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Abstract—In this paper, we consider the constructions of an
N-to-K optical priority queue with buffer 3° d; by using a
feedback system consisting of a singleM + max [N, K]) x (M +
max[N, K]) (bufferless) optical crossbar switchmin[NV, K] 1 x 2
(bufferless) optical crossbar switches, and\V/ fiber delay lines
with delays di,ds,...,dym, where N is the number of arrival
links and K is the number of departure links of the priority
queue. We first obtain two sufficient conditions (the conditns
(A1) and (A2) in Section 1) for our constructions of N-to-K
optical priority queues. By establishing aspace-time advancement
property and a monotonically decreasing/increasing property for

packets, storing them in electronic random-access memory
(RAM), and then converting electronic packets back intd-opt
cal packets when the resources can be accessed. However, suc
an optical-electrical-optical (O-E-O) approach incursicass
overheads so that it cannot keep up with the speed of the
optical links and hence the tremendous bandwidth afforded
by the optical links cannot be fully exploited. As the demand
for the transmission speed/bandwidth is ever increasing, i
has been well recognized that the design of optical buffers

the packets stored in the fiber delay lines, we then use thesehas become one of the most critically sought after optical

sufficient conditions to show that with an appropriate choi@
for the delays di,d2,...,dn, we can achieve a buffer size of
O(%’) for the case that N = K. For the special case that
N = K =1, our constructions achieve a buffer size oD(Mf’),
which is much better than the O(M?) buffer size previously
known in the literature for single-input single-output optical
priority queues. Therefore, other than the extension from he
constructions of optical priority queues with a single inpu and
a single output to the constructions of optical priority queues
with multiple inputs and multiple outputs, our constructio ns also
achieve a larger buffer size than previous constructions o$ingle-
input single-output optical priority queues. Furthermore, we give
another sufficient condition (the condition (A3) in Sectionl) for
our constructions of N-to-K optical priority queues and then
use that condition to obtain choices for the delaysl, ds, . .., dum
so that our constructions have the fault tolerant capabiliy that
can tolerate up to F' broken/malfunctioning fibers (e.g., fiber cut,
fiber shorting out, etc), where0 < F < M — 1.

Index Terms—Fault tolerant capability, multiple inputs and
multiple outputs (MIMO), optical buffers, optical queues, optical
switches, priority queues, survivability, switched delaylines.

|. INTRODUCTION

technologies in all-optical packet-switched networks.

As optical packets, composed of a train of photons, cannot
be easily stopped, stored, and forwarded, currently thg onl
known way to “store” optical packets without convertingrine
into other media is to direct them through a set of (buffesjes
optical crossbar Switches and fiber Delay Lines (SDL) so
that fiber delay lines are used as the storage devices to store
optical packets. The main difference between such an dptica
buffer and an electronic RAM is that packets stored in such an
optical buffer are constantly moving forward along the fiber
delay lines instead of being stored at fixed positions as in an
electronic RAM. Furthermore, an optical packet can onlgent
a fiber delay line in the optical buffer from one end of that
optical fiber instead of from any position as in an electronic
RAM, and it can only be accessed when it appears at the other
end of that optical fiber instead of from any position as in an
electronic RAM. As it takes time for an optical packet to ghav
through the optical fibers, such an optical buffer does ne¢ha
the random-access capability.

Fortunately, one of the key observations in packet-swidche
networks is that we often do not need buffers with random-

One of the main problems in all-optical packet switching isccess capability for contention resolution. In packetaved
the lack of optical buffers to resolve conflicts among pagkehetworks, many network elements have certain special ar-
competing for the same resources. Traditionally, such @l rival/departure patterns, and the key idea in the SDL canstr

are resolved by first converting optical packets into etautr
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tions is to exploit such special patterns in the arrivalatege
process of a network element to design a customized optical
buffer for that network element. It has been shown in the
SDL literature [1]-[45] that with appropriate choices ftiet
delays of the fiber delay lines and appropriate designs for
the connection patterns of the (bufferless) optical crassb
switches, optical packets can be routed to the right pladi®ea
#ight times and exact emulations of various types of network
elements with certain special arrival/departure pattearsbe
achieved.

Note that in this paper, we adopt the following basic
assumptions that are usually considered in the SDL litegatu
(i) Packets are of the same size; (ii) Time is slotted and



