sufficient condition for the condition in (A1) and give choices
for the fiber delaysd1, d2, . . . , dM in Figure 4(a) or Figure 5(a)
so that the condition in (A2) holds at all times. Then we
perform an approximation analysis for the maximum buffer
size that could be achieved by our constructions. In SectionIV,
we present our constructions of fault tolerantN -to-K optical
priority queues. Finally, the paper is concluded in SectionV,
where we summarize our results.

In the following, we provide a list of notations used in the
paper for easy reference.
N : the number of arrival links of anN -to-K priority queue
K: the number of departure links of anN -to-K priority

queue
B: the buffer size of anN -to-K priority queue in Defini-

tion 1
M : the number of fiber delay lines in our constructions of

anN -to-K priority queue in Figure 4(a) or Figure 5(a)
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di: the delay of theith fiber delay line in Figure 4(a) or
Figure 5(a), where1 ≤ i ≤ M

F : the fault tolerant capability of a fault tolerantN -to-K
priority queue, where0 ≤ F ≤ M − 1

B∗(N,M): the maximum buffer size of anN -to-K priority
queue that can be achieved by using the constructions in
Theorem 5 in the case thatN = K

B∗(N,K,F,M): the maximum buffer size of anN -to-K
priority queue with fault tolerant capabilityF by using the
constructions in Theorem 8(i)
a(t): the set of the “real” packets arriving from theN arrival

links at timet
d(t): the set of the “real” packets departing through theK

departure links at timet
ℓ(t): the set of the lost “real” packets dumped through the

N loss links at timet
q(t): the set of the “real” packets stored in the buffer at

time t (at the end of thetth time slot)
ã(t): the set of both the “real” packets and the “fictitious”

packets arriving from theN arrival links at timet
d̃(t): the set of both the “real” packets and the “fictitious”

packets departing through theK departure links at timet
ℓ̃(t): the set of both the lost “real” packets and the lost

“fictitious” packets dumped through theN loss links at time
t
q̃(t): the set of both the “real” packets and the “fictitious”

packets stored in the buffer at timet (at the end of thetth time
slot)

II. CONSTRUCTIONS OFOPTICAL PRIORITY QUEUES WITH

MULTIPLE INPUTS AND MULTIPLE OUTPUTS

We first give the definition ofN -to-K priority queues and
show that optical priority queues with multiple inputs and
multiple outputs can be used to implement optical output-
buffered switches that support QoS in Section II-A. Then in
Section II-B (resp., Section II-C), we show that the condition
in (A1) is a sufficient condition for our constructions ofN -
to-K optical priority queues in Figure 4(a) (resp., Figure 5(a))
for the case thatN ≥ K (resp.,N < K).

A. Definition ofN -to-K Priority Queues

B

d(t)

a(t)

c(t)

N-to-K

priority queue 

with buffer B

Departure link 1

Departure link 2

Departure link K

(t)

Loss link 1

Loss link 2

Loss link N

Arrival link 1

Arrival link 2

Arrival link N

Control input

Fig. 2. AnN -to-K priority queue with bufferB.

In the following, we give a formal definition ofN -to-
K priority queues. We note that all of the packets in this
subsection refer to real packets.

Definition 1 (N -to-K Priority Queues) An N -to-K priority
queue with bufferB is a network element withN input links,
one control input, andN + K output links (see Figure 2).
TheN input links are for arriving packets. Among theN+K
output links,K of them are for departing packets and the other
N output links are for lost packets. When a packet arrives at
the queue, it is associated with a label, calledpriority. We
assume that there is atotal orderfor the priorities of all of
the packets in the queue (including the packets already stored
in the buffer and the arriving packets from the arrival links),
i.e., every packet in the queue has adistinctpriority. As shown
in Figure 2, letc(t) be the state of the control input at timet.
We say that the priority queue is enabled at timet if c(t) = 1;
otherwise, we say that the priority queue is disabled at time
t if c(t) = 0. Also, leta(t) be the set of the packets arriving
from theN arrival links at time t 2, d(t) be the set of the
packets departing through theK departure links at timet,
ℓ(t) be the set of the lost packets that are dumped through the
N loss links at timet, andq(t) be the set of the packets stored
in the buffer at timet (at the end of thetth time slot). Then an
N -to-K priority queue with bufferB satisfies the following
five properties.

(P1) Flow conservation: Arriving packets from theN
arrival links are either stored in the buffer or trans-
mitted through theN +K output links, i.e.,

q(t) = (q(t− 1) ∪ a(t))\(d(t) ∪ ℓ(t)). (1)

(P2) Nonidling: If the control input is enabled at timet,
then there are always packets departing at timet
whenever there are packets in the queue at timet,
i.e., whenever there are packets stored in the buffer
at timet−1 or there are packets arriving from theN
arrival links at timet, under the constraint that there
are at mostK departing packets at timet as there
are onlyK departure links. Specifically, ifc(t) = 1,
then there aremin[|q(t − 1) ∪ a(t)|,K] departing
packets at timet; otherwise, ifc(t) = 0, then there
are no departing packets at timet. Thus, we have

|d(t)| =
{

min[|q(t− 1) ∪ a(t)|,K], if c(t) = 1,
0, if c(t) = 0.

(2)

(P3) Maximum buffer usage: There are lost packets only
when the buffer is full. Specifically, if|q(t − 1) ∪
a(t)| − |d(t)| > B, then there are|q(t− 1)∪ a(t)| −
|d(t)|−B lost packets at timet; otherwise, if|q(t−
1)∪a(t)|−|d(t)| ≤ B, then there are no lost packets
at time t. Thus, we have

|ℓ(t)| = max[|q(t− 1) ∪ a(t)| − |d(t)| −B, 0]. (3)

2This means thata(t) is an empty set when there are no packets arriving
from theN arrival links at timet, anda(t) is a set consisting ofN arriving
packets when there is a packet arriving from each of theN arrival links at
time t.
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(P4) Priority departure: If there are packets departing at
time t, i.e., |d(t)| > 0, then the departing packets are
the |d(t)| highestpriority packets inq(t− 1)∪ a(t),
and they depart from departure links1, 2, . . . , |d(t)|
in the order of decreasing priorities.

(P5) Priority loss: If there are lost packets at timet,
i.e., |ℓ(t)| > 0, then the lost packets are the|ℓ(t)|
lowest priority packets inq(t − 1) ∪ a(t), and they
are dumped through loss links1, 2, . . . , |ℓ(t)| in the
order of decreasing priorities.

We note that there is a control input in Figure 2 and its
purpose is for enabling/disabling theN -to-K priority queue.
To see why we need a control input in Figure 2, consider
the scenario that theN -to-K priority queue shares the same
resources, i.e., the usage of theK departure links in Figure 2,
with other network elements. If the resources are allocatedto
theN -to-K priority queue, then the control input of theN -to-
K priority queue is enabled and the priority queue can send
up toK highest priority packets in the queue to the departure
links. On the other hand, if the resources are allocated to
other network elements, then the control input of theN -to-K
priority queue is disabled and no packets in the queue can be
sent to the departure links. When the control input of theN -
to-K priority queue is disabled and there are packets arriving
from theN arrival links, the queue size of the priority queue
will build up and we need buffer to store the packets in the
queue no matter the number of arrival linksN is greater than,
equal to, or less than the number of departure linksK. In
the case that the buffer of the priority queue is full, up to
N lowest priority packets in the queue are dumped through
the loss links. As to when theN -to-K priority queue will be
allocated the resources for its use is a resources management
issue that is more involved and is not the focus of the study
in this paper. Furthermore, we note that theK departure links
in Figure 2 are either allocated to theN -to-K priority queue
altogether or not at all, so that they are not independently
controlled and we only need one control input in Figure 2 to
enable/disable theK departure links.

One of the key applications of optical priority queues with
multiple inputs and multiple outputs is to implement optical
output-buffered switches that support QoS. For example, in
Figure 3 we show a construction of a4 × 4 optical output-
buffered switch that can be used for implementing the pack-
etized version of the generalized processor sharing (PGPS)
policy in [46]. The PGPS policy is one of the most popular
QoS schemes in the literature. In such a policy, every packetis
assigned a virtual finishing time when it arrives, and packets
are then scheduled according to their virtual finishing times.

In the construction in Figure 3, there are four 1-to-4 optical
demultiplexers in the first stage and four 4-to-1 optical priority
queues in the second stage. When a packet arrives at an input
of the4× 4 optical output-buffered switch, it is routed via the
corresponding 1-to-4 optical demultiplexer to one of the four
optical priority queues according to its destination. In addition,
we also compute the virtual finishing time outlined in [46] for
that packet, and use the computed virtual finishing time as the
priority of that packet. By enabling the control input of every

4-to-1 optical 

priority queue

1-to-4 

demultiplexer

Fig. 3. An implementation of a4 × 4 optical output-buffered switch that
can support QoS by using four 1-to-4 optical demultiplexersin the first stage
and four 4-to-1 optical priority queues in the second stage.

optical priority queue at all times, the packet with the highest
priority, i.e., the packet with the earliest virtual finishing time,
in each priority queue will depart from the priority queue. As
such, we achieve exact emulation of an optical output-buffered
switch that supports the PGPS policy. Note that if the virtual
finishing times of the packets at the optical priority queue are
increasing in the order of their arrival times and in the order
of their arrival links (in the case of multiple packets with the
same arrival time), then the construction in Figure 3 is the
conventional optical FIFO output-buffered switches.

B. Constructions of anN -to-K Optical Priority Queue With
N ≥ K

As mentioned earlier in Section I that the key idea in our
constructions of anN -to-K optical priority queue is to view
empty time slots as the arrivals of fictitious packets, and the
priorities of the fictitious packets are assigned in such a way
that there is a total order for the priorities of all of the packets
(including both the real packets and the fictitious packets)in
the queue. For ease of presentation in the rest of the paper,
we let ã(t) be the set of the packets (including both the real
packets and the fictitious packets) arriving from theN arrival
links at timet, d̃(t) be the set of the packets (including both the
real packets and the fictitious packets) departing through the
K departure links at timet, ℓ̃(t) be the set of the lost packets
(including both the real packets and the fictitious packets)
dumped through theN loss links at timet, and q̃(t) be the
set of the packets (including both the real packets and the
fictitious packets) stored in the buffer at timet (at the end
of the tth time slot). It is clear that the seta(t) (resp.,d(t),
ℓ(t), andq(t)) defined in Definition 1 is the subset of the real
packets inã(t) (resp.,d̃(t), ℓ̃(t), and q̃(t)).

In this subsection, we suppose thatN ≥ K. We will show
in Theorem 2 below that the construction in Figure 4(a) can
be operated as anN -to-K optical priority queue with buffer
∑M

i=1 di if the condition in (A1) given in Section I is satisfied
at all times. (In Theorem 5 in Section III-A, we will give
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Fig. 4. (a) A construction of anN -to-K optical priority queue with buffer∑M
i=1

di, whereN ≥ K. (b) The two possible connection patterns of the
shifter and theK 1× 2 switches in (a).

choices for the fiber delaysd1, d2, . . . , dM in Figure 4(a) so
that the condition in (A1) is satisfied at all times.)

In Figure 4(a), there are two(M+N)×(M+N) (bufferless)
optical crossbar switches (a sorter on the left-hand side and a
shifter on the right-hand side) andK 1×2 (bufferless) optical
crossbar switches (at the lastK outputs of the shifter). As
mentioned in Section I that the main idea of our construction
is to use the sorter to sort the packets (including both the real
packets and the fictitious packets) at the inputs of the sorter
according to their priorities so that the priorities of the packets
at the outputs of the sorter are decreasing in the indices of
the sorter’s output links. Then the shifter and theK 1 × 2
switches are used to route theK highest priority packets to
theK departure links when the control input is enabled, and
route theN lowest priority packets to theN loss links when
the control input is disabled.

Suppose that the condition in (A1) holds at all times. The
details of the operation rules in our constructions are described
as follows.

(i) As the condition in (A1) holds at all times, the set of
the packets appearing at the firstM inputs of the sorter at
time t contains theK highest priority packets and theN
lowest priority packets iñq(t − 1). It follows that the set
of the packets appearing at theM + N inputs of the sorter
at time t contains theK highest priority packets and the
N lowest priority packets iñq(t − 1) ∪ ã(t). The sorter on
the left-hand side in Figure 4(a) then sorts the packets at
its M + N inputs according to their priorities. Thus, theK

highest priority packets iñq(t−1)∪ã(t) appear at output links
1, 2, . . . ,K of the sorter in the order of decreasing priorities
and theN lowest priority packets iñq(t− 1)∪ ã(t) appear at
output linksM + 1,M + 2, . . . ,M + N of the sorter in the
order of decreasing priorities.

(ii) There are only two connection patterns (see Figure 4(b))
for the shifter on the right-hand side of Figure 4(a) and theK
1 × 2 switches at the lastK outputs of the shifter. Ifc(t) =
0, then the connection pattern of the shifter is realized by
the (M + N) × (M + N) identity matrix, i.e., the matrix
I = (Ii,j) with Ii,j = 1 for i = j and Ii,j = 0 otherwise,
and the input of theith 1 × 2 switch is connected to loss
link N − K + i of the N -to-K optical priority queue for
i = 1, 2, . . . ,K. It follows that there are no packets departing
from the departure links and theN lowest priority packets in
q̃(t−1)∪ã(t) are dumped through loss links1, 2, . . . , N in the
order of decreasing priorities. Therefore, we have|d̃(t)| = 0
and|ℓ̃(t)| = N whenc(t) = 0. On the other hand, ifc(t) = 1,
then the connection pattern of the shifter is realized by the
(M +N)× (M +N) K-circular-shift matrix, i.e., the matrix
P = (Pi,j) with Pi,j = 1 for j = ((i + M + N − K −
1) mod (M +N)) + 1 andPi,j = 0 otherwise, and the input
of theith 1×2 switch is connected to departure linki of theN -
to-K priority queue fori = 1, 2, . . . ,K. It follows that theK
highest priority packets iñq(t−1)∪ã(t) depart from departure
links 1, 2, . . . ,K in the order of decreasing priorities, and the
N −K lowest priority packets iñq(t− 1) ∪ ã(t) are dumped
through loss links1, 2, . . . , N −K in the order of decreasing
priorities. Therefore, we have|d̃(t)| = K and|ℓ̃(t)| = N −K
when c(t) = 1. Furthermore, we note that in both the case
c(t) = 0 and the casec(t) = 1, the priorities of the packets at
the firstM outputs of the shifter are decreasing in their link
indices.

Theorem 2 Suppose thatN ≥ K. If the feedback system in
Figure 4(a) is started from an empty system at time 0 and the
condition in (A1) holds at all times, then it can be operated
as an N -to-K optical priority queue with buffer

∑M
i=1 di

under the operation rules described before the statement of
the theorem.

Proof. Suppose thatN ≥ K and the condition in (A1) holds
at all times. Note that to emulate an empty system at time
0, we can store

∑M
i=1 di fictitious packets in the fiber delay

lines, i.e., q̃(0) =
∑M

i=1 di. By viewing empty time slots as
the arrivals of fictitious packets, there are alwaysN packets
arriving from theN arrival links, i.e.,|ã(t)| = N for all t.
From the operation rules, we also see that there are always
N packets leaving the feedback system in Figure 4(a), i.e.,
|d̃(t) ∪ ℓ̃(t)| = N for all t (note that we have|d̃(t)| = 0
and |ℓ̃(t)| = N when c(t) = 0, and we have|d̃(t)| = K
and |ℓ̃(t)| = N − K when c(t) = 1). Therefore, there are
always

∑M
i=1 di packets stored in the fiber delay lines, i.e.,

|q̃(t)| =∑M
i=1 di for all t. Furthermore, it is clear that (P1) in

Definition 1 is satisfied at all times.
In the rest of the proof, we consider the two casesc(t) = 0

andc(t) = 1 separately.
Case 1:c(t) = 0. As the condition in (A1) holds at all
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times, we see from the operation rules that there are no packets
departing from the departure links and theN lowest priority
packets in q̃(t − 1) ∪ ã(t) are dumped through loss links
1, 2, . . . , N in the order of decreasing priorities, and we have
|d̃(t)| = 0 and |ℓ̃(t)| = N . As d(t) is the subset of the
real packets ind̃(t), we also have|d(t)| = 0. It follows that
(P2) and (P4) in Definition 1 are satisfied in this case. As
q(t−1)∪a(t) is the subset of the real packets inq̃(t−1)∪ã(t)
and there are

∑M
i=1 di + N packets inq̃(t − 1) ∪ ã(t) for

all t, we see that there are|q(t − 1) ∪ a(t)| real packets
and

∑M
i=1 di + N − |q(t − 1) ∪ a(t)| fictitious packets in

q̃(t − 1) ∪ ã(t). As 0 ≤ |q(t − 1) ∪ a(t)| ≤ ∑M
i=1 di + N ,

we then consider the following two subcases.
Subcase (1a):0 ≤ |q(t − 1) ∪ a(t)| ≤ ∑M

i=1 di. In this
subcase, we have

∑M
i=1 di+N−|q(t−1)∪a(t)| ≥ N , i.e., there

are at leastN fictitious packets iñq(t−1)∪ã(t), implying that
theN lowest priority packets iñq(t−1)∪ã(t) must be fictitious
packets. As̃ℓ(t) consists of theN lowest priority packets in
q̃(t−1)∪ã(t), we see that all of the packets iñℓ(t) are fictitious
packets. Asℓ(t) is the subset of the real packets inℓ̃(t), it then
follows that ℓ(t) is an empty set, i.e.,|ℓ(t)| = 0, and hence
we have from|d(t)| = 0 and |q(t− 1)∪ a(t)| ≤∑M

i=1 di that

|ℓ(t)| = 0 = max

[

|q(t− 1) ∪ a(t)| − |d(t)| −
M
∑

i=1

di, 0

]

.

Thus, (P3) and (P5) in Definition 1 are satisfied in this subcase.
Subcase (1b):

∑M
i=1 di < |q(t− 1)∪ a(t)| ≤∑M

i=1 di +N .
In this subcase, we have

∑M
i=1 di+N−|q(t−1)∪a(t)| < N ,

i.e., there are less thanN fictitious packets iñq(t−1)∪ã(t). As
ℓ̃(t) consists of theN lowest priority packets iñq(t−1)∪ã(t),
we see that̃ℓ(t) consists of the

∑M
i=1 di+N−|q(t−1)∪a(t)|

fictitious packets iñq(t− 1)∪ ã(t) and the|q(t− 1)∪ a(t)| −
∑M

i=1 di lowest priority real packets iñq(t−1)∪ ã(t). As ℓ(t)
is the subset of the real packets iñℓ(t), it then follows that
ℓ(t) consists of the|q(t− 1)∪a(t)|−∑M

i=1 di lowest priority
packets inq(t − 1) ∪ a(t), i.e., |ℓ(t)| = |q(t − 1) ∪ a(t)| −
∑M

i=1 di, and the packets inℓ(t) are dumped through loss
links 1, 2, . . . , |ℓ(t)| in the order of decreasing priorities. From
|d(t)| = 0 and |q(t − 1) ∪ a(t)| > ∑M

i=1 di, we immediately
see that

|ℓ(t)| = |q(t− 1) ∪ a(t)| −
M
∑

i=1

di

= max

[

|q(t− 1) ∪ a(t)| − |d(t)| −
M
∑

i=1

di, 0

]

.

Thus, (P3) and (P5) in Definition 1 are also satisfied in this
subcase.

Case 2:c(t) = 1. As the condition in (A1) holds at all
times, we see from the operation rules that theK highest
priority packets inq̃(t− 1)∪ ã(t) depart from departure links
1, 2, . . . ,K in the order of decreasing priorities and theN−K
lowest priority packets iñq(t− 1)∪ ã(t) are dumped through
loss links1, 2, . . . , N−K in the order of decreasing priorities,
and we have|d̃(t)| = K and |ℓ̃(t)| = N −K. As 0 ≤ |q(t −
1) ∪ a(t)| ≤

∑M
i=1 di + N , we then consider the following

three subcases.

Subcase (2a):0 ≤ |q(t − 1) ∪ a(t)| ≤ K. In this subcase,
there are no more thanK real packets iñq(t−1)∪ã(t). As d̃(t)
consists of theK highest priority packets iñq(t − 1) ∪ ã(t),
we see that̃d(t) consists of the|q(t− 1) ∪ a(t)| real packets
in q̃(t−1)∪ ã(t) and theK−|q(t−1)∪a(t)| highest priority
fictitious packets iñq(t − 1) ∪ ã(t). As d(t) is the subset of
the real packets iñd(t), it then follows thatd(t) consists of
the |q(t − 1) ∪ a(t)| packets inq(t − 1) ∪ a(t), i.e., |d(t)| =
|q(t−1)∪a(t)|, and the packets ind(t) depart from departure
links 1, 2, . . . , |d(t)| in the order of decreasing priorities. From
|q(t− 1) ∪ a(t)| ≤ K, we immediately see that

|d(t)| = |q(t− 1) ∪ a(t)| = min[|q(t− 1) ∪ a(t)|,K].

Thus, (P2) and (P4) in Definition 1 are satisfied in this subcase.
Furthermore, as there are

∑M
i=1 di +N − |q(t− 1) ∪ a(t)| ≥

∑M
i=1 di+N −K fictitious packets iñq(t−1)∪ ã(t) and ℓ̃(t)

consists of theN−K lowest priority packets iñq(t−1)∪ã(t),
we see that̃ℓ(t) consists of only fictitious packets. As such,
ℓ(t) is an empty set, i.e.,|ℓ(t)| = 0, and hence we have from
|d(t)| = |q(t− 1) ∪ a(t)| that

|ℓ(t)| = 0 = max

[

|q(t− 1) ∪ a(t)| − |d(t)| −
M
∑

i=1

di, 0

]

.

Therefore, (P3) and (P5) in Definition 1 are satisfied in this
subcase.

Subcase (2b):K < |q(t−1)∪a(t)| ≤∑M
i=1 di+K. In this

subcase, there are more thanK real packets iñq(t−1)∪ ã(t).
As d̃(t) consists of theK highest priority packets iñq(t−1)∪
ã(t), we see that̃d(t) consists of theK highest priority real
packets iñq(t−1)∪ ã(t). It follows thatd(t) consists of theK
highest priority packets inq(t−1)∪a(t), i.e., |d(t)| = K, and
the packets ind(t) depart from departure links1, 2, . . . ,K in
the order of decreasing priorities. From|q(t− 1)∪a(t)| > K,
we immediately see that

|d(t)| = K = min[|q(t− 1) ∪ a(t)|,K].

Thus, (P2) and (P4) in Definition 1 are satisfied in this subcase.
Furthermore, as there are

∑M
i=1 di +N − |q(t− 1) ∪ a(t)| ≥

N−K fictitious packets iñq(t−1)∪ã(t), we also see that̃ℓ(t)
consists of only fictitious packets as in Subcase (2a) above.
As such,ℓ(t) is an empty set, i.e.,|ℓ(t)| = 0, and hence we
have from|d(t)| = K and |q(t − 1) ∪ a(t)| ≤

∑M
i=1 di +K

that

|ℓ(t)| = 0 = max

[

|q(t− 1) ∪ a(t)| − |d(t)| −
M
∑

i=1

di, 0

]

.

Therefore, (P3) and (P5) in Definition 1 are also satisfied in
this subcase.

Subcase (2c):
∑M

i=1 di+K < |q(t−1)∪a(t)| ≤∑M
i=1 di+

N . As in Subcase (2b) above, we also see thatd(t) consists of
theK highest priority packets inq(t−1)∪a(t), and the packets
in d(t) depart from departure links1, 2, . . . ,K in the order
of decreasing priorities. Thus, (P2) and (P4) in Definition 1
are also satisfied in this subcase. Furthermore, as there are
∑M

i=1 di +N − |q(t− 1) ∪ a(t)| < N −K fictitious packets
in q̃(t− 1)∪ ã(t), we see that̃ℓ(t) consists of the

∑M
i=1 di +

N − |q(t − 1) ∪ a(t)| fictitious packets inq̃(t − 1) ∪ ã(t)
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and the|q(t − 1) ∪ a(t)| −K −∑M
i=1 di lowest priority real

packets inq̃(t− 1) ∪ ã(t). It follows that ℓ(t) consists of the
|q(t−1)∪a(t)|−K−∑M

i=1 di lowest priority packets inq(t−
1)∪a(t), i.e., |ℓ(t)| = |q(t−1)∪a(t)|−K−

∑M
i=1 di, and the

packets inℓ(t) are dumped through loss links1, 2, . . . , |ℓ(t)|
in the order of decreasing priorities. From|d(t)| = K and
|q(t− 1) ∪ a(t)| >∑M

i=1 di +K, we see that

|ℓ(t)| = |q(t− 1) ∪ a(t)| −K −
M
∑

i=1

di

= max

[

|q(t− 1) ∪ a(t)| − |d(t)| −
M
∑

i=1

di, 0

]

.

Thus, (P3) and (P5) in Definition 1 are also satisfied in this
subcase.

C. Constructions of anN -to-K Optical Priority Queue With
N < K
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Fig. 5. (a) A construction of anN -to-K optical priority queue with buffer∑M
i=1

di, whereN < K. (b) The two possible connection patterns of the
shifter and theN 1× 2 switches in (a).

In this subsection, we suppose thatN < K. We will show
in Theorem 3 below that the feedback system in Figure 5(a)
can be operated as anN -to-K optical priority queue with
buffer

∑M
i=1 di if the condition in (A1) given in Section I is

satisfied at all times. (In Theorem 5 in Section III-A, we will
give choices for the fiber delaysd1, d2, . . . , dM in Figure 5(a)
so that the condition in (A1) is satisfied at all times.)

In Figure 5(a), there are two(M+K)×(M+K) (bufferless)
optical crossbar switches (a sorter on the left-hand side and a

shifter on the right-hand side) andN 1×2 (bufferless) optical
crossbar switches (at outputsM+1,M+2, . . . ,M+N of the
shifter). Note that there areK −N idling links at the inputs
of the sorter and we view these idling links at timet as the
arrivals ofK −N fictitious packets with priorities lower than
those of the packets iñq(t− 1) ∪ ã(t).

Suppose that the condition in (A1) holds at all times. The
details of the operation rules in our constructions are described
as follows.

(i) As the condition in (A1) holds at all times, the set of
the packets appearing at the firstM +N inputs of the sorter
at time t contains theK highest priority packets and theN
lowest priority packets iñq(t−1)∪ ã(t) (note that theK−N
fictitious packets from the idling links are not contained in
q̃(t−1)∪ ã(t))). As in Section II-B, the sorter on the left-hand
side of Figure 5(a) then sorts the packets at itsM +K inputs
according to their priorities. Therefore, theK highest priority
packets inq̃(t − 1) ∪ ã(t) appear at output links1, 2, . . . ,K
of the sorter in the order of decreasing priorities, and theN
lowest priority packets iñq(t − 1) ∪ ã(t) appear at output
links M +1,M + 2, . . . ,M +N of the sorter in the order of
decreasing priorities (note that theK − N fictitious packets
from the idling links appear at output linksM +N +1,M +
N + 2, . . . ,M +K of the sorter as they have priorities lower
than those of the packets iñq(t− 1) ∪ ã(t)).

(ii) There are only two connection patterns (see Figure 5(b))
for the shifter on the right-hand side of Figure 5(a) and theN
1 × 2 switches at outputsM + 1,M + 2, . . . ,M +N of the
shifter. If c(t) = 0, then the connection pattern of the shifter
is realized by the(M +K)× (M +K) identity matrix, i.e.,
the matrix I = (Ii,j) with Ii,j = 1 for i = j and Ii,j = 0
otherwise, and the input of theith 1 × 2 switch is connected
to loss link i of the N -to-K optical priority queue fori =
1, 2, . . . , N . It follows that theN lowest priority packets in
q̃(t − 1) ∪ ã(t) are dumped through loss links1, 2, . . . , N in
the order of decreasing priorities and theK − N fictitious
packets from the idling links depart from departure linksN +
1, N+2, . . . ,K in the order of decreasing priorities. Therefore,
we have|d̃(t)| = K − N and |ℓ̃(t)| = N when c(t) = 0.
On the other hand, ifc(t) = 1, then the connection pattern
of the shifter is realized by the(M + K) × (M + K) K-
circular-shift matrix, i.e., the matrixP = (Pi,j) with Pi,j = 1
for j = ((i + M − 1) mod (M + K)) + 1 and Pi,j = 0
otherwise, and the input of theith 1 × 2 switch is connected
to departure linki of the N -to-K optical priority queue for
i = 1, 2, . . . , N . It follows that theK highest priority packets
in q̃(t−1)∪ã(t) depart from departure links1, 2, . . . ,K in the
order of decreasing priorities and there are no packets dumped
through the loss links. Therefore, we have|d̃(t)| = K and
|ℓ̃(t)| = 0 when c(t) = 1. Furthermore, we note that in both
the casec(t) = 0 and the casec(t) = 1, the priorities of the
packets at the firstM outputs of the shifter are decreasing in
their link indices.

Theorem 3 Suppose thatN < K. If the feedback system in
Figure 5(a) is started from an empty system at time 0 and the
condition in (A1) holds at all times, then it can be operated
as an N -to-K optical priority queue with buffer

∑M
i=1 di
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under the operation rules described before the statement of
the theorem.

Proof. Suppose thatN < K and the condition in (A1) holds
at all times. As in the proof of Theorem 2, we store

∑M
i=1 di

fictitious packets in the fiber delay lines to emulate an empty
system at time 0. Note that there are alwaysK packets arriving
from theN arrival links and theK−N idling links. Also, we
see from the operation rules that there are alwaysK packets
leaving the feedback system in Figure 5(a), i.e.,|d̃(t)∪ ℓ̃(t)| =
K for all t (note that we have|d̃(t)| = K−N and|ℓ̃(t)| = N
when c(t) = 0, and we have|d̃(t)| = K and |ℓ̃(t)| = 0
whenc(t) = 1). Therefore, there are always

∑M
i=1 di packets

stored in the fiber delay lines, i.e.,|q̃(t)| =∑M
i=1 di for all t.