synchronized so that a packet can be transmitted withinea tim/ = 2k — 1 for somek > 1, then one can choosg = i for
slot; (iii) An M x M (bufferless) optical crossbar switch isi =1,2,...,kandd; =2k —ifori=k+1,k+2,...,2k—
a network element with\/ input links andM output links 1 for exact emulation of a single-input single-output ogtica
that realizes all of thelM! permutations between its inputspriority queue with bufferzij\i1 d; = k%. On the other hand,
and its outputs; (iv) A fiber delay line with delay is an if M is an even integer, sayf = 2k for somek > 1, then one
optical link that requiresl time slots for a packet to traversecan choosel; =i fori = 1,2,...,k andd;, = 2k +1 — for
through. As optical network elements are usually chareetdr i = k + 1,k + 2, ..., 2k for exact emulation of a single-input
by their arrival/departure processes, they can be viewed saisgle-output optical priority queue with bufer?il d; =
special types of (discrete-time) optical queues. In thdyeark(k + 1). We note that both constructions in [25] and [26]
works on the SDL constructions of optical queues [1]-[4¢ thshow that one can construct a single-input single-outpticalp
focus is mainly on the feasibility of such an approach thtougpriority queue withO(M?) buffer size by using the feedback
numerical simulations rather than rigorous analyticatlgs. system in Figure 1.
Recently, many interesting results on the theoretical SDL
constructions of optical queues have appeared in thetlitera O du
including output-buffered switches in [5]-[10], FIFO miult O 9u
plexers in [5] and [10]-[19], FIFO queues in [19]-[24], LIFO :
queues in [21]-[22], priority queues in [25]-[28], time tslo 0%
interchanges in [19] and [29], and linear compressorsatine o4
decompressors, non-overtaking delay lines, and flexibl@yde L J
1 1

lines in [19] and [30]-[35], and FIFO, LIFO, and absolute
contractors in [36]. Furthermore, results on the fundamdent
complexity of SDL constructions of optical queues can be > 2 2
found in [37] and performance analysis for optical queues :
has been addressed in [38]-[39]. For review articles on SDL
constructions of optical queues, we refer to [40]—[45] amal t —> M M
references therein. — ArrivallinkJy., M 1w Departure link

In this paper, we focus on the constructions of optical ] | Losslink
priority queues with multiple inputs and multiple outputs.
In a priority queue, every packet is associated with a label, Control input
called priority. When the control input of the priority queue

; ; ; i Fig. 1. A construction of an optical priority queue with aglminput and a
is enabled, the packets with the highest priorities are yﬂwasingle output by using M + 1) x (M + 1) (bufferless) optical crossbar

the next ones to depart. When the buffer of the priority quedgitch, a1 x 2 (bufferless) optical crossbar switch, and fiber delay lines
is full, the packets with the lowest priorities are alwaysg thwith delaysdi,ds, ..., das.

next ones to be dumped. A formal definition of priority queues
with multiple inputs and multiple outputs and its applicati ~ Our main contribution in this paper is to show that by using
to the implementation of optical output-buffered switchiest 2 feedback system (see Figure 4(a) in Section II-B for the cas
support quality of service (QoS) will be given in Sectiondl]- that N > K and Figure 5(a) in Section II-C for the case that
Note that both FIFO queues and LIFO queues are special cades: K) consisting of a singlé (M + max[N, K]) x (M +
of priority queues as one can simply use the arrival time afax[V, K]) (bufferless) optical crossbar switchin[N, K]
a packet as its priority, i.e., the earliest arriving packas 1 x 2 (bufferless) optical crossbar switches, and fiber
the highest priority in a FIFO queue and the latest arrivin@gelay lines with appropriately chosen delays do, . .., du,
packet has the highest priority in a LIFO queue. Therefor¢€ can construct afiv-to-K optical priority queue with buffer
the construction of an optical priority queue is considet@d »_;—; i, WhereN is the number of arrival links anél’ is the
be much more difficult than that of an optical FIFO queue d¢tumber of departure links of the priority queue. An in [26],
LIFO queue. the key idea in our constructions is to view empty time slats a
The first construction of an optical priority queue with ghe arrivals offictitious packets, namely, if there is no packet
single input and a single output was proposed by Sarwate a@ving from an arrival link, then we regard that there is a
Anantharam [25]. In [25], they considered a feedback systéfifititious packet arriving from that arrival link. Furtheare,
(see Figure 1) consisting of di/ +1) x (M + 1) (bufferless) We assume that fictitious packets have priorities lower than
optical crossbar switch, & x 2 (bufferless) optical crossbarthose of real packets, and the priorities among the ficttiou
switch, and)M fiber delay lines with delays,, ds, . . ., da;. If packets are decreasing in the order of their arrival timeksian
M is an odd integer, say/ = 2k — 1 for somek > 1, d; = i the order of their arrival links (in the case of multiple fiiius
fori =1,2,....k,andd; = 1fori = k+1,k+2,...,2k—1, packets with the same arrival time). Therefore, every packe
then it was shown in [25] that such a feedback system can ibethe queue has distinct priority, meaning that we have a
used for exact emulation of a single-input single-outpuioap total order for the priorities of all of the packets (including

o . k _
priority queue with buffery_;_, d; = k(k + 1)/2. However, INote that the sorter and the shifter in Figure 4(a) and Fidi(ed can

.the proof in [25] is qUite elaborat.e' A simpler pr_oof was givebe combined together so that they can be implemented by wsisimgle
in [26], and it was shown that i/ is an odd integer, say (bufferless) optical crosshar switch.