Furthermore, it is clear that (P1) in Definition 1 is satisfiedat
all times.

As in the proof of Theorem 2, we consider the two cases
c(t) = 0 andc(t) = 1 separately.

Case 1:c(t) = 0. As the condition in (A1) holds at all
times, we see from the operation rules that theN lowest
priority packets inq̃(t − 1) ∪ ã(t) are dumped through loss
links 1, 2, . . . , N in the order of decreasing priorities and the
K − N fictitious packets from the idling links depart from
departure linksN+1, N+2, . . . ,K in the order of decreasing
priorities, and we have|d̃(t)| = K − N and |ℓ̃(t)| = N . It
follows that d̃(t) consists of only fictitious packets and hence
d(t) is an empty set, i.e.,|d(t)| = 0. Thus, (P2) and (P4) in
Definition 1 are satisfied in this case. The proof that (P3) and
(P5) in Definition 1 are satisfied in this case is exactly the
same as that of Subcase (1a) and Subcase (1b) in the proof of
Theorem 2.

Case 2:c(t) = 1. As the condition in (A1) holds at all
times, we see from the operation rules that theK highest
priority packets in q̃(t − 1) ∪ ã(t) depart from departure
links 1, 2, . . . ,K in the order of decreasing priorities and
there are no packets dumped through the loss links, and
we have |d̃(t)| = K and |ℓ̃(t)| = 0. Note that as|q̃(t −
1) ∪ ã(t)| = ∑M

i=1 di + N for all t and q(t − 1) ∪ a(t) is
the subset of the real packets iñq(t − 1) ∪ ã(t), we have
0 ≤ |q(t − 1) ∪ a(t)| ≤ ∑M

i=1 di + N . We then consider the
following two subcases.

Subcase (2a):0 ≤ |q(t−1)∪a(t)| ≤ K. As in Subcase 2(a)
in the proof of Theorem 2, in this subcase we also see that
d(t) consists of the|q(t− 1)∪a(t)| packets inq(t− 1)∪a(t),
i.e., |d(t)| = |q(t − 1) ∪ a(t)|, and the packets ind(t) depart
from departure links1, 2, . . . , |d(t)| in the order of decreasing
priorities. Thus, (P2) and (P4) in Definition 1 are satisfied.
Furthermore,|ℓ̃(t)| = 0 implies that|ℓ(t)| = 0, and hence it
follows from |d(t)| = |q(t− 1) ∪ a(t)| that

|ℓ(t)| = 0 = max

[

|q(t− 1) ∪ a(t)| − |d(t)| −
M
∑

i=1

di, 0

]

.

Therefore, (P3) and (P5) in Definition 1 are satisfied in this
subcase.

Subcase (2b):K < |q(t− 1)∪ a(t)| ≤∑M
i=1 di +N . As in

Subcase 2(b) in the proof of Theorem 2, in this subcase we
also have thatd(t) consists of theK highest priority packets in
q(t−1)∪a(t), i.e., |d(t)| = K, and the packets ind(t) depart

from departure links1, 2, . . . ,K in the order of decreasing
priorities. Thus, (P2) and (P4) in Definition 1 are satisfied.
Furthermore,|ℓ̃(t)| = 0 implies that|ℓ(t)| = 0, and hence it
follows from |d(t)| = K, |q(t − 1) ∪ a(t)| ≤ ∑M

i=1 di + N ,
andN < K that

|ℓ(t)| = 0 = max

[

|q(t− 1) ∪ a(t)| − |d(t)| −
M
∑

i=1

di, 0

]

.

Therefore, (P3) and (P5) in Definition 1 are satisfied in this
subcase.

Before we present the choices for the fiber delays
d1, d2, . . . , dM in Figure 4(a) and Figure 5(a) so that the
condition in (A1) is satisfied at all times in Section III-A,
we end this section by mentioning that each of the sorter and
the shifter in Figure 4(a) or Figure 5(a) can be implemented
by a single optical crossbar switch. The purpose of having two
(M +N)× (M +N) optical crossbar switches in Figure 4(a)
or two (M + K) × (M + K) optical crossbar switches in
Figure 5(a) is for the ease of presentation. In practice, onecan
combine these two switches into one to reduce the hardware
cost. Furthermore, if one would like to drop an arriving packet
from an input link when the buffer is full, one can implement
such an admission control scheme by simply adding a1 × 2
switch before that input link as in [20].

III. C HOICES FOR THEFIBER DELAYS AND MAXIMUM

BUFFERSIZE

In Section II, we have shown that if the condition in (A1)
holds at all times, then the feedback system in Figure 4(a)
or Figure 5(a) can be operated as anN -to-K optical pri-
ority queue with buffer

∑M
i=1 di under our operation rules.

The remaining problem is how to choose the fiber delays
d1, d2, . . . , dM in Figure 4(a) or Figure 5(a) so that the
condition in (A1) holds at all times. We give a solution to this
problem in Theorem 5 in Section III-A. Then in Section III-B
we present an approximation analysis for the maximum buffer
size that could be achieved by using the constructions in
Theorem 5.

A. Choices for the Fiber Delays

We first show in the following lemma that the condition
in (A2) given in Section I implies the condition in (A1), and
hence it follows that the feedback system in Figure 4(a) or
Figure 5(a) can be operated as anN -to-K optical priority
queue with buffer

∑M
i=1 di under our operation rules if the

condition in (A2) holds at all times.

Lemma 4 Suppose that the feedback system in Figure 4(a)
or Figure 5(a) is started from an empty system at time 0. If
the condition in (A2) holds at all times, then the condition in
(A1) also holds at all times and hence the feedback system
in Figure 4(a) or Figure 5(a) can be operated as anN -to-K
optical priority queue with buffer

∑M
i=1 di under our operation

rules.

Proof. Suppose that the condition in (A2) holds at all times.
As we emulate an empty system at time 0 by storing

∑M
i=1 di
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fictitious packets in the fiber delay lines, the condition in (A1)
holds at time0.

Assume as the induction hypothesis that the condition in
(A1) holds up to timet−1 for somet ≥ 1. From the operation
rules described in Section II-B and Section II-C, it is clearthat
there are at mostK highest priority packets and at mostN
lowest priority packets iñq(t− 1)∪ ã(t) leaving the feedback
system in Figure 4(a) or Figure 5(a) at timet. Consider a
packet that enters theith fiber delay line at timet. Call this
packet the tagged packet. Since (A2) holds at timet, the tagged
packet cannot be either one of theK highest priority packets or
one of theN lowest priority packets among all of the packets
stored in the fiber delay lines for the nextdi − 1 time slots,
implying that the tagged packet cannot be either one of theK
highest priority packets or one of theN lowest priority packets
among all of the packets stored in the fiber delay lines until
it appears at theith input of the sorter. It follows from the
induction hypothesis that any packet stored in the fiber delay
lines in Figure 4(a) or Figure 5(a) at timet cannot be either
one of theK highest priority packets or one of theN lowest
priority packets among all of the packets stored in the fiber
delay lines until it appears at the firstM inputs of the sorter.
As such, the condition in (A1) holds at timet and the induction
is completed.

In the following theorem, we give choices for the fiber
delaysd1, d2, . . . , dM so that the condition in (A2) holds at
all times, and it then follows from Lemma 4 that the feedback
system in Figure 4(a) or Figure 5(a) can be operated as an
N -to-K optical priority queue with buffer

∑M
i=1 di.

Theorem 5 Let m1 = nK and m2 = nN such thatm1 +
m2 ≤ M , wheren ≥ 1, and let

di =

⌊

i− 1

K

⌋

+ 1, for i = 1, 2, . . . ,m1, (4)

di =

⌊

M − i

N

⌋

+ 1,

for i = M −m2 + 1,M −m2 + 2, . . . ,M, (5)

n ≤ di ≤ min

[⌊

αi − 1

K

⌋

,

⌊

βi − 1

N

⌋]

+ 1,

for i = m1 + 1,m1 + 2, . . . ,M −m2, (6)

where

αi = (7)














i+
∑n

j=2

⌈

(

i−M+2m1−N−(4j−2)K
2

)+
⌉

, if N ≥ K,

i+
∑n

j=2

⌈

(

i−M+m1+m2−N−(4j−2)K
2

)+
⌉

, if N < K,

and

βi = (8)






























M − i+ 1 +
∑n

j=2

⌈

(

m1+m2−i+1−K−(4j−2)N
2

)+
⌉

,

if N ≥ K,

M − i+ 1 +
∑n

j=2

⌈

(

2m2−i+1−K−(4j−2)N
2

)+
⌉

,

if N < K.

Suppose that the feedback system in Figure 4(a) or Figure 5(a)
is started from an empty system at time 0. Then the feedback
system in Figure 4(a) or Figure 5(a) can be operated as an
N -to-K optical priority queue with buffer

∑M
i=1 di under our

operation rules.

(2,1)

(1,1)

(K,1)

(K+2,2)

(K+1,2)

(2K,2)

(K+2,1)

(K+1,1)
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((n-1)K+2,1)

((n-1)K+1,1)
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(M-2N+1,2)
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Fig. 6. The fiber delays given by (4)–(6) and the cells of the fiber delay
lines.

In Figure 6, we show the fiber delays given by (4)–(6).
The proof of Theorem 5 relies on establishing aspace-
time advancement propertyand a monotonically decreas-
ing/increasing propertyfor the packets stored in the fiber delay
lines. For this, we view a fiber delay line with delayd as
a “sequential” buffer that consists ofd cells with each cell
capable of holding one packet. The cells of the fiber delay
lines are also shown in Figure 6. Note that we index the cells
from the input of a fiber delay line in Figure 6. Specifically,
the (i, j)th cell is the j th cell from the input of theith fiber
delay line fori = 1, 2, . . . ,M andj = 1, 2, . . . , di. Note that
since we view a fiber delay line as a sequential buffer, a packet
entering theith delay line at timet will be stored in the(i, j)th

cell at timet+ j− 1 for j = 1, 2, . . . , di, and can be accessed
only when it appears at theoutputof the ith delay line at time
t+ di.

The reason why we divide the fiber delay lines into three
sections, the section consisting of the firstm1 fiber delay
lines (the first section), the section in between (the second
section), and the section consisting of the lastm2 fiber delay
lines (the third section), is as follows. By using the regular
delay assignment for the fibers in the first section and the
third section (there areK fibers with delays equal toi in
the first section fori = 1, 2, . . . , n and there areN fibers
with delays equal toi in the third section fori = 1, 2, . . . , n)
together with the space-time advancement property and the
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monotonically decreasing/increasing property developedin
Appendix A for the packets stored in the fiber delay lines, we
can obtain a lower bound on the total number of the packets
stored in the cells of the firstn columns in Figure 6 with
priorities higher/lower than that of a tagged packet when the
tagged packet enters a fiber delay line (see (56) and (69) in
Appendix A) if the delays of the fibers in the “in-between”
section are greater than or equal ton. Such a lower bound
allows the choices for the delays of the fibers in the in-between
section to go beyond the regular delay assignment for the fibers
in the first section and the third section, and it guarantees that
the condition in (A2) is satisfied if the delays of the fibers in
the “in-between” section are less than or equal to the upper
bound in (6). It will be seen shortly in Section III-B that in the
case thatN = K, the increase of the delays of the fibers in
the in-between section beyond the regular delay assignment
as that in the first section and the third section makes it
possible to increase the buffer size fromO(M

2

N2 ) for regular
delay assignment toO(M

3

N2 ) for the optimal delay assignment
given by Theorem 5.
Proof. (Proof of Theorem 5) It is clear from Theorem 2,
Theorem 3, and Lemma 4 that it suffices to show that the
condition in (A2) holds at all times. For this, consider a packet
from theith0 output of the shifter that enters theith0 fiber delay
line at timet0, where1 ≤ i0 ≤ M . Call this packet the tagged
packet. From the operation rules described in Section II-B and
Section II-C, we know that the priorities of the packets at
the firstM outputs of the shifter are decreasing in their link
indices. Therefore, among the packets that enter theM fiber
delay lines at timet0, there arei0 − 1 packets with priorities
higher than that of the tagged packet and there areM − i0
packets with priorities lower than that of the tagged packet.
We then consider the following three cases:

Case 1.1 ≤ i0 ≤ m1: In this case, we have fromi0 ≤ m1,
M ≥ m1 +m2, m1 = nK, andm2 = nN that

(i0 − 1)N − (M − i0)K

= i0(N +K)−MK −N

≤ m1(N +K)− (m1 +m2)K −N

= −N ≤ 0.

In other words,i0−1
K ≤ M−i0

N . It follows that

K(di0 − 1) = K

⌊

i0 − 1

K

⌋

≤ i0 − 1, (9)

N(di0 − 1) = N

⌊

i0 − 1

K

⌋

≤ N

⌊

M − i0
N

⌋

≤ M − i0.(10)

As we know that among the packets that enter theM fiber
delay lines at timet0, there arei0− 1 (resp.,M − i0) packets
with priorities higher (resp., lower) than that of the tagged
packet, it follows from (9)–(10) that there are at leastK(di0 −
1) (resp.,N(di0 −1)) packets stored in theM fiber delay lines
at timet0 with priorities higher (resp., lower) than that of the
tagged packet. Therefore, the condition in (A2) holds at time
t0 in this case.

Case 2.M −m2+1 ≤ i0 ≤ M : In this case, we have from
i0 ≥ M −m2 +1, M ≥ m1 +m2, m1 = nK, andm2 = nN

that

(i0 − 1)N − (M − i0)K

= i0(N +K)−MK −N

≥ (M −m2 + 1)(N +K)−MK −N

= MN −m2(N +K) +K

≥ (m1 +m2)N −m2(N +K) +K

= K ≥ 0.

In other words,i0−1
K ≥ M−i0

N . It follows that

K(di0 − 1) = K

⌊

M − i0
N

⌋

≤ K

⌊

i0 − 1

K

⌋

≤ i0 − 1, (11)

N(di0 − 1) = N

⌊

M − i0
N

⌋

≤ M − i0. (12)

Thus, we see from (11)–(12) that the condition in (A2) also
holds at timet0 in this case.

Case 3.m1+1 ≤ i0 ≤ M−m2: In this case, the knowledge
that among the packets that enter theM fiber delay lines at
time t0, there arei0−1 (resp.,M − i0) packets with priorities
higher (resp., lower) than that of the tagged packet is not
enough to prove that the condition in (A2) holds at timet0
as we did in Case 1 and Case 2 above. Indeed, the proof
for this case relies on establishing a space-time advancement
property and a monotonically decreasing/increasing property
for the packets stored in the fiber delay lines. By using
the space-time advancement property and the monotonically
decreasing/increasing property, we can show (see AppendixA
for a proof) that the total number of packets stored in the cells
of the first n columns in Figure 6 at timet0 with priorities
higher/lower than that of the tagged packet is at leastαi0 − 1
(resp.,βi0 − 1). This implies that the total number of packets
stored in the fiber delay lines at timet0 with priorities higher
(resp., lower) than that of the tagged packet is also at least
αi0 − 1 (resp.,βi0 − 1). Since it is clear that

K(di0 − 1) ≤ K ·min

[⌊

αi0 − 1

K

⌋

,

⌊

βi0 − 1

N

⌋]

≤ K

⌊

αi0 − 1

K

⌋

≤ αi0 − 1

and

N(di0 − 1) ≤ N ·min

[⌊

αi0 − 1

K

⌋

,

⌊

βi0 − 1

N

⌋]

≤ N

⌊

βi0 − 1

N

⌋

≤ βi0 − 1.

It then follows that the condition in (A2) also holds at time
t0 in this case, and the induction is completed.

B. An Approximation Analysis for the Maximum Buffer Size

In this subsection, we present an approximation analysis for
the maximum buffer size that could be achieved by using the
constructions in Theorem 5. For the purpose of illustration
and ease of presentation, we assume thatN = K in the
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following analysis. Therefore, the condition in Theorem 5
becomesm1 = m2 = nN , n ≥ 1, M ≥ 2m1, and

di = dM−i+1 =

⌊

i− 1

N

⌋

+ 1, for i = 1, 2, . . . ,m1,(13)

n ≤ di = dM−i+1 ≤
⌊

αi − 1

N

⌋

+ 1,

for i = m1 + 1,m1 + 2, . . . ,

⌈

M

2

⌉

, (14)

where

αi = i+

n
∑

j=2

⌈

(

i−M + 2m1 − (4j − 1)N

2

)+
⌉

. (15)

Among all of the choices of the fiber delaysd1, d2, . . . , dM
that satisfy (13)–(14), the buffer size

∑M
i=1 di achieves its

maximum value when we choose the delays of the fiber in the
in-between section to be given by the upper bound in (14),
i.e.,

di = dM−i+1 =

⌊

i− 1

N

⌋

+ 1, for i = 1, 2, . . . ,m1,(16)

di = dM−i+1 =

⌊

αi − 1

N

⌋

+ 1,

for i = m1 + 1,m1 + 2, . . . ,

⌈

M

2

⌉

, (17)

whereαi is given by (15) fori = m1 + 1,m1 + 2, . . . , ⌈M
2 ⌉.

It follows that the maximum buffer sizeB∗(N,M) that could
be achieved by using the constructions in Theorem 5 in the
case thatN = K is given by

B∗(N,M) =
M
∑

i=1

di, (18)

wheredi is given by (16)–(17) fori = 1, 2, . . . ,M .
If we choosen = ⌈ M

3N ⌉ so thatm1 = N⌈ M
3N ⌉, then we see

from (17) and (15) thatB∗(N,M) can be lower bounded by

B∗(N,M)

≥
⌈M/2⌉
∑

i=m1+1

(⌊

αi − 1

N

⌋

+ 1

)

≥
⌈M/2⌉
∑

i=m1+1

αi − 1

N

≥ 1

N

⌈M/2⌉
∑

i=N⌈M/(3N)⌉+1

⌈M/(3N)⌉
∑

j=2








(

i−M + 2N⌈ M
3N ⌉ − (4j − 1)N

2

)+








≥ 1

N

⌈M/2⌉
∑

i=N⌈3M/(8N)⌉+1

⌊M/(192N)⌋
∑

j=2
(

i−M + 2N⌈ M
3N ⌉ − (4j − 1)N

2

)+

≥ 1

N

⌈M/2⌉
∑

i=N⌈3M/(8N)⌉+1

⌊M/(192N)⌋
∑

j=2
(

N⌈ 3M
8N ⌉+ 1−M + 2N⌈ M

3N ⌉ − (4⌊ M
192N ⌋ − 1)N

2

)+

≥ 1

N

⌈M/2⌉
∑

i=N⌈3M/(8N)⌉+1

⌈M/(192N)⌉
∑

j=2

M

96

≈ M3

147456N2
.

This shows that the buffer size that could be achieved by
choosingm1 = N⌈ M

3N ⌉ ≈ 0.333M is at leastO(M3/N2)
for large M . From the numerical results and approximation
analysis below, it can be seen that this lower bound is of the
same order as the buffer size achieved by choosing the optimal
value ofm1.

Note that for sufficiently largem1 andM , we can approx-
imate (17) as follows (note that the expression is exact when
N = 1):

di = dM−i+1

≈
⌊

i− 1

N

⌋

+ 1

+
1

N

n
∑

j=2

⌈

(

i −M + 2m1 − (4j − 1)N

2

)+
⌉

. (19)

Suppose thatM is even, thenB∗(N,M) can be approximated
by

B∗(N,M)

≈
M/2
∑

i=1

2

(⌊

i − 1

N

⌋

+ 1

)

+

M/2
∑

i=m1+1

n
∑

j=2

2

N

⌈

(

i−M + 2m1 − (4j − 1)N

2

)+
⌉

.(20)

Denote the first term and the second term on the right-hand
side of (20) asB∗

1(N,M) andB∗
2(N,M), respectively. It is

clear thatB∗
1(N,M) is independent of the choice ofm1, but

B∗
2(N,M) depends on the choice ofm1.
If M = q · 2N + r, whereq ≥ 0 and0 ≤ r ≤ 2N − 1 are

the quotient and the remainder, respectively, ofM divided by
2N . Then we can see that

B∗
1(N,M) = q(q + 1)N + r(q + 1) ≈ M2

4N
(21)

for largeM . In Table I, Table II, and Table III, we numerically
computeB∗

1(N,M) (in the second column) and the maximum
value of B∗

2(N,M) (in the third column) that is obtained
by using the optimal choicem∗

1 (in the first column) of the
valuem1 for N = 1, N = 2, andN = 4, respectively. It is
interesting to see from these tables that

m∗
1 ≈ 0.433M andB∗

2(N,M) ≈ 0.000929
M3

N2
(22)

for large M . In other words, the optimal choicem∗
1 of the

value m1 is roughly 0.433M and the maximum value of
B∗

2(N,M) is approximately0.000929M3

N2 for largeM .
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M m∗

1
B∗

1
(N,M) B∗

2
(N,M) B∗(N,M)/B∗

1
(N,M)

4 2 = 0.5M 6 = M2/4N +M/2 0 1
8 4 = 0.5M 20 = M2/4N +M/2 0 1
16 8 = 0.5M 72 = M2/4N +M/2 0 1
32 15 ≈ 0.469M 272 = M2/4N +M/2 12 ≈ 0.000366M3/N2 1.044
64 28 ≈ 0.438M 1056 = M2/4N +M/2 162 ≈ 0.000618M3/N2 1.153
128 56 ≈ 0.438M 4160 = M2/4N +M/2 1604 ≈ 0.000765M3/N2 1.386
256 111 ≈ 0.434M 16512 = M2/4N +M/2 14172 ≈ 0.000845M3/N2 1.858
512 222 ≈ 0.434M 65792 = M2/4N +M/2 118932 ≈ 0.000886M3/N2 2.808
1024 444 ≈ 0.434M 262656 = M2/4N +M/2 974338 ≈ 0.000907M3/N2 4.710
2048 887 ≈ 0.433M 1049600 = M2/4N +M/2 7887320 ≈ 0.000918M3/N2 8.515
4096 1773 ≈ 0.433M 4196352 = M2/4N +M/2 63469912 ≈ 0.000924M3/N2 16.125
8192 3547 ≈ 0.433M 16781312 = M2/4N +M/2 509252408 ≈ 0.000926M3/N2 31.346
16384 7093 ≈ 0.433M 67117056 = M2/4N +M/2 4079995388 ≈ 0.000928M3/N2 61.789

TABLE I
THE MAXIMUM BUFFER SIZE BY THE OPTIMAL CHOICEm∗

1
FORN = 1.

M m∗

1
B∗

1
(N,M) B∗

2
(N,M) B∗(N,M)/B∗

1
(N,M)

8 4 = 0.5M 12 = M2/4N +M/2 0 1
16 8 = 0.5M 40 = M2/4N +M/2 0 1
32 16 = 0.5M 144 = M2/4N +M/2 0 1
64 30 ≈ 0.469M 544 = M2/4N +M/2 20 ≈ 0.000305M3/N2 1.037
128 56 ≈ 0.438M 2112 = M2/4N +M/2 306 ≈ 0.000583M3/N2 1.145
256 112 ≈ 0.438M 8320 = M2/4N +M/2 3128 ≈ 0.000746M3/N2 1.376
512 222 ≈ 0.434M 33024 = M2/4N +M/2 27980 ≈ 0.000834M3/N2 1.847
1024 444 ≈ 0.434M 131584 = M2/4N +M/2 236444 ≈ 0.000881M3/N2 2.797
2048 888 ≈ 0.434M 525312 = M2/4N +M/2 1942930 ≈ 0.000905M3/N2 4.699
4096 1774 ≈ 0.433M 2099200 = M2/4N +M/2 15751284 ≈ 0.000917M3/N2 8.504
8192 3548 ≈ 0.433M 8392704 = M2/4N +M/2 126846724 ≈ 0.000923M3/N2 16.114
16384 7094 ≈ 0.433M 33562624 = M2/4N +M/2 1018130954 ≈ 0.000926M3/N2 31.335

TABLE II
THE MAXIMUM BUFFER SIZE BY THE OPTIMAL CHOICEm∗

1
FORN = 2.

M m∗

1
B∗

1
(N,M) B∗

2
(N,M) B∗(N,M)/B∗

1
(N,M)

16 8 = 0.5M 24 = M2/4N +M/2 0 1
32 16 = 0.5M 80 = M2/4N +M/2 0 1
64 32 = 0.5M 288 = M2/4N +M/2 0 1
128 60 ≈ 0.469M 1088 = M2/4N +M/2 38 ≈ 0.000290M3/N2 1.035
256 112 ≈ 0.438M 4224 = M2/4N +M/2 595 ≈ 0.000567M3/N2 1.141
512 224 ≈ 0.438M 16640 = M2/4N +M/2 6178 ≈ 0.000736M3/N2 1.371
1024 444 ≈ 0.434M 66048 = M2/4N +M/2 55618 ≈ 0.000829M3/N2 1.842
2048 888 ≈ 0.434M 263168 = M2/4N +M/2 471477 ≈ 0.000878M3/N2 2.792
4096 1776 ≈ 0.434M 1050624 = M2/4N +M/2 3880131 ≈ 0.000903M3/N2 4.693
8192 3548 ≈ 0.433M 4198400 = M2/4N +M/2 31479398 ≈ 0.000916M3/N2 8.498
16384 7096 ≈ 0.433M 16785408 = M2/4N +M/2 253600425 ≈ 0.000923M3/N2 16.108

TABLE III
THE MAXIMUM BUFFER SIZE BY THE OPTIMAL CHOICEm∗

1
FORN = 4.

To see this, we replacem1 by αM with 1
3 ≤ α ≤ 1

2 , j N
M

by x, and i
M by y, then the double sum inB∗

2 (N,M) can be
approximated by the following double integral

B∗
2(N,M)

≈ M3

N2

∫ 1

2

α

∫ α

0

(y − 1 + 2α− 4x)+dxdy

=
M3

N2

∫ 1

2

α

∫ (y−1+2α)/4

0

(y − 1 + 2α− 4x) dxdy

=
M3

8N2

∫ 2α− 1

2

3α−1

z2dz

=
M3

24N2

(

(

2α− 1

2

)3

− (3α− 1)3

)

, (23)

where the first equality holds due to the restriction thatα ≥ 1
3

and in the second equality we have used the change of variable
z = y−1+2α. The optimal valueα∗ that maximizes (23) for
α in [ 13 ,

1
2 ] can be obtained by solving the following quadratic

equation:

2

(

2α∗ − 1

2

)2

− 3(3α∗ − 1)2 = 0.
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The result is

α∗ =
14 +

√
6

38
≈ 0.433.

By using the optimal valueα∗ ≈ 0.433 for B∗
2(N,M) in (23),

we see that

B∗
2(N,M) ≈ 0.000929

M3

N2
(24)

for largeM . Therefore, we see from (21) and (24) that the
maximum buffer size that could be achieved by using the
constructions in Theorem 5 in the case thatN = K is

B∗(N,M) = B∗
1 (N,M) +B∗

2 (N,M) ≈ 0.000929
M3

N2
(25)

for largeM .
Note thatB∗

1 (N,M) = O(M
2

N2 ) is the buffer size achieved
by the regular delay assignmentdi = dM−i+1 =

⌊

i−1
N

⌋

+ 1

for i = 1, 2, . . . ,
⌈

M
2

⌉

, andB∗(N,M) = O(M
3

N2 ) is the buffer
size achieved by the optimal delay assignment that could be
given by (16)–(17). The improvementB∗(N,M)/B∗

1(N,M)
of the buffer sizeB∗(N,M) over the buffer sizeB∗

1(N,M)
is shown in the last columns of Table I–Table III. In Ta-
ble I–Table III, M is a multiple of2N and hence we have
B∗

1(N,M) = M2

4N + M
2 . We make the following observations:

(i) The improvementB∗(N,M)/B∗
1(N,M) is small when

M is small (note that we haveB∗(N,M)/B∗
1(N,M) < 2

for M
N ≤ 256); (ii) The improvementB∗(N,M)/B∗

1(N,M)
increases linearly withM when M

N is sufficiently large.
WhenN = K = 1, the maximum buffer size achieved in

[26] is B∗
1(1,M) = M2/4 + M/2 and the maximum buffer

size achieved by using the constructions in Theorem 5 is
B∗(1,M). The results in Table I show that the buffer size
B∗(1,M) is larger thanB∗

1(1,M) for M ≥ 32, and the
improvementB∗(1,M)/B∗

1(1,M) increases linearly withM
whenM is large (asB∗(1,M) = O(M3) andB∗

1(1,M) =
O(M2)). Therefore, our constructions not only extend the
previous constructions from a single input and a single output
to multiple inputs and multiple outputs, but also improve on
the previous constructions [25]–[26] of single-input single-
output optical priority queues.

In the following theorem, we show an upper bound on the
maximum buffer size of anN -to-K priority queue by using
fiber delay lines as the storage devices.

Theorem 6 Suppose that anN -to-K priority queue with
buffer B is constructed by using SDL elements that contain
M fiber delay lines as the storage devices. Then we have

B ≤ (K2 + 2K +N)2(M−N−K) log
2
(1+ 1

K
). (26)

In particular, if N = K, then we have

B ≤ (N2 + 3N)2(M−2N) log
2
(1+ 1

N
). (27)

Proof. See Appendix B.
Note that for the special case thatN = K = 1, the

exponential upper bound given by (27) isO(2M ), which is
the same as that obtained in [25]. Furthermore, there is a gap
between theO(M

3

N2 ) buffer size achieved by our constructions

and the exponential upper boundO(2(M−2N) log
2
(1+ 1

N
)) given

in (27). Whether it is possible to achieve such an exponential
bound, and if possible, how to do that, remains an open
research problem.