both the real packets and the fictitious packets) in the quetiber delaysd;, ds, ..., dy are given as in Theorem 5.
We note that in the rest of this paper, a packet may refer toln Section I1I-B, we find from numerical computations that
either a real packet or a fictitious packet, and it should barcl in the case thafv = K, the optimal choice of the value,
from the context whether a packet refers to a real packet omaTheorem 5 to maximize the buffer size is roughiy33M
fictitious packet. for large M, and the maximum buffer size is approximately
We show in Theorem 2 (in Section II-B) and Theorem 3 (iﬁ.000929§‘\,;23 for large M, i.e., the buffer size ié)(%is). These
Section II-C) that the construction in Figure 4(a) or Fighita) are further verified by approximating sums by integrals.eNot
can be operated as aN-to-K optical priority queue with that in the special case thaf = K = 1, our constructions
buffer Zj‘il d; if the condition in (A1) below is satisfied atachieve a buffer size of(M?3), which is much better than
all times: the O(M?) buffer size previously obtained in [25] and [26].
(A1) Any packet stored in the fiber delay lines in Fig#S su.ch, our const_ructiolns not only e?<tend the previous con-
ure 4(a) or Figure 5(a) cannot be either one of th@ructions from a single input and a single output to muetipl
K highestpriority packets or one of théV lowest NPUtS _and multiple outputs, but also improve (in the serfs_e 0
priority packets among all of the packets (includingchieving a larger buffer size) on the previous constrastio

both the real packets and the fictitious packets) stor€f Single-input single-output optical priority queues.
in the fiber delay lines until it appears at the fifgt Another contribution of our constructions is their faulleie

inputs of the sorter. ant capability. Such a survivability issue is of great cande
It is clear that if the condition in (Al) is satisfied at all? practical system designer as a system consisting of hasidre

times, then at the beginning of any time slot, thehighest or thousands of components may be in a total breakdown

e 7 : even if only a single component fails to function properly.
priority packets and thé/” lowest priority packets in the queuer,, this, we show in Lemma 7 in Section IV that if the fiber

will appear a_t the_ inputs of the sorter. The main idea 'Helaysdl,dg,...,dM satisfy the condition in (A3) below, then
our constructions is to use the sorter to sort the packets_ gt L : . .

. : S the condition in (A2) is satisfied at all times and hence the
the inputs of the sorter according to their priorities sot th

the priorities of the packets at the outputs of the sorter a%%edba(:k system in Figure 4(a) or Figure 5(a) can be operated

. P . M .
decreasing in the indices of the sorter’'s output links. Tthen aS anN-to-K optical prlontzl_?ueuzxxfth buffed_,—, dif
shifter and thel x 2 switches are used to route tli€ highest (A3) 1 < d; < min HTJ’L N H +1, foralli =
priority packets to theX departure links when the control 1’2""’],%' . . .
input is enabled, and route th¥ lowest priority packets to We use the conqun in (A3) to show tha_t if the .flber delays
the N loss links when the control input is disabled. By sd1:d2, .., dur are given as in Theorem 8 in Section IV, then

doing, we show in the proofs of Theorem 2 and Theorem 3 tHi€ feedback system in Figure 4(a) or Figure 5(a) can still be

we achieve an exact emulation of ahto-K optical priority ©Perated as aiv-to-K" optical priority queue even when up to

queue with buffeEM d F of the M fibers are broken/malfunctioning (e.g., fiber cut,
i=1 Fi-

)jgoer shorting out, etc), wher@ < F < M — 1.

This paper is organized as follows. In Section II, we first
ive the definition of N-to-K priority queues and show that
optical priority queues with multiple inputs and multiple
condition for the condition in (AL): out.puts can be used to implement optical output—buﬁgr_ed

, ) switches that support QoS. Then we show that the condition

(A2) Forl<i< M, consider a packet that enters tfe (Al) is a sufficient condition for our constructions &f-

fiber delay line at time. Call this packet the tagged,,_z- optical priority queues in Figure 4(a) or Figure 5(a).
packet. There are at I_eaﬁt(di N 1) packets stored In Section Ill, we first show that the condition in (A2) is a
n tht(ﬁ M fiber delgy “n?S,G_‘t t'me (at the end of g icient condition for the condition in (A1) and give cheg
the 1™ time slot) with prioritieshigher than that of for the fiber delaysly, ds, . . . , dys in Figure 4(a) or Figure 5(a)
the tagged packet, and there are at 16881 — 1) 4 that the condition in (A2) holds at all times. Then we
packets in ttEeM fiber delay lines at time (at the o form an approximation analysis for the maximum buffer
end of thet™ time slot) with prioritieslower than ;¢ that could be achieved by our constructions. In Settipn
that of the tagged packet. we present our constructions of fault toleraitto-K optical

Furthermore, we show that if the fiber delays ds,...,das  priority queues. Finally, the paper is concluded in Section

are given as in Theorem 5 in Section IlI-A, then the conditiohere we summarize our results.

in (A2) is satisfied at all times, implying that the condition  In the following, we provide a list of notations used in the

(A1) is also satisfied at all times and hence the feedback syaper for easy reference.

tem in Figure 4(a) or Figure 5(a) can be operated ad/ato- N': the number of arrival links of afW-to-K priority queue

K optical priority queue with buffeEf‘il d;. Such choices of  K: the number of departure links of alN-to-K priority

the fiber delays rely on establishingpace-time advancementgueue

property and amonotonically decreasing/increasing property B: the buffer size of anV-to-K priority queue in Defini-

for the packets stored in the fiber delay lines (see (35),, (3fipn 1

(57), and (58) in Appendix A) which are the key properties M: the number of fiber delay lines in our constructions of

to showing that the condition in (A2) holds at all times if thean N-to-K priority queue in Figure 4(a) or Figure 5(a)

In order to give appropriate choices for the fiber dela
di,do,...,dpy In Figure 4(a) or Figure 5(a) so that the
condition in (Al) is satisfied at all times, we show in Lemma
in Section IlI-A that the condition in (A2) below is a sufficie



d;: the delay of thei™ fiber delay line in Figure 4(a) or In the following, we give a formal definition ofV-to-
Figure 5(a), wherd <i < M K priority queues. We note that all of the packets in this
F': the fault tolerant capability of a fault toleranf-to-K  subsection refer to real packets.
priority queue, wher® < FF < M — 1
B*(N, M): the maximum buffer size of aiV-to-K priority  Definition 1 (/N-to-K Priority Queues) An N-to-K priority
queue that can be achieved by using the constructionsgileue with buffe3 is a network element withV input links,
Theorem 5 in the case thaf = K one control input, andV + K output links (see Figure 2).
B*(N, K, F, M): the maximum buffer size of av-to-K'  The N input links are for arriving packets. Among thé+ K
priority queue with fault tolerant capability” by using the output links,K of them are for departing packets and the other

constructions in Theorem 8(i) N output links are for lost packets. When a packet arrives at
a(t): the set of the “real” packets arriving from tié arrival  the queue, it is associated with a label, callpdority. We
links at timet assume that there is #tal orderfor the priorities of all of
d(t): the set of the “real” packets departing through fiie the packets in the queue (including the packets alreadgdtor
departure links at time in the buffer and the arriving packets from the arrival lipks
£(t): the set of the lost “real” packets dumped through thee., every packet in the queue hadiatinctpriority. As shown
N loss links at timet in Figure 2, letc(t) be the state of the control input at tinie
q(t): the set of the “real” packets stored in the buffer atVe say that the priority queue is enabled at titriec(t) = 1;
time ¢ (at the end of the™ time slot) otherwise, we say that the priority queue is disabled at time
a(t): the set of both the “real” packets and the “fictitious if c(t) = 0. Also, leta(t) be the set of the packets arriving
packets arriving from theV arrival links at timet from the N arrival links at timet 2, d(t) be the set of the
d(t): the set of both the “real” packets and the “fictitious’packets departing through thé&’ departure links at timer,
packets departing through tié departure links at time £(t) be the set of the lost packets that are dumped through the

( ): the set of both the lost “real” packets and the losV loss links at time, andq(t) be the set of the packets stored
“fictitious” packets dumped through th¥ loss links at time in the buffer at timet (at the end of the™ time slot). Then an
t N-to-K priority queue with bufferB satisfies the following
q(t): the set of both the “real” packets and the “fictitiousfive properties.
packets stored in the buffer at timéat the end of the' time (P1) Flow conservation: Arriving packets from th&
slot) arrival links are either stored in the buffer or trans-
mitted through theV + K output links, i.e.,

II. CONSTRUCTIONS OFOPTICAL PRIORITY QUEUES WITH q(t) = (q(t — 1) Ua(t)\ (d(t) UL(t)). (1)
MULTIPLE INPUTS AND MULTIPLE OUTPUTS

(P2) Nonidling: If the control input is enabled at time
then there are always packets departing at time
whenever there are packets in the queue at time
i.e., whenever there are packets stored in the buffer
at timet—1 or there are packets arriving from th¥
arrival links at timet, under the constraint that there
are at mostK departing packets at time as there
are only K departure links. Specifically, if(t) = 1,
then there aremin[|q(t — 1) U a(t)|, K| departing
packets at time; otherwise, ifc(t) = 0, then there

We first give the definition ofV-to-K priority queues and
show that optical priority queues with multiple inputs and
multiple outputs can be used to implement optical output-
buffered switches that support QoS in Section II-A. Then in
Section 1I-B (resp., Section II-C), we show that the coruditi
in (Al) is a sufficient condition for our constructions of-
to-K optical priority queues in Figure 4(a) (resp., Figure 5(a))
for the case thatv > K (resp.,N < K).

A. Definition of N-to-K Priority Queues are no departing packets at tinte Thus, we have
min|g(t — 1) Ua K =1,
— 5 o) = { iy O KL T =1 g
Departure link 1
Departure link 2, (P3) Maximum buffer usage: There are lost packets only
Aerival ik 1 . det) when the buffer is full. Specifically, if(t — 1) U
Arrival link 2 Neto-K N a(t)| —1d(t)| > B, then there ardq(t — 1) Ua(t)| —
a() : priorityo queue zn‘l, y |d(t)| — B lost packets at time; otherwise, if|q(t —
. withbuffer B [ owims ™ 1)Ua(t)|—|d(t)] < B, then there are no lost packets
EEEE—— . oo at timet. Thus, we have
| LosslikN [0(t)] = max[|q(t — 1) Ua(t)| — |d(t)] — B,0]. (3)

?C"“‘“’l input 2This means that(t) is an empty set when there are no packets arriving

°® from the N arrival links at timet, anda(t) is a set consisting o arriving
] o ) packets when there is a packet arriving from each of &heurival links at
Fig. 2. An N-to-K priority queue with bufferB. time ¢.