IV. CONSTRUCTIONS OFFAULT TOLERANT OPTICAL

PRIORITY QUEUES WITH MULTIPLE INPUTS AND

MULTIPLE OUTPUTS

In Section III-A, we have shown that if the fiber delays
d1, d2, . . . , dM are given as in Theorem 5, then the feedback
system in Figure 4(a) or Figure 5(a) can be operated as an
N -to-K optical priority queue with buffer

∑M
i=1 di under our

operation rules. The problem with such a construction is its
fault tolerant capability. When some of the fiber delays lines
are broken/malfunctioning (e.g., fiber cut, fiber shorting out,
etc), the delays of the remaining unbroken/functioning fibers
may not satisfy the condition in Theorem 5, and hence the
construction in Theorem 5 no longer works. An interesting
and challenging question is then: when some of the fiber
delays lines are broken/malfunctioning, could the feedback
system in Figure 4(a) or Figure 5(a) still be operated as an
N -to-K optical priority queue with a “smaller” buffer size by
using the remaining unbroken/functioning fibers? The answer
is affirmative if the fiber delays are carefully chosen as will
be seen in Theorem 8 below.

Before we state Theorem 8, we first show in the following
lemma that if the fiber delaysd1, d2, . . . , dM satisfy the con-
dition in (A3) in Section I, then the condition in (A2) is also
satisfied, and hence it follows from Theorem 2, Theorem 3,
and Lemma 4 that the feedback system in Figure 4(a) or
Figure 5(a) can be operated as anN -to-K optical priority
queue with buffer

∑M
i=1 di.

Lemma 7 Suppose that the feedback system in Figure 4(a)
or Figure 5(a) is started from an empty system at time 0. If
the fiber delaysd1, d2, . . . , dM satisfy the condition in (A3),
then the feedback system in Figure 4(a) or Figure 5(a) can
be operated as anN -to-K optical priority queue with buffer
∑M

i=1 di under our operation rules.

Proof. As commented above, it suffices to show that the
condition in (A2) holds at all times. Consider a tagged packet
that enters theith fiber delay line at timet. Under our operation
rules, we know that among the packets that enter theM fiber
delay lines at timet, there arei − 1 packets with priorities
higher than that of the tagged packet and there areM − i
packets with priorities lower than that of the tagged packet. If
the fiber delaysd1, d2, . . . , dM satisfy the condition in (A3),
then we can see that

K(di − 1) ≤ Kmin

[⌊

i− 1

K

⌋

,

⌊

M − i

N

⌋]

≤ K

⌊

i− 1

K

⌋

≤ i− 1

and

N(di − 1) ≤ N min

[⌊

i− 1

K

⌋

,

⌊

M − i

N

⌋]

≤ N

⌊

M − i

N

⌋

≤ M − i.
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Therefore, the condition in (A2) holds at timet.
It is clear that the maximum buffer size that could be

achieved under the condition in (A3) is by choosingdi =
min

[

⌊ i−1
K ⌋, ⌊M−i

N ⌋
]

+ 1 for i = 1, 2, . . . ,M . Suppose that
M = q(N +K) + r, whereq ≥ 0 and0 ≤ r ≤ N +K − 1
are the quotient and the remainder, respectively, ofM divided
by N +K. Then the fiber delays are given by

di =























j, if (j − 1)K + 1 ≤ i ≤ jK and1 ≤ j ≤ q,
q + 1, if qK + 1 ≤ i ≤ qK + r,
q − j + 1,

if qK + r + (j − 1)N + 1 ≤ i ≤ qK + r + jN
and1 ≤ j ≤ q.

As such, the maximum buffer size that could be achieved under
the condition in (A3) is equal toq(q+1)

2 (N + K) + r(q +
1). In the special case thatN = K, the maximum buffer
size that could be achieved under the condition in (A3) is
q(q + 1)N + r(q + 1), i.e., O(M

2

N ), which is smaller than
the O(M

3

N2 ) buffer size that could be achieved by using the
constructions in Theorem 5. However, we will see shortly that
the condition in (A3) can be used to design the fiber delays
d1, d2, . . . , dM as given in Theorem 8 below such that the
feedback system in Figure 4(a) or Figure 5(a) can be operated
as anN -to-K optical priority queue that can tolerate up toF
broken/malfunctioning fibers, where0 ≤ F ≤ M − 1.

In our constructions of fault tolerantN -to-K optical pri-
ority queue, we assume that the(M + max[N,K]) × (M +
max[N,K]) switch in Figure 4(a) or Figure 5(a) is accom-
panied with a detection circuitry that can detect whether a
fiber is broken/malfunctioning (e.g., fiber cut, fiber shorting
out, etc). This can be done by simply sending pilot signals
through the fiber delay lines. If the pilot signals are not
received at a pair of input/output ports, then a fiber cut may
have occurred on the fiber connecting that pair of input/output
ports, and if the pilot signals are received immediately at
a pair of input/output ports, then the fiber connecting that
pair of input/output ports may be shorting out. As such,
if some of the fibers are broken/malfunctioning, then we
can just disregard the input/output ports corresponding to
the broken/malfunctioning fibers, and view the remaining
input/output ports as the input/output ports of a smaller switch.

Note that even with the fault-detection mechanism as de-
scribed above, the condition in (A3) still does not guarantee
that the construction in Figure 4(a) or Figure 5(a) is fault toler-
ant. In order to make sure that the construction in Figure 4(a)
or Figure 5(a) can tolerate up toF broken/malfunctioning
fibers, where0 ≤ F ≤ M − 1, what we need is a more re-
strictive condition (we will give such a condition in Theorem 8
below) on the fiber delaysd1, d2, . . . , dM such that after up
to F of the fibers are broken/malfunctioning, the delays of the
remaining unbroken/functioning fibers still satisfy the condi-
tion in (A3) (with M replaced by the number of the remaining
unbroken/functioning fibers in (A3)) after a proper re-indexing
of the remaining unbroken/functioning fibers. For example,
consider the case thatM = 12, N = 3, and K = 2. If
we choose(d1, d2, . . . , d12) = (1, 1, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1),
then the condition in (A3) is satisfied and hence the feedback
system in Figure 4(a) or Figure 5(a) can be operated as

an N -to-K optical priority queue with buffer
∑M

i=1 di =
21. However, when the third fiber with delayd3 = 2 is
broken/malfunctioning, the delays of the remaining unbro-
ken/functioning fibers do not satisfy the condition in (A3)
(with M = 11 in (A3)) no matter how we re-index the
remaining unbroken/functioning fibers.

On the other hand, if we choose(d1, d2, . . . , d12) =
(1, 1, 2, 2, 3, 2, 2, 2, 1, 1, 1, 1) so that the delays
(d1, d2, . . . , d11) = (1, 1, 2, 2, 3, 2, 2, 2, 1, 1, 1) of the
first eleven fibers satisfy the condition in (A3) (withM = 11
in (A3)) and the delay of the last fiber is equal to 1. Then it
can be seen that when the third fiber with delayd3 = 2 is
broken/malfunctioning, we can re-index the the twelfth fiber
as the third fiber. As such, after the re-indexing the delays
of the remaining unbroken/functioning fibers satisfy the
condition in (A3) (withM = 11 in (A3)). Similarly, it can be
seen that when any one of the fibers is broken/malfunctioning,
we can re-index the remaining unbroken/functioning fibers so
that the condition in (A3) (withM = 11 in (A3)) is satisfied
and hence the feedback system in Figure 4(a) or Figure 5(a)
can be operated as anN -to-K optical priority queue with a
buffer size at least

∑M
i=1 di − d5 = 16 (note thatd5 is the

largest fiber delay among the twelve fiber delays).
The idea of our choice of the fiber delaysd1, d2, . . . , dM in

Theorem 8 below is to choose the delaysd1, d2, . . . , dM−F

of the first M − F fibers such that they satisfy the con-
dition in (A3) (with M replaced byM − F in (A3)) and
choose the delaysdM−F+1, dM−F+2, . . . , dM of the lastF
fibers to be equal to 1. The lastF fibers with delays equal
to 1 can be regarded as the “backup” fibers for the first
M − F fibers. When some of the firstM − F fibers are
broken/malfunctioning, we can then replace them by using
the unbroken/functioning fibers among the lastF fibers. As
the delays of the lastF fibers are chosen to be equal to 1, it
can be shown that the remaining unbroken/functioning fibers
still satisfy the condition in (A3) (withM replaced by the
number of the remaining unbroken/functioning fibers in (A3))
and hence the feedback system in Figure 4(a) or Figure 5(a)
can be operated as anN -to-K optical priority queue with a
smaller buffer size.

Suppose that0 ≤ F ≤ M − 1. Let

d∗i =







min
[⌊

i−1
K

⌋

,
⌊

M−F−i
N

⌋]

+ 1,
for i = 1, 2, . . . ,M − F,

1, for i = M − F + 1,M − F + 2, . . . ,M.
(28)

Let

B∗(N,K,F,M) =
M−F
∑

i=1

d∗(i), (29)

whered∗(i) is the ith smallest delay in{d∗1, d∗2, . . . , d∗M} for
i = 1, 2, . . . ,M , i.e., the delaysd∗(1) ≤ d∗(2) ≤ · · · ≤ d∗(M)
are the delaysd∗1, d

∗
2, . . . , d

∗
M ordered from the smallest to the

largest.

Theorem 8 Suppose that0 ≤ F ≤ M − 1.
(i) Let

1 ≤ di ≤ d∗i , for i = 1, 2, . . . ,M, (30)
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whered∗i is given by (28) fori = 1, 2, . . . ,M . In other words,
the delaysd1, d2, . . . , dM−F of the firstM − F fibers satisfy
the condition in (A3) (withM replaced byM − F in (A3))
and the delaysdM−F+1, dM−F+2, . . . , dM of the lastF fibers
are all equal to 1. Then after up toF of the M fibers in
the feedback system in Figure 4(a) or Figure 5(a) are bro-
ken/malfunctioning, the remaining unbroken/functioningfibers
can be re-indexed so that their delays after re-indexing still
satisfy the condition in (A3) (withM replaced by the number
of the remaining unbroken/functioning fibers in (A3)) and
hence the feedback system could be operated as anN -to-K
optical priority queue with a buffer size at least

∑M−F
i=1 d(i),

where d(i) is the ith smallest delay in{d1, d2, . . . , dM} for
i = 1, 2, . . .M . In particular, if we choosedi = d∗i for i =
1, 2, . . . ,M , then the buffer size is at leastB∗(N,K,F,M),
whereB∗(N,K,F,M) is given by (29).

(ii) Conversely, assume that when at mostF of theM fibers
in the feedback system in Figure 4(a) or Figure 5(a) are bro-
ken/malfunctioning, the remaining unbroken/functioningfibers
can be re-indexed so that their delays after re-indexing still
satisfy the condition in (A3) (withM replaced by the number
of the remaining unbroken/functioning fibers in (A3)) and
hence the feedback system can be operated as anN -to-K
optical priority queue with a buffer size at leastB′. Then we
must haveB′ ≤ B∗(N,K,F,M).

Proof. (i) Index theM fibers with delaysd1, d2, . . . , dM from
1 to M . Assume thatF ′ fibers are broken/malfunctioning,
where 0 ≤ F ′ ≤ F . Let m and n be the numbers
of broken/malfunctioning fibers with indices in the sets
I = {1, 2, . . . ,M − F} and J = {M − F + 1,M −
F + 2, . . . ,M}, respectively. Note thatm + n = F ′. Let
I ′ = {i1, i2, . . . , im} ⊆ I be the index set of the “bro-
ken/malfunctioning” fibers with indices inI and let J ′ =
{j1, j2, . . . , jF−n} ⊆ J be the index set of the “unbro-
ken/functioning” fibers with indices inJ .

Now we re-index the remainingM − F ′ unbro-
ken/functioning fibers with indices in(I\I ′)∪J ′. We re-index
the ith fiber as theith fiber for i ∈ I\I ′, re-index thej th

k fiber
as theithk fiber for k = 1, 2, . . . ,m (note that this is feasible as
we havem = F ′ − n ≤ F − n), and re-index thej th

k fiber as
the (M −F +k−m)th fiber for k = m+1,m+2, . . . , F −n
(see Figure 7 for an illustration of the re-indexing).

1 M-F+1i1 i2 im M-F j1 j2 jm jm+1 jF-n

1 M-F+1i1 i2 im M-F

M. . .

. . .

. . . . . .

M-F'. . .

: broken/malfunctioning fiber

: unbroken/functioning fiber

Fig. 7. An illustration of the re-indexing in the proof of Theorem 8.

Let d′1, d
′
2, . . . , d

′
M−F ′ be the delays of the remainingM −

F ′ unbroken/functioning fibers after re-indexing. AsJ ′ ⊆ J
and di = d∗i = 1 for all i ∈ J , we see thatdi = 1 for all

i ∈ J ′, and it then follows that

d′i =

{

di, for i ∈ I\I ′,
1, for i ∈ I ′ ∪ {M − F + 1, . . . ,M − F ′}. (31)

If i ∈ I\I ′, then we see from (31), (30), (28), andF ′ ≤ F
that

d′i = di ≤ d∗i = min

[⌊

i− 1

K

⌋

,

⌊

M − F − i

N

⌋]

+ 1

≤ min

[⌊

i− 1

K

⌋

,

⌊

M − F ′ − i

N

⌋]

+ 1.

On the other hand, ifi ∈ I ′1 ∪ {M − F + 1, . . . ,M − F ′},
then it is clear from (31) that

d′i = 1 ≤ min

[⌊

i− 1

K

⌋

,

⌊

M − F ′ − i

N

⌋]

+ 1.

As such, the delaysd′1, d
′
2, . . . , d

′
M−F ′ of the remainingM −

F ′ unbroken/functioning fibers satisfy the condition in (A3)
(with M replaced byM−F ′ in (A3)), and hence the feedback
system in Figure 4(a) or Figure 5(a) could be operated as
anN -to-K optical priority queue with buffer

∑M−F ′

i=1 d′i. As
F ′ ≤ F and d(1), d(2), . . . , d(M−F ) are the smallestM − F
delays in{d1, d2, . . . , dM}, we have

M−F ′

∑

i=1

d′i ≥
M−F
∑

i=1

d′i ≥
M−F
∑

i=1

d(i).

(ii) First note that there are at leastF +1 fibers with delays
equal to 1, saydi = 1 for i = M − F,M − F + 1, . . . ,M .
Otherwise, if all of the fibers with delays equal to 1 are
broken/malfunctioning, then the delays of the remaining un-
broken/functioning fibers cannot satisfy the condition in (A3)
as the condition in (A3) requires that at least one of the
remaining unbroken/functioning fibers has a delay equal to
1.

Let d(i) and d∗(i) be the ith smallest delay in
{d1, d2, . . . , dM} and {d∗1, d∗2, . . . , d∗M}, respectively,
for i = 1, 2, . . . ,M . As di = d∗i = 1 for
i = M − F + 1,M − F + 2, . . . ,M , it follows that
d(i) = d∗(i) = 1 for i = 1, 2, . . . , F , and d(F+i) and and
d∗(F+i) are theith smallest delay in{d1, d2, . . . , dM−F } and
{d∗1, d∗2, . . . , d∗M−F }, respectively, fori = 1, 2, . . . ,M − F .

Consider the case that theF fibers with delays
dM−F+1, dM−F+2, . . . , dM (the smallest F delays in
{d1, d2, . . . , dM}) are broken/malfunctioning. As we assume
that the remainingM − F unbroken/functioning fibers can
be re-indexed so that their delays satisfy the condition in
(A3) (with M replaced byM − F in (A3)), there exists a
permutationσ on {1, 2, . . . ,M − F} such that theith fiber is
re-indexed as the(σ(i))th fiber and after re-indexing the delays
d′′i = dσ−1(i), i = 1, 2, . . . ,M − F , satisfy

d′′i = dσ−1(i)

≤ min

[⌊

i− 1

K

⌋

,

⌊

M − F − i

N

⌋]

+ 1 = d∗i ,

for i = 1, 2, . . . ,M − F. (32)

It then follows that

d(F+i) ≤ d∗(F+i), for i = 1, 2, . . . ,M − F. (33)
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To see this, note thatd∗(F+i) is the ith smallest delay in
{d∗1, d∗2, . . . , d∗M−F }, and hence there existk1, k2, . . . , ki ∈
{1, 2, . . . ,M − F} such thatd∗kj

≤ d∗(F+i) for all j =
1, 2, . . . , i. Thus, we see from (32) thatdσ−1(kj) ≤ d∗kj

≤
d∗(F+i) for all j = 1, 2, . . . , i, i.e., there are at leasti delays
in {d1, d2, . . . , dM−F } that are less than or equal tod∗(F+i).
This implies that theith smallest delay in{d1, d2, . . . , dM−F }
is less than or equal tod∗(F+i), i.e., d(F+i) ≤ d∗(F+i).

Now consider the case that theF fibers with de-
lays d(M−F+1), d(M−F+2), . . . , d(M) (the largest F de-
lays in {d1, d2, . . . , dM}) are broken/malfunctioning. As the
remaining M − F unbroken/functioning fibers with de-
lays d(1), d(2), . . . , d(M−F ) can only store a maximum of
∑M−F

i=1 d(i) optical packets, and the feedback system with
the remainingM − F unbroken/functioning fibers can still
be operated as anN -to-K optical priority queue with a buffer
buffer at leastB′, we must have

B′ ≤
M−F
∑

i=1

d(i). (34)

It then follows from (34),d(i) = d∗(i) = 1 for 1 = 1, 2, . . . , F ,
(33), and (29) that

B′ ≤
M−F
∑

i=1

d(i) ≤
M−F
∑

i=1

d∗(i) = B∗(N,K,F,M).

The proof is completed.

V. CONCLUSION

In this paper, we have considered the constructions of
N -to-K optical priority queues by using a single(M +
max[N,K])× (M +max[N,K]) optical (bufferless) crossbar
switch,min[N,K] 1×2 optical (bufferless) crossbar switches,
and M fiber delay lines with delaysd1, d2, . . . , dM . By
establishing a space-time advancement property and a mono-
tonically decreasing/increasing property for the packetsstored
in the fiber delay lines, we showed that such constructions can
be used for exact emulation of an optical priority queue with
buffer

∑M
i=1 di. We also showed that our constructions achieve

a buffer size ofO(M
3

N2 ) in the case thatN = K. In particular,
for the special case thatN = K = 1, we can achieve a buffer
size ofO(M3), which is better than theO(M2) buffer size
previously obtained in [25] and [26].

Furthermore, we showed that there is a gap between the
O(M

3

N2 ) buffer size achieved by our constructions and the
exponential upper boundO(2(M−2N) log

2
(1+ 1

N
)) given in (27)

for the case thatN = K. Whether it is possible to achieve
such an exponential bound, and if possible, how to do that,
remains an open research problem. For the special case that
N = K = 1, it can be seen from a comment in [26] that if an
optical priority queue has onlyL priority classes of packets
and one is willing to relax the requirement of exact emulation
of an optical priority queue, then the exponential upper bound
O(2M ) can be achieved by usingL optical FIFO queues for
theseL classes of packets. This is possible because an optical
FIFO queue with bufferB can be constructed withO(logB)
2× 2 optical crossbar switches [20].

APPENDIX A
PROOF OF THECLAIM IN CASE 3 IN THE PROOF OF

THEOREM 5

Recall that in the proof of Theorem 5, the tagged packet
under consideration enters theith0 fiber delay line at time
t0. In this appendix, we prove the claim in Case 3 in the
proof of Theorem 5 that the total number of packets stored in
the fiber delay lines at timet0 with priorities higher (resp.,
lower) than that of the tagged packet is at leastαi0 − 1
(resp., βi0 − 1), where m1 + 1 ≤ i0 ≤ M − m2 and
αi0 (resp.,βi0 ) is given by (7) (resp., (8)). To do so, we
will first establish a space-time advancement property and a
monotonically decreasing/increasing property for the packets
stored in the fiber delay lines, and then show that there are at
leastαi0 (resp.,βi0 ) packets stored in the fiber delay lines at
time t0 with priorities higher (resp., lower) than or equal to
that of the tagged packet. As there is a total order among all
of the packets stored in the fiber delay lines, the only packet
that has the same priority as that of the tagged packet is the
tagged packet itself. Therefore, the total number of packets
stored in the fiber delay lines at timet0 with priorities higher
(resp., lower) than that of the tagged packet is at leastαi0 − 1
(resp.,βi0 − 1), and the claim is proved.

In the following, we divide our proof into two parts.

A-1. The first half of the proof

In the first half of the proof, we show that there are at
leastαi0 packets stored in the fiber delay lines at timet0 with
priorities higher than or equal to that of the tagged packet.For
this, we letpi,j(t) = 1 if the priority of the packet stored in
the (i, j)th cell at timet is higher than or equal to that of the
tagged packet, and letpi,j(t) = 0 otherwise.

Since a packet stored in the(i, j)th cell at timet must be
stored in the(i, j − 1)th cell at timet− 1, we havepi,j(t) =
pi,j−1(t − 1). In general, we have the followingspace-time
advancement property(see Figure 8):

pi,j(t) = pi,j−1(t− 1) = · · · = pi,1(t− (j − 1)),

for j = 1, 2, . . . , di and i = 1, 2, . . . ,M. (35)

Pi,1(t-(j-1))

At time t-(j-1)

Pi,j-1(t-1)

At time t-1

Pi,j (t)    

At time t

Fig. 8. The space-time advancement property in (35) forj = 1, 2, . . . , di
and i = 1, 2, . . . ,M .

According to the operation rules of our constructions of an
optical priority queue, the packets at the inputs of theM fiber
delay lines are sorted according to their priorities. Thus,we
have

p1,1(t) ≥ p2,1(t) ≥ · · · ≥ pM,1(t), for all t. (36)

As we assume thatdi = ⌊ i−1
K ⌋ + 1 for i = 1, 2, . . . ,m1,

di = ⌊M−i
N ⌋+ 1 for i = M −m2 + 1,M −m2 + 2, . . . ,M ,

and di ≥ n for i = m1 + 1,m1 + 2, . . . ,M − m2, where
m1 = nK, m2 = nN , andm1 +m2 ≤ M , the definition of
pi,j(t) for j = 1, 2, . . . , n and i = (j − 1)K + 1, (j − 1)K +
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2, . . . ,M− (j−1)N is feasible. It then follows from (36) and
the space-time advancement property in (35) that we have the
following monotonically decreasing property(see Figure 9):

p(j−1)K+1,j(t) ≥ p(j−1)K+2,j(t) ≥ · · · ≥ pM−(j−1)N,j(t),

for j = 1, 2, . . . , n. (37)

We note that the space-time advancement property in (35)
and the monotonically decreasing property in (37) are the key
properties for our proof.

P2,1(t)

P1,1(t)

PK,1(t)

PK+2,2(t)

PK+1,2(t)

P2K,2(t)

PK+2,1(t)

PK+1,1(t)

P2K,1(t)

P(n-1)K+2,1(t)

P(n-1)K+1,1(t)

Pm ,1(t)

P(n-1)K+1,2(t)

P(n-1)K+1,2(t)

Pm ,2(t)

P(n-1)K+2,n(t)

P(n-1)K+1,n(t)

Pm ,n(t)

Pm +1,1(t)Pm +1,2(t)Pm +1,n(t)Pm +1,d      (t)

PM-m ,1(t)PM-m ,2(t)PM-m ,n(t)PM-m ,d       (t)

PM-m +2,1(t)

PM-m +1,1(t)

PM-m +N,1(t)

PM-m +2,2(t)

PM-m +1,2(t)

PM-m +N,2(t)

PM-m +2,n(t)

PM-m +1,n(t)

PM-m +N,n(t)

PM-2N+2,2(t)

PM-2N+1,2(t)

PM-N,2(t)

PM-2N+2,1(t)

PM-2N+1,1(t)

PM-N,1(t)

PM-N+2,1(t)

PM-N+1,1(t)

PM,1(t)

111

1 m1+1

M+m22

1 1 1

2 2 2

2 2 2

2 2 2

2 2 2

monotonically

decreasing

P1(t)

P2(t)

Pn(t)

Fig. 9. The monotonically decreasing property in (37) and the definition of
pj(t) in (38) for j = 1, 2, . . . , n.

We need some more notations for our proof. Letpj(t) be the
total number of packets stored in the cells of the “j th column”
in Figure 6 at timet with priorities higher than or equal to
that of the tagged packet forj = 1, 2, . . . , n (see Figure 9),
i.e.,

pj(t) =

M−(j−1)N
∑

i=(j−1)K+1

pi,j(t), for j = 1, 2, . . . , n. (38)

As pi,j(t) only assumes two values, i.e.,pi,j(t) = 0 or 1, we
have from (38) that

0 ≤ pj(t) ≤ M − (j − 1)(N +K), for j = 1, 2, . . . , n. (39)

Note that forj = 1, 2, . . . , n and i = (j − 1)K + 1, (j −
1)K+2, . . . , jK, we have from (4) thatdi = j and hence the
last cell of theith fiber delay line is the(i, j)th cell. Letxj(t)
be the total number of packets stored in the last cells of the
((j − 1)K + 1)th, the ((j − 1)K + 2)th, . . ., and the(jK)th

fiber delay lines at timet with priorities higher than or equal
to that of the tagged packet forj = 1, 2, . . . , n, i.e.,

xj(t) =

jK
∑

i=(j−1)K+1

pi,di
(t) =

jK
∑

i=(j−1)K+1

pi,j(t),

for j = 1, 2, . . . , n, (40)

and letx(t) be the total number of packets stored in the last
cells of the firstm1 fiber delay lines at timet with priorities
higher than or equal to that of the tagged packet, i.e.,

x(t) =

m1
∑

i=1

pi,di
(t) =

n
∑

j=1

jK
∑

i=(j−1)K+1

pi,di
(t)

=
n
∑

j=1

xj(t). (41)

Similarly, for j = 1, 2, . . . , n andi = M−jN+1,M−jN+
2, . . . ,M−(j−1)N , we havedi = j and hence the last cell of
the ith fiber delay line is the(i, j)th cell. Let yj(t) be the total
number of packets stored in the last cells of the(M−jN+1)th,
the (M − jN+2)th, . . ., and the(M − (j−1)N)th fiber delay
lines at timet with priorities higher than or equal to that of
the tagged packet forj = 1, 2, . . . , n, i.e.,

yj(t) =

M−(j−1)N
∑

i=M−jN+1

pi,di
(t) =

M−(j−1)N
∑

i=M−jN+1

pi,j(t),

for j = 1, 2, . . . , n, (42)

and lety(t) be the total number of packets stored in the last
cells of the lastm2 fiber delay lines at timet with priorities
higher than or equal to that of the tagged packet, i.e.,

y(t) =

M
∑

i=M−m2+1

pi,di
(t) =

n
∑

j=1

M−(j−1)N
∑

i=M−jN+1

pi,di
(t)

=

n
∑

j=1

yj(t). (43)

In Figure 10, we illustrate the definitions ofxj(t) in (40) and
yj(t) in (42) for j = 1, 2, . . . , n, andx(t) in (41) andy(t) in
(43).

Now we present three lemmas that will be used in our proof.
In the following lemma, we show that if the inequality on the
right-hand side of (39) holds with strict inequality for some
2 ≤ j ≤ n, then we can obtain an upper bound onpj−j′ (t−j′)
in terms ofpj(t) for j′ = 1, 2, . . . , j − 1.

Lemma 9 If pj(t) < M−(j−1)(N+K) for some2 ≤ j ≤ n,
then

pj−j′ (t− j′) ≤ pj(t) + j′K, for j′ = 1, 2, . . . , j − 1. (44)

Proof. From (38) and0 ≤ pi,j(t) ≤ 1 for all i andj, it is easy
to see that ifpj(t) < M − (j − 1)(N +K), thenpm,j(t) = 0
for some(j − 1)K + 1 ≤ m ≤ M − (j − 1)N . From the
space-time advancement property in (35), we can see that

pm,j−1(t− 1) = pm,j(t) = 0.
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Fig. 10. The definitions ofxj(t) in (40) and yj(t) in (42) for j =
1, 2, . . . , n, andx(t) in (41) andy(t) in (43).

It follows from the monotonically decreasing property in (37)
andpi,j(t) ≥ 0 for all i andj that

pm,j−1(t− 1) = pm+1,j−1(t− 1) = · · ·
= pM−(j−2)N,j−1(t− 1) = 0. (45)

Thus, we have from (38),pi,j(t) ≤ 1 for all i and j, the
space-time advancement property in (35), and (45) that

pj−1(t− 1)

=

M−(j−2)N
∑

i=(j−2)K+1

pi,j−1(t− 1)

=

(j−1)K
∑

i=(j−2)K+1

pi,j−1(t) +

M−(j−1)N
∑

i=(j−1)K+1

pi,j−1(t− 1)

+

M−(j−2)N
∑

i=M−(j−1)N+1

pi,j−1(t− 1)

≤ K +

M−(j−1)N
∑

i=(j−1)K+1

pi,j(t) + 0

= pj(t) +K. (46)

From (46) and the assumption thatpj(t) < M−(j−1)(N+

K), we have

pj−1(t− 1) ≤ pj(t) +K

< M − (j − 1)(N +K) +K

< M − (j − 2)(N +K).

By repeating the above argument that leads to (46), we obtain

pj−2(t− 2) ≤ pj−1(t− 1) +K ≤ pj(t) + 2K.

It should be clear that by repeating the above argument forj′

times, we obtain (44) forj′ = 1, 2, . . . , j− 1 and the proof is
completed.

In the following lemma, we give an upper bound ony(t)
in terms ofx(t).

Lemma 10

y(t) ≤
{

x(t) +m2 −m1, if N ≥ K,
x(t), if N < K.