1-to-4 4-to-1 optical

(P4) Priority departure: If there are packets departing at demultiplexer prioity queue
timet, i.e.,|d(t)| > 0, then the departing packets are ] >
the |d(t)| highestpriority packets ing(t — 1) Ua(t), — B

and they depart from departure links?2, ..., |d(¢)|
in the order of decreasing priorities. i
(P5) Priority loss: If there are lost packets at timg
i.e., |¢(t)] > 0, then the lost packets are thé(t)] 7 "
lowest priority packets ing(t — 1) U a(t), and they L]
are dumped through loss links 2, ..., |4(¢)| in the 1
order of decreasing priorities. L I

A

A

We note that there is a control input in Figure 2 and its —
purpose is for enabling/disabling th€-to-K priority queue.
To see why we need a control input in Figure 2, consider — —
the scenario that thév-to-K priority queue shares the same
resources, i.e., the usage of tRedeparture links in Figure 2,
with other network elements. If the resources are alloctdedFig- 3. An implementation of a x 4 optical output-buffered switch that
the N-to-I¢ priorty queue, then the controlinput of the-to- <% 6Pert Q05 by s four Lo 4 optcal demullearine s stage
K priority queue is enabled and the priority queue can send

up to K highest priority packets in the queue to the departure

links. On the other hand, if the resources are allocated dPtical priority queue at all times, the packet with the feigh
other network elements, then the control input of fido-K*  priority, i.e., the packet with the earliest virtual finialitime,
priority queue is disabled and no packets in the queue canjReach priority queue will depart from the priority queues A
sent to the departure links. When the control input of e gych, we achieve exact emulation of an optical output-bedfe
to-K priority queue is disabled and there are packets arriviRgyitch that supports the PGPS policy. Note that if the virtua
from the IV arrival links, the queue size of the priority queuginishing times of the packets at the optical priority quete a
will build up and we need buffer to store the packets in th@creasing in the order of their arrival times and in the orde
queue no matter the number of arrival linksis greater than, of their arrival links (in the case of multiple packets withet
equal to, or less than the number of departure lidksIn  same arrival time), then the construction in Figure 3 is the

the case that the buffer of the priority queue is full, up teonventional optical FIFO output-buffered switches.
N lowest priority packets in the queue are dumped through

the loss links. As to when th&-to-K priority queue will be _ ) o )
allocated the resources for its use is a resources managenfenConstructions of anV-to-K* Optical Priority Queue With
issue that is more involved and is not the focus of the stué\f/ > K
in this paper. Furthermore, we note that tiiedeparture links ~ As mentioned earlier in Section | that the key idea in our
in Figure 2 are either allocated to tié-to-K priority queue constructions of anV-to-K optical priority queue is to view
altogether or not at all, so that they are not independentiynpty time slots as the arrivals of fictitious packets, arel th
controlled and we only need one control input in Figure 2 toriorities of the fictitious packets are assigned in such g wa
enable/disable thé&™ departure links. that there is a total order for the priorities of all of the bets
One of the key applications of optical priority queues witlfincluding both the real packets and the fictitious packiets)
multiple inputs and multiple outputs is to implement opticathe queue. For ease of presentation in the rest of the paper,
output-buffered switches that support QoS. For example, we leta(t) be the set of the packets (including both the real
Figure 3 we show a construction of4ax 4 optical output- packets and the fictitious packets) arriving from flearrival
buffered switch that can be used for implementing the padinks at timet, d(t) be the set of the packets (including both the
etized version of the generalized processor sharing (PGR&) packets and the fictitious packets) departing throhgh t
policy in [46]. The PGPS policy is one of the most populak™ departure links at time, /(¢) be the set of the lost packets
QoS schemes in the literature. In such a policy, every paske{including both the real packets and the fictitious packets)
assigned a virtual finishing time when it arrives, and packedumped through théV loss links at timet, and ¢(¢) be the
are then scheduled according to their virtual finishing ime set of the packets (including both the real packets and the
In the construction in Figure 3, there are four 1-to-4 opticdictitious packets) stored in the buffer at time(at the end
demultiplexers in the first stage and four 4-to-1 opticabpty ~ of the ¢! time slot). It is clear that the sei(t) (resp.,d(t),
queues in the second stage. When a packet arrives at an irfgtit, andq(t)) defined in Definition 1 is the subset of the real
of the 4 x 4 optical output-buffered switch, it is routed via thepackets ina(t) (resp.,d(t), £(t), andq(t)).
corresponding 1-to-4 optical demultiplexer to one of therfo In this subsection, we suppose thét> K. We will show
optical priority queues according to its destination. Idi&idn, in Theorem 2 below that the construction in Figure 4(a) can
we also compute the virtual finishing time outlined in [46} fobe operated as aiv-to-K optical priority queue with buffer
that packet, and use the computed virtual finishing time as @El d; if the condition in (Al) given in Section | is satisfied
priority of that packet. By enabling the control input of eye at all times. (In Theorem 5 in Section IlI-A, we will give

A




@ o highest priority packets ig(t—1)Ua(t) appear at output links

1,2,..., K of the sorter in the order of decreasing priorities
and theN lowest priority packets ig(t — 1) Ua(t) appear at

| output linksM + 1, M + 2,..., M + N of the sorter in the

order of decreasing priorities.

| (ii) There are only two connection patterns (see Figure)4(b)
A2 O W o] _Losink2 for the shifter on the right-hand side of Figure 4(a) and khe

O

o
L ] Highest priority ]
2 2 w2
. .
.

.
M — M
M1 M1

| Arivallink 1|

Shifter : 1 x 2 switches at the lask outputs of the shifter. 1t(t) =

0, then the connection pattern of the shifter is realized by
the (M + N) x (M + N) identity matrix, i.e., the matrix

I = (I;) with I, ; =1 for i = j and I; ; = 0 otherwise,
and the input of the™ 1 x 2 switch is connected to loss
link N — K + i of the N-to-K optical priority queue for
1=1,2,..., K. It follows that there are no packets departing
from the departure links and th€ lowest priority packets in

_Arival link N-K_ | o MNK | NN M| Loss link N-K

a(t)

Arrival link N-K+1
AT AR R

MENK+H MAN-KH| ] MENKH]

Arrival link N-K+2
—_—

M#N-K+2 MN-K+2 B M#N-K+2

i
|
|
i

' |

\__Amival linkN_ | *‘ MAN B MiN

C?” g(t—1)Ua(t) are dumped through loss links2, ..., N in the
® order of decreasing priorities. Therefore, we hég)| = 0
. : : and|{(t)| = N whenc(t) = 0. On the other hand, i(t) = 1,
. . : . then the connection pattern of the shifter is realized by the
o ’ (M + N) x (M + N) K-circular-shift matrix, i.e., the matrix

MINK  ——B=  MNK M#N-K

P = (Rg) with Pi,j =1 forj = ((Z+M+N—K—
1) mod (M + N)) +1 and P; ; = 0 otherwise, and the input
of thei™ 1 x 2 switch is connected to departure linkf the N-
to-K priority queue fori = 1,2, ..., K. It follows that theK
highest priority packets ig(t—1)Ua(t) depart from departure
Fig. 4. (a) A construction of alv-to-K optical priority queue with buffer 1iNKS 1,2,..., K" in the order of decreasing priorities, and the
S di, where N > K. (b) The two possible connection patterns of theV — K lowest priority packets imj(t — 1) U a(t) are dumped
shifter and thek™ 1 x 2 switches in (a). through loss linksl, 2,..., N — K in the order of decreasing
priorities. Therefore, we havie(t)] = K and|/(t)| = N — K

) ) o when ¢(t) = 1. Furthermore, we note that in both the case

choices for the fiber delays,, do, ..., dy in Figure 4(a) so c(t) = 0 and the case(t) = 1, the priorities of the packets at

that the condition in (A1) is satisfied at all times.) the first M outputs of the shifter are decreasing in their link
In Figure 4(a), there are tw@// +N) x (M +N) (bufferless) indices.

optical crossbar switches (a sorter on the left-hand sideaan

shifter on the right-hand side) arfd 1 x 2 (bufferless) optical Theorem 2 Suppose thatV > K. If the feedback system in
crossbar switches (at the lasf outputs of the shifter). As Figyre 4(a) is started from an empty system at time 0 and the
mentioned in Section | that the main idea of our constructigfyngition in (A1) holds at all times, then it can be operated
is to use the sorter to sort the packets (including both the reis an N-to-K optical priority queue with buﬁerz{\fl d;

packets and the fictitious packets) at the inputs of the sor{gger the operation rules described before the statement of
according to their priorities so that the priorities of treckets he theorem.

at the outputs of the sorter are decreasing in the indices of

the sorter’s output links. Then the shifter and the1l x 2 Proof. Suppose thalv > K and the condition in (A1) holds

switches are used to route th€ highest priority packets to at all times. Note that to emulate an empty system at time

the K departure links when the control input is enabled, arfél we can storezf% d; fictitious packets in the fiber delay

route theN' lowest priority packets to thé loss links when lines, i.e.,3(0) = Ziil d;. By viewing empty time slots as

the control input is disabled. the arrivals of fictitious packets, there are alwayspackets
Suppose that the condition in (A1) holds at all times. Tharriving from the NV arrival links, i.e.,|a(t)] = N for all t.

details of the operation rules in our constructions areriesd From the operation rules, we also see that there are always

as follows. N packets leaving the feedback system in Figure 4(a), i.e.,
(i) As the condition in (A1) holds at all times, the set ofd(t) U £(t)] = N for all ¢ (note that we haved(t)| = 0

the packets appearing at the fitsf inputs of the sorter at and [{(t)] = N whenc(t) = 0, and we haved(t)] = K

time ¢ contains theX highest priority packets and tha and |[((t)] = N — K whenc(t) = 1). Therefore, there are

lowest priority packets inj(t — 1). It follows that the set always Z?% d; packets stored in the fiber delay lines, i.e.,

of the packets appearing at thié + N inputs of the sorter |§(t)| = Z?’Zl d; for all t. Furthermore, it is clear that (P1) in

at time ¢ contains theK highest priority packets and theDefinition 1 is satisfied at all times.