(47)

Proof. If N ≥ K, then from (43), the monotonically
decreasing property in (37),pi,j(t) ≤ 1 for all i and j, (41),
m1 = nK, andm2 = nN , we have

y(t) =

n
∑

j=1

M−(j−1)N
∑

i=M−jN+1

pi,j(t)

=
n
∑

j=1





M−jN+K
∑

i=M−jN+1

pi,j(t) +

M−(j−1)N
∑

i=M−jN+K+1

pi,j(t)





≤
n
∑

j=1





jK
∑

i=(j−1)K+1

pi,j(t) +N −K





= x(t) + n(N −K) = x(t) +m2 −m1.

On the other hand, ifN < K, then it is clear from (43),
the monotonically decreasing property in (37),pi,j(t) ≥ 0 for
all i andj, and (41) that

y(t) =

n
∑

j=1

M−(j−1)N
∑

i=M−jN+1

pi,j(t) ≤
n
∑

j=1

(j−1)K+N
∑

i=(j−1)K+1

pi,j(t)

≤
n
∑

j=1

jK
∑

i=(j−1)K+1

pi,j(t) = x(t).

The proof is completed.
In the following lemma, we derive the key inequalities that

will be useful in finding a lower bound on the total number
of packets stored in the fiber delay lines with priorities higher
than or equal to that of the tagged packet.

Lemma 11
(i) x(t) ≤ x(t− 1) +K.
(ii) x(t− 1)−K ≤ p1(t)

≤
{

2x(t− 1) +M − 2m1 +N, if N ≥ K,
2x(t− 1) +M −m1 −m2 +N, if N < K.

(iii) x(t − 1) ≤ pj(t) + (2j − 1)K for j = 2, 3, . . . , n.
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Proof. (i) For j = 2, 3, . . . , n, we have from (40), the
monotonically decreasing property in (37), and the space-time
advancement property in (35) that

xj−1(t− 1) =

(j−1)K
∑

i=(j−2)K+1

pi,j−1(t− 1)

≥
(j−1)K
∑

i=(j−2)K+1

pi+K,j−1(t− 1)

=

jK
∑

i=(j−1)K+1

pi,j−1(t− 1)

=

jK
∑

i=(j−1)K+1

pi,j(t) = xj(t). (48)

It follows from (41), (40),pi,j(t) ≤ 1 for all i and j, and
(48) that

x(t) =
n
∑

j=1

xj(t) = x1(t) +
n
∑

j=2

xj(t)

=

K
∑

i=1

pi,1(t) +

n
∑

j=2

xj(t)

≤ K +

n
∑

j=2

xj−1(t− 1) = K +

n−1
∑

j=1

xj(t− 1)

≤ K +

n−1
∑

j=1

xj(t− 1) + xn(t− 1) = x(t− 1) +K.

(ii) Note that p1(t) =
∑M

i=1 pi,1(t) is the total number of
packets stored in the cells(1, 1), (2, 1), . . . , (M, 1) at time t
with priorities higher than or equal to that of the tagged packet.
TheseM packets can only come from theM packets stored
in the last cells of theM fiber delay lines at timet− 1, i.e.,
the cells(1, d1), (2, d2), . . . , (M,dM ), theN packets arriving
from the N arrival links at timet, and theK − N packets
arriving from theK − N idling links at time t (in the case
thatN < K). Letn1(t−1), n2(t), andn3(t) be the number of
packets stored in the last cells of theM fiber delay lines at time
t− 1, the number of packets arriving from theN arrival links
at timet, and the number of packets arriving from theK−N
idling links at timet (in the case thatN < K), respectively,
with priorities higher than or equal to that of the tagged packet.
Also, let n4(t) be the number of packets leaving the system
at timet with priorities higher than that of the tagged packet.
Clearly, we have

p1(t)

=

{

n1(t− 1) + n2(t)− n4(t), if N ≥ K,
n1(t− 1) + n2(t) + n3(t)− n4(t), if N < K.

(49)

From the definition ofpi,j(t), we immediately see that
n1(t− 1) =

∑M
i=1 pi,di

(t− 1). It follows from (41) and (43)

that

n1(t− 1) =

M
∑

i=1

pi,di
(t− 1)

=

m1
∑

i=1

pi,di
(t− 1) +

M−m2
∑

i=m1+1

pi,di
(t− 1)

+

M
∑

i=M−m2+1

pi,di
(t− 1)

= x(t− 1) +

M−m2
∑

i=m1+1

pi,di
(t− 1) + y(t− 1).(50)

Also, it is clear that0 ≤ n2(t) ≤ N .
We consider the two casesN ≥ K andN < K separately.
Case 1:N ≥ K. From the operation rules in Section II-B,

we see that ifc(t) = 0, then we haven4(t) = 0 (as in this
case there are no packets departing from the departure links
at timet, and theN packets dumped through the loss links at
time t are theN lowest priority packets iñq(t− 1) ∪ ã(t) so
that they have priorities lower than that of the tagged packet),
and if c(t) = 1, then we haven4(t) = K (as in this case
theK packets departing from the departure links at timet are
theK highest priority packets iñq(t− 1) ∪ ã(t) so that they
have priorities higher than that of the tagged packet, and the
N − K packets dumped through the loss links at timet are
the N −K lowest priority packets iñq(t − 1) ∪ ã(t) so that
they have priorities lower than that of the tagged packet). It
follows that0 ≤ n4(t) ≤ K.

Thus, we have from (49), (50),pi,j(t− 1) ≥ 0 for all i and
j, n2(t) ≥ 0, andn4(t) ≤ K that

p1(t)

= x(t − 1) +

M−m2
∑

i=m1+1

pi,di
(t− 1) + y(t− 1) + n2(t)− n4(t)

≥ x(t − 1)−K,

and we have from (49), (50),pi,j(t − 1) ≤ 1 for all i and j,
(47), n2(t) ≤ N , andn4(t) ≥ 0 that

p1(t)

= x(t− 1) +

M−m2
∑

i=m1+1

pi,di
(t− 1) + y(t− 1) + n2(t)− n4(t)

≤ x(t− 1) + (M −m2 −m1) + (x(t − 1) +m2 −m1) +N

= 2x(t− 1) +M − 2m1 +N.

Case 2:N < K. From the operation rules in Section II-C,
we see that ifc(t) = 0, then we haven3(t) = 0 (as in this
case theK −N fictitious packets from the idling links depart
from the lastK −N departure links at timet, they cannot be
the tagged packet and hence they have priorities lower than
that of the tagged packet) andn4(t) = 0 (as in this case the
K − N packets departing from the departure links at timet
are theK −N fictitious packets from the idling links and the
N packets dumped through the loss links at timet are the
N lowest priority packets iñq(t − 1) ∪ ã(t) so that they all
have priorities lower than that of the tagged packet), and if
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c(t) = 1, then we have0 ≤ n3(t) ≤ K −N (as in this case
theK−N fictitious packets from the idling links at timet are
routed to the fiber delay lines) andn4(t) = K (as in this case
there are no packets dumped through the loss links at timet,
and theK packets departing from the departure links at time
t are theK highest priority packets iñq(t− 1) ∪ ã(t) so that
they have priorities higher than that of the tagged packet).It
follows that−K ≤ n3(t)− n4(t) ≤ 0.

Thus, we have from (49), (50),pi,j(t− 1) ≥ 0 for all i and
j, n2(t) ≥ 0, andn3(t)− n4(t) ≥ −K that

p1(t) = x(t− 1) +

M−m2
∑

i=m1+1

pi,di
(t− 1) + y(t− 1)

+n2(t) + n3(t)− n4(t)

≥ x(t− 1)−K,

and we have from (49), (50),pi,j(t− 1) ≤ 1 for all i and j,
(47), n2(t) ≤ N , andn3(t)− n4(t) ≤ 0 that

p1(t) = x(t− 1) +

M−m2
∑

i=m1+1

pi,di
(t− 1) + y(t− 1)

+n2(t) + n3(t)− n4(t)

≤ x(t− 1) + (M −m2 −m1) + x(t− 1) +N + 0

= 2x(t− 1) +M −m1 −m2 +N.

(iii) Let 2 ≤ j ≤ n. If pj(t) < M − (j − 1)(N +K), then
from (44) with j′ = j − 1, the lower bound in Lemma 11(ii),
and Lemma 11(i), we have

pj(t) + (j − 1)K ≥ p1(t− (j − 1))

≥ x(t− j)−K

≥ x(t− j + 1)− 2K

...

≥ x(t− 1)− jK.

It follows that

x(t − 1) ≤ pj(t) + (2j − 1)K. (51)

On the other hand, ifpj(t) = M − (j − 1)(N +K), then
we have

pj(t) + (2j − 1)K = M − (j − 1)(N +K) + (2j − 1)K

= M − (j − 1)(N −K) +K. (52)

For N ≥ K, we have from (52),2 ≤ j ≤ n, m1 = nK,
m2 = nN , andM ≥ m1 +m2 that

pj(t) + (2j − 1)K = M − (j − 1)(N −K) +K

≥ M − (n− 1)(N −K) +K

= M −m2 +m1 +N

≥ m1. (53)

For N < K, we also have from (52),2 ≤ j ≤ n, andM ≥
m1 +m2 that

pj(t) + (2j − 1)K = M − (j − 1)(N −K) +K

≥ M − (2− 1)(N −K) +K

= M + 2K −N

≥ m1. (54)

It follows from (41), (53), and (54) that

x(t− 1) =

m1
∑

i=1

pi,di
(t− 1) ≤ m1 ≤ pj(t) + (2j − 1)K. (55)

The proof is completed by combining (51) and (55).
We are now in a position to show that the total number of

packets stored in the fiber delay lines at timet0 with priorities
higher than or equal to that of the tagged packet is at leastαi0 .
Clearly, it suffices to show that the total number of packets
stored in the cells of the firstn columns in Figure 6 at time
t0 with priorities higher than or equal to that of the tagged
packet is at leastαi0 , i.e.,

∑n
j=1 pj(t0) ≥ αi0 . Indeed, we

have from Lemma 11(iii), the upper bound in Lemma 11(ii),
the fact thatpi,j(t) is an integer, andp1(t0) = i0 that
n
∑

j=1

pj(t0)

= p1(t0) +

n
∑

j=2

pj(t0)

≥ p1(t0) +

n
∑

j=2

(x(t0 − 1)− (2j − 1)K)+

≥















p1(t0) +
∑n

j=2⌈(
p1(t0)−(M−2m1+N)−(4j−2)K

2 )+⌉,
if N ≥ K,

p1(t0) +
∑n

j=2⌈(
p1(t0)−(M−m1−m2+N)−(4j−2)K

2 )+⌉,
if N < K,

=















i0 +
∑n

j=2⌈(
i0−M+2m1−N−(4j−2)K

2 )+⌉,
if N ≥ K,

i0 +
∑n

j=2⌈(
i0−M+m1+m2−N−(4j−2)K

2 )+⌉,
if N < K.

= αi0 . (56)

A-2. The second half of the proof

In the second half of the proof, we show that there are at
leastβi0 packets stored in the fiber delay lines at timet0 with
priorities lower than or equal to the priority of the tagged
packet.

Let p′i,j(t) = 1 if the priority of the packet stored in the
(i, j)th cell at time t is lower than or equal to that of the
tagged packet, and letp′i,j(t) = 0 otherwise. Then we have
the following space-time advancement property:

p′i,j(t) = p′i,j−1(t− 1) = · · · = p′i,1(t− (j − 1)),

for j = 1, 2, . . . , di and i = 1, 2, . . . ,M. (57)

and we have the followingmonotonically increasing property:

p′(j−1)K+1,j(t) ≤ p′(j−1)K+2,j(t) ≤ · · · ≤ p′M−(j−1)N,j(t),

for j = 1, 2, . . . , n. (58)

Let p′j(t) be the total number of packets stored in the cells
of the “j th column” in Figure 6 at timet with priorities lower
than or equal to that of the tagged packet forj = 1, 2, . . . , n,
i.e.,

p′j(t) =

M−(j−1)N
∑

i=(j−1)K+1

p′i,j(t), for j = 1, 2, . . . , n. (59)
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As 0 ≤ p′i,j(t) ≤ 1 for all i andj, it follows from (59) that

0 ≤ p′j(t) ≤ M − (j − 1)(N +K), for j = 1, 2, . . . , n. (60)

Let x′
j(t) be the total number of packets stored in the last

cells of the((j−1)K+1)th, the((j−1)K+2)th, . . ., and the
(jK)th fiber delay lines at timet with priorities lower than or
equal to that of the tagged packet forj = 1, 2, . . . , n, i.e.,

x′
j(t) =

jK
∑

i=(j−1)K+1

p′i,di
(t) =

jK
∑

i=(j−1)K+1

p′i,j(t),

for j = 1, 2, . . . , n, (61)

and letx′(t) be the total number of packets stored in the last
cells of the firstm1 fiber delay lines at timet with priorities
lower than or equal to that of the tagged packet, i.e.,

x′(t) =

m1
∑

i=1

p′i,di
(t) =

n
∑

j=1

jK
∑

i=(j−1)K+1

p′i,di
(t)

=
n
∑

j=1

x′
j(t). (62)

Similarly, let y′j(t) be the total number of packets stored in
the last cells of the(M − jN + 1)th, the (M − jN + 2)th,
. . ., and the(M − (j− 1)N)th fiber delay lines at timet with
priorities lower than or equal to that of the tagged packet for
j = 1, 2, . . . , n, i.e.,

y′j(t) =

M−(j−1)N
∑

i=M−jN+1

p′i,di
(t) =

M−(j−1)N
∑

i=M−jN+1

p′i,j(t),

for j = 1, 2, . . . , n, (63)

and lety′(t) be the total number of packets stored in the last
cells of the lastm2 fiber delay lines at timet with priorities
lower than or equal to that of the tagged packet, i.e.,

y′(t) =

M
∑

i=M−m2+1

p′i,di
(t) =

n
∑

j=1

M−(j−1)N
∑

i=M−jN+1

p′i,di
(t)

=

n
∑

j=1

y′j(t). (64)

The following three lemmas (Lemma 12–Lemma 14) are
the counterparts of the three lemmas (Lemma 9–Lemma 11)
in the first half of the proof. They can be obtained from
Lemma 9–Lemma 11 by replacingpj(t), x(t), andy(t) with
p′j(t), y

′(t), andx′(t), respectively, interchangingK andN ,
and interchangingm1 andm2. As the proofs for Lemma 12–
Lemma 14 are very similar to those for Lemma 9–Lemma 11,
we only give the proof of Lemma 14(ii) here.

Lemma 12 If p′j(t) < M − (j − 1)(N + K) for some2 ≤
j ≤ n, then

p′j−j′ (t− j′) ≤ p′j(t) + j′N, for j′ = 1, 2, . . . , j − 1. (65)

Lemma 13

x′(t) ≤
{

y′(t), if N ≥ K,
y′(t) +m1 −m2, if N < K.

(66)

Lemma 14
(i) y′(t) ≤ y′(t− 1) +N .
(ii) y′(t− 1)−N ≤ p′1(t)

≤
{

2y′(t− 1) +M −m1 −m2 +K, if N ≥ K,
2y′(t− 1) +M − 2m2 +K, if N < K.