N lowest priority packets inj(t — 1) U a(t). The sorter on  In the rest of the proof, we consider the two casg$ = 0

the left-hand side in Figure 4(a) then sorts the packets atdc(t) = 1 separately.

its M + N inputs according to their priorities. Thus, thé Case 1l:c¢(t) = 0. As the condition in (Al) holds at all

M N-K 1 ——— B MAN-KH] MNK+

IM#N-K+2———— B MN-K+2 MEN-K+2

M+N

MN——————— MN

c(t)=0 o(t)=1



times, we see from the operation rules that there are no fg|cke Subcase (2a)0 < |¢(t — 1) Ua(t)] < K. In this subcase,
departing from the departure links and thelowest priority there are no more thalii real packets i (t—1)Ua(t). As d(t)
packets ing(t — 1) U a(t) are dumped through loss linksconsists of the/X highest priority packets ig(t — 1) U a(t),
1,2,..., N in the order of decreasing priorities, and we havere see thati(t) consists of theq(t — 1) U a(t)| real packets
ld(t)] = 0 and [((t)] = N. As d(t) is the subset of the in g(t—1)Ua(t) and theK — |q(t — 1) Ua(t)| highest priority
real packets ini(¢), we also havdd(t)| = 0. It follows that fictitious packets inj(t — 1) U a(t). As d(t) is the subset of
(P2) and (P4) in Definition 1 are satisfied in this case. Ae real packets inl(t), it then follows thatd(¢) consists of
q(t—1)Ua(t) is the subset of the real packetsjifi —1)Ua(t) the|q(t — 1) Ua(t)| packets ing(t — 1) U a(t), i.e., |d(t)| =
and there arezij\i1 d; + N packets ing(t — 1) U a(t) for |q(t—1)Ua(t)|, and the packets it(t) depart from departure
all ¢, we see that there arg(t — 1) U a(t)| real packets links1,2,...,|d(¢)| in the order of decreasing priorities. From
and Zf\il di + N — |q(t — 1) U a(t)] fictitiousMpackets in gt —1)Ua(t)] < K, we immediately see that
Gt —1)uat). As0 < |qt — 1) Ua(t) < >, di + N, B B . B
W(e ther)1 corfs?der the foI|IOENing t)wo s(u)b|casezs. ' @] = la(t = 1) U a(®)] = minflg(t = 1) U a(t)], K].
Subcase (1a)0 < |¢(t — 1) Ua(t)] < M, d;. In this Thus, (P2) and (P4) in Definition 1 are satisfied in this subcas
subcase, we haVe M | d;+N—|q(t—1)Ua(t)| > N, i.e., there Furthermore, as there ape,”, d; + N — |q(t — 1) Ua(t)| >
are at leastV fictitious packets ifj(t—1)Ua(t), implying that Zﬁl d; + N — K fictitious packets inj(t — 1) Ua(t) and/(t)
the V lowest priority packets ig(¢t—1)Ua(t) must be fictitious consists of theV — K lowest priority packets ig(t—1)Ua(t),
packets. As/(t) consists of the\ lowest priority packets in we see that(¢) consists of only fictitious packets. As such,
q(t—1)Ua(t), we see that all of the packetsify) are fictitious /(¢) is an empty set, i.e¢{(¢)| = 0, and hence we have from
packets. A4(t) is the subset of the real packets/if), it then |d(t)| = |¢(t — 1) Ua(t)| that

follows that¢(¢) is an empty set, i.e|{(t)] = 0, and hence M
M
we have fromld(t)| = 0 and|q(t — 1) Ua(t)] < X2, di that  |¢(t)] = 0 = max ||q(t — 1) Ua(t)| — |d(t)] — > _ di,0] .
M i=1
[0(t)] = 0 = max ||q(t — 1) Ua(t)| — |d(t)| — Zdi’o . Therefore, (P3) and (P5) in Definition 1 are satisfied in this
i=1 subcase.