(iii) y′(t− 1) ≤ p′j(t) + (2j − 1)N for j = 2, 3, . . . , n.

Proof. (ii) Let n′
1(t − 1), n′

2(t), n′
3(t), and n′

4(t) be the
number of packets stored in the last cells of theM fiber delay
lines at timet−1, the number of packets arriving from theN
arrival links at timet, the number of packets arriving from the
K−N idling links at timet (in the case thatN < K), and the
number of packets leaving the system at timet, respectively,
with priorities lower than or equal to that of the tagged packet.
As in the proof of Lemma 11(ii), we can see that

p′1(t)

=

{

n′
1(t− 1) + n′

2(t)− n′
4(t), if N ≥ K,

n′
1(t− 1) + n′

2(t) + n′
3(t)− n′

4(t), if N < K.
(67)

From the definition ofp′i,j(t), (62), and (64), we see that

n′
1(t− 1) =

M
∑

i=1

p′i,di
(t− 1)

=

m1
∑

i=1

p′i,di
(t− 1) +

M−m2
∑

i=m1+1

p′i,di
(t− 1)

+
M
∑

i=M−m2+1

p′i,di
(t− 1)

= x′(t− 1) +

M−m2
∑

i=m1+1

p′i,di
(t− 1) + y′(t− 1).(68)

Also, it is clear that0 ≤ n′
2(t) ≤ N .

We consider the two casesN ≥ K andN < K separately.
Case 1:N ≥ K. From the arguments in Case 1 in the proof

of Lemma 11(ii), we can see that ifc(t) = 0, then we have
n′
4(t) = N , and if c(t) = 1, then we haven′

4(t) = N −K. It
follows thatN −K ≤ n′

4(t) ≤ N .
Thus, we have from (67), (68),p′i,j(t− 1) ≥ 0 for all i and

j, n′
2(t) ≥ 0, andn′

4(t) ≤ N that

p′1(t)

= x′(t− 1) +

M−m2
∑

i=m1+1

p′i,di
(t− 1) + y′(t− 1) + n′

2(t)− n′
4(t)

≥ y′(t− 1)−N,

and we have from (67), (68),p′i,j(t − 1) ≤ 1 for all i and j,
(66), n′

2(t) ≤ N , andn′
4(t) ≥ N −K that

p′1(t)

= x′(t− 1) +

M−m2
∑

i=m1+1

p′i,di
(t− 1) + y′(t− 1) + n′

2(t)− n′
4(t)

= y′(t− 1) + (M −m2 −m1) + y′(t− 1) +N − (N −K)

= 2y′(t− 1) +M −m1 −m2 +K.

Case 2:N < K. From the arguments in Case 2 in the proof
of Lemma 11(ii), we can see that ifc(t) = 0, then we have
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n′
3(t) = K − N and n′

4(t) = K, and if c(t) = 1, then we
have 0 ≤ n′

3(t) ≤ K − N and n′
4(t) = 0. It follows that

−N ≤ n′
3(t)− n′

4(t) ≤ K −N .
Thus, we have from (67), (68),p′i,j(t− 1) ≥ 0 for all i and

j, n′
2(t) ≥ 0, andn′

3(t)− n′
4(t) ≥ −N that

p′1(t) = x′(t− 1) +

M−m2
∑

i=m1+1

p′i,di
(t− 1) + y′(t− 1)

+n′
2(t) + n′

3(t)− n′
4(t)

≥ y′(t− 1)−N,

and we have from (67), (68),p′i,j(t− 1) ≤ 1 for all i and j,
(66), n′

2(t) ≤ N , andn′
3(t)− n′

4(t) ≤ K −N that

p′1(t) = x′(t− 1) +

M−m2
∑

i=m1+1

p′i,di
(t− 1) + y′(t− 1)

+n′
2(t) + n′

3(t)− n′
4(t)

≤ (y′(t− 1) +m1 −m2) + (M −m2 −m1)

+y′(t− 1) +N + (K −N)

= 2y′(t− 1) +M − 2m2 +K.

The proof is completed.
Now we can show that the total number of packets stored

in the fiber delay lines at timet0 with priorities lower than
or equal to that of the tagged packet is at leastβi0 . It is clear
that it suffices to show that the total number of packets stored
in the cells of the firstn columns in Figure 6 at timet0 with
priorities lower than or equal to that of the tagged packet is
at leastβi0 , i.e.,

∑n
j=1 p

′
j(t0) ≥ βi0 . This can be seen from

Lemma 14(iii), the upper bound in Lemma 14(ii), the fact that
p′i,j(t) is an integer, andp′1(t0) = M − i0 + 1 as follows:

n
∑

j=1

p′j(t0)

= p′1(t0) +
n
∑

j=2

p′j(t0)

≥ p′1(t0) +

n
∑

j=2

(y′(t0 − 1)− (2j − 1)N)+

≥



















p′1(t0) +
∑n

j=2⌈(
p′

1
(t0)−(M−m1−m2+K)−(4j−2)N

2 )+⌉,
if N ≥ K,

p′1(t0) +
∑n

j=2⌈(
p′

1
(t0)−(M−2m2+K)−(4j−2)N

2 )+⌉,
if N < K,

=















M − i0 + 1 +
∑n

j=2⌈(
m1+m2−i0+1−K−(4j−2)K

2 )+⌉,
if N ≥ K,

M − i0 + 1 +
∑n

j=2⌈(
2m2−i0+1−K−(4j−2)K

2 )+⌉,
if N < K.

= βi0 . (69)

APPENDIX B
PROOF OFTHEOREM 6

Let d1 ≤ d2 ≤ · · · ≤ dM be the delays of theM fiber delay
lines in theN -to-K priority queue. First note thatdi = 1 for
i = 1, 2, . . . , N + K, i.e., there are at leastN + K fibers

with delays equal to 1. To see this, assume that there areB
packets stored in the priority queue at timet. Then it is easy
to see that theK highest priority packets must be stored in
the last cells ofK fibers at timet. Otherwise, if at least one
of theK highest priority packets is not stored in the last cell
of a fiber at timet, then when the control input is enabled at
time t+1 and there are no arriving packets at timet+1, that
packet will still be stored in its fiber at timet+1 and it cannot
depart from the priority queue at timet+1, and we will have
a contradiction to the priority departure property in (P4) in
Definition 1. Similarly, theN lowest priority packets must be
stored in the last cells of anotherN fibers at timet. Otherwise,
if at least one of theN lowest priority packets is not stored in
the last cell of a fiber at timet, then when the control input is
disabled at timet+1 and there areN arriving packets at time
t+1 with priorities higher than those of theN lowest priority
packets, that packet will still be stored in its fiber at timet+1
and it cannot be dumped from the priority queue at timet+1,
and we will have a contradiction to the priority loss property
in (P5) in Definition 1. Furthermore, assume that the control
input is disabled at timet+1 and there are no arriving packets
at timet+1. Then it is clear that theB packets stored in the
priority queue at timet remain stored in the priority queue at
time t+ 1, and hence theK highest priority packets and the
N lowest priority packets that appear at the outputs ofN+K
fibers at the beginning of the(t+1)th time slot must be routed
to the inputs ofN + K fibers and stored in the “first” cells
of thoseN +K fibers at timet+ 1. As there areB packets
stored in the priority queue at timet+ 1, it follows from the
above argument that theK highest priority packets and the
N lowest priority packets must be stored in the “last” cells
of thoseN +K fibers at timet+ 1. Apparently, this is only
possible if thoseN + K fibers have delays equal to 1. This
shows that there are at leastN +K fibers with delays equal
to 1.

Let

j = max

{

N +K ≤ j′ ≤ M : dk+1 ≤
⌈

∑k
i=1 di + 1

K

⌉

for all k = 0, 1, . . . , j′ − 1} .

In other words, ifN +K ≤ j ≤ M − 1, thenj is the unique
positive integer in{N +K,N +K+1, . . . ,M − 1} such that

dk+1 ≤ ⌈
∑

k
i=1

di+1

K ⌉ for all k = 0, 1, . . . , j − 1 and dj+1 ≥
⌈
∑j

i=1
di+1

K ⌉+ 1. On the other hand, ifj = M , thendk+1 ≤
⌈
∑

k
i=1

di+1

K ⌉ for all k = 0, 1, . . . ,M − 1.
We claim that

B ≤
j
∑

i=1

di. (70)

If j = M , then (70) holds trivially as theM fibers with delays
d1, d2, . . . , dM can only accommodate a maximum of

∑M
i=1 di

packets at any time. On the other hand, ifN+K ≤ j ≤ M−1,
then we prove (70) by contradiction. Suppose on the contrary
thatB ≥∑j

i=1 di+1. Assume that the priority queue is empty
at timet, there is an arriving packet at timet+1, t+2, . . . , t+
∑j

i=1 di, and the control input is disabled at timet + 1, t +
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2, . . . , t+
∑j

i=1 di. Then it is easy to see that there are
∑j

i=1 di
packets in the priority queue at timet+

∑j
i=1 di and they must

be stored in thej fibers with delaysd1, d2, . . . , dj at time
t+
∑j

i=1 di. Otherwise, if at least one of the
∑j

i=1 di packets
in the priority queue at timet +

∑j
i=1 di is stored in one of

theM − j fibers with delaysdj+1, dj+2, . . . , dM at time t+
∑j

i=1 di, say the fiber with delaydj′ , wherej+1 ≤ j′ ≤ M ,
then that packet must have entered the fiber with delaydj′ at
some timet′ with t+1 ≤ t′ ≤ t+

∑j
i=1 di. In the case that the

control input is enabled at timet′+1, t′+2, . . . and there are no
arriving packets at timet′+1, t′+2, . . ., the packet entering the
fiber with delaydj′ at time t′ cannot depart from the priority
queue during[t′, t′+dj′ −1], and we will have a contradiction
to the nonidling property in (P2) in Definition 1 requiring that
all the t′ − t packets stored in the priority queue at timet′

should depart from the priority queue during[t′+1, t′+⌈ t′−t
K ⌉]

(the contradiction can be seen from⌈ t′−t
K ⌉ ≤ ⌈

∑j

i=1
di

K ⌉ ≤
⌈
∑j

i=1
di+1

K ⌉ ≤ dj+1− 1 ≤ dj′ − 1). Furthermore, assume that
there is an arriving packet at timet+

∑j
i=1 di+1, there are no

arriving packets at timet+
∑j

i=1 di +2, t+
∑j

i=1 di +3, . . .,
and the control input is disabled at timet+

∑j
i=1 di + 1 and

is enabled at timet +
∑j

i=1 di + 2, t +
∑j

i=1 di + 3, . . .. As
we just showed that there are

∑j
i=1 di packets stored in the

j fibers with delaysd1, d2, . . . , dj at time t+
∑j

i=1 di, these
j fibers are full of packets at timet +

∑j
i=1 di so that there

arej packets at the outputs of thesej fibers at the beginning
of the (t +

∑j
i=1 di + 1)th time slot. Since the control input

is disabled at timet+
∑j

i=1 di +1, it follows that among the
packet arriving at timet+

∑j
i=1 di+1 and thej packets that

appear at the outputs of thesej fibers at the beginning of the
(t +

∑j
i=1 di + 1)th time slot, at least one of them must be

stored in the first cell of one of theM − j fibers with delays
dj+1, dj+2, . . . , dM at time t +

∑j
i=1 di + 1, say the fiber

with delaydj′′ , wherej + 1 ≤ j′′ ≤ M , as there are at most
j packets that can enter thej fibers with delaysd1, d2, . . . , dj
at timet+

∑j
i=1 di+1. It follows that the packet entering the

fiber with delaydj′′ at timet+
∑j

i=1 di+1 cannot depart from
the priority queue during[t+

∑j
i=1 di+1, t+

∑j
i=1 di+dj′′ ],

and we will have a contradiction to the nonidling property in
(P2) in Definition 1 requiring that all the

∑j
i=1 di+1 packets

stored in the priority queue at timet +
∑j

i=1 di + 1 should
depart from the priority queue during[t +

∑j
i=1 di + 2, t +

∑j
i=1 di+⌈

∑j

i=1
di+1

K ⌉+1] (the contradiction can be seen from

⌈
∑j

i=1
di+1

K ⌉+1 ≤ dj+1 ≤ dj′′ ). As such, we have shown that
(70) also holds ifN +K ≤ j ≤ M − 1.

Let b = ⌈N+K+1
K ⌉. As di = 1 for i = 1, 2, . . . , N +K and

dk+1 ≤ ⌈
∑

k
i=1

di+1

K ⌉ for all k = 0, 1, . . . , j − 1, we can use
the inequality that⌈x+y⌉ ≤ ⌈x⌉+⌈y⌉ for x, y ≥ 0 to deduce
that

dN+K+1 ≤
⌈

∑N+K
i=1 di + 1

K

⌉

=

⌈

N +K + 1

K

⌉

= b,

dN+K+2 ≤
⌈

∑N+K+1
i=1 di + 1

K

⌉

≤
⌈

∑N+K
i=1 di + 1

K

⌉

+

⌈

dN+K+1

K

⌉

≤ b+

⌈

b

K

⌉

≤ b+

(

b

K
+ 1

)

= (b+K)

(

1 +
1

K

)

−K,

dN+K+3 ≤
⌈

∑N+K+2
i=1 di + 1

K

⌉

≤
⌈

∑N+K+1
i=1 di + 1

K

⌉

+

⌈

dN+K+2

K

⌉

≤ (b+K)

(

1 +
1

K

)

−K

+

⌈

(b +K)
(

1 + 1
K

)

−K

K

⌉

≤ (b+K)

(

1 +
1

K

)

−K +
(b+K)

(

1 + 1
K

)

K

= (b+K)

(

1 +
1

K

)2

−K,

...

dj ≤
⌈

∑j−1
i=1 di + 1

K

⌉

≤
⌈

∑j−2
i=1 di + 1

K

⌉

+

⌈

dj−1

K

⌉

≤ (b+K)

(

1 +
1

K

)j−N−K−2

−K

+

⌈

(b +K)
(

1 + 1
K

)j−N−K−2 −K

K

⌉

≤ (b+K)

(

1 +
1

K

)j−N−K−2

−K

+
(b+K)

(

1 + 1
K

)j−N−K−2

K

= (b+K)

(

1 +
1

K

)j−N−K−1

−K.

Therefore, it follows from (70),b = ⌈N+K+1
K ⌉ ≤ N+2K

K , and
N +K ≤ j ≤ M that

B ≤
j
∑

i=1

di =
N+K
∑

i=1

di +

j
∑

i=N+K+1

di

≤ (N +K)

+

j
∑

i=N+K+1

(

(b+K)

(

1 +
1

K

)i−N−K−1

−K

)

= (N +K) + (b +K)K

(

(

1 +
1

K

)j−N−K

− 1

)

−K(j −N −K)

≤ (N +K) + (K2 + 2K +N)

(

(

1 +
1

K

)j−N−K

− 1

)
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≤ (K2 + 2K +N)

(

1 +
1

K

)M−N−K

= (K2 + 2K +N)2(M−N−K) log
2
(1+ 1

K
).

The proof is completed.
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