Thus, (P3) and (P5) in Definition 1 are satisfied in this subcas Subcase (2b)K < [q(t—1)Ua(t)] < 217, d; + K. In this
Subcase (1b)>-M, d; < [g(t — 1) Ua(t)] < M, d; + N. subcase, there are more thanreal packets imj(t — 1) Ua(t).
In this subcase, we ha\E?il di+N—lq(t—1)Ua(t)] < N, Asd(t) consists of thes highest priority packets ig(t—1)U
i.e., there are less thaM fictitious packets irj(t—1)Ua(t). As ~ a(t), we see thati(t) consists of theX™ highest priority real
{(t) consists of theV lowest priority packets ig(t—1)Ua(t), Packets in(t—1)Ua(t). It follows thatd(t) consists of the
we see that(¢) consists of th& M d;+ N —|q(t—1)Ua(t)] highest priority packets ip(t —1)Ua(t), i.e.,|d(t)| = K, and
fictitious packets inj(t — 1) Ua(t) and the|q(t —1) Ua(t)| — the packets ini() depart from departure links, 2,..., K in
S>M. d; lowest priority real packets ii(t — 1) Ua(t). As £(¢) the order of decreasing priorities. Frgit — 1) Ua(t)| > K,
is the subset of the real packetsft), it then follows that We immediately see that
o) cons_ists of theq(t — 1) _Ua(t)| - Zij\il d; lowest priority d(t)| = K = min[|q(t — 1) Ua(t)], K].
packets ing(t — 1) U a(t), i.e., [£(t)] = |¢(t — 1) Ua(t)] —
Zi]\il d;, and the packets irf(¢) are dumped through loss Thus, (P2) and (P4) in Defigbition 1 are satisfied in this subcas
links 1,2, ..., |£()| in the order of decreasing priorities. Fronf-urthermore, as there abe,_, d; + N — [q(t — 1) U a(t)| >
|d(t)] = 0 and|g(t — 1) U a(t)] > Zi]\i1 d;, we immediately N — K fictitious packets inj(t—1)Ua(t), we also see thal(t)

see that consists of only fictitious packets as in Subcase (2a) above.
v As such,/(t) is an empty set, i.e/{(t)] = 0, and hence we
M
0] = lgt — 1) Ualt) - di have from|d(t)| = K and|q(t — 1) Ua(t)] < > ;2 di + K
Pt that
M M
— max |[q(t = ) Ua(®)| = |d(t) =S di,0| . [6(t)] = 0=max ||g(t — 1) Ua(®)| — ld(t) — > d:,0].

i=1 i=1
Thus, (P3) and (P5) in Definition 1 are also satisfied in thiBherefore, (P3) and (P5) in Definition 1 are also satisfied in
subcase. this subcase.

Case 2:¢(t) = 1. As the condition in (A1) holds at all Subcase (2¢)5.", di+ K < |q(t—1)Ua(t)] < M di+
times, we see from the operation rules that tiehighest N.As in Subcase (2b) above, we also see tifa) consists of
priority packets ing(t — 1) Ua(t) depart from departure links the K~ highest priority packets in(t—1)Ua(t), and the packets
1,2,..., K in the order of decreasing priorities and tNe- X in d(t) depart from departure links,2,..., K in the order
lowest priority packets ij(t — 1) Ua(t) are dumped through of decreasing priorities. Thus, (P2) and (P4) in Definition 1
loss links1,2, ..., N— K in the order of decreasing priorities,are also satisfied in this subcase. Furthermore, as there are
and we have}cf(t)) =Kand|{(t) =N—-K.As0< |qit— SM. di+N—|qt—1)Ua(t)] < N — K fictitious packets
1) Ua(t) < 24;1 d; + N, we then consider the following in (¢ — 1) U a(t), we see thaf(t) consists of ther‘i1 d; +

2

three subcases. N — |q(t — 1) U a(¢)| fictitious packets ing(t — 1) U a(t)



and thelg(t — 1) Ua(t)| — K — Zﬁl d; lowest priority real shifter on the right-hand side) and 1 x 2 (bufferless) optical
packets ing(t — 1) U a(t). It follows that¢(¢) consists of the crossbar switches (at outputé+1, M +2,..., M+ N of the
lg(t—1)Ual(t)] —K—Ziil d; lowest priority packets ig(t—  shifter). Note that there ar& — [V idling links at the inputs

1) Ual(t), i.e., [(t)| = |q(t—1)Ua(t)] _K_Zj‘il d;, and the of the sorter and we view these idling links at times the
packets in/(t) are dumped through loss links?2,...,|¢(t)| arrivals of K — N fictitious packets with priorities lower than
in the order of decreasing priorities. Fropi(t)] = K and those of the packets ig(t — 1) U a(t).

gt — 1) Ua(t) > M, d; + K, we see that Suppose that the condition in (A1) holds at all times. The

v details of the operation rules in our constructions are rilesd

()] = lo(t — 1)U alt)] — K — d; as follows.
4Ol = lal )V alt) ; (i) As the condition in (Al) holds at all times, the set of
M the packets appearing at the fifgt + N inputs of the sorter

=max ||q(t — 1) Ua(t)| — |d(t)| — Zdi,o ) at time ¢ contains theK highest priority packets and th&
=1 lowest priority packets ig(t — 1) Ua(t) (note that thell — N
Thus, (P3) and (P5) in Definition 1 are also satisfied in th]’g:ntlous ~packets from thg idling links are not contained in
subcase. m 4(t—1)ua(t))). As in Section II-B, the sorter on the left-hand
side of Figure 5(a) then sorts the packets atlits+ K inputs
according to their priorities. Therefore, tii€ highest priority
packets ing(t — 1) U a(t) appear at output links, 2,..., K
of the sorter in the order of decreasing priorities, and Ahe
lowest priority packets inj(t — 1) U a(t) appear at output
: links M +1,M +2,...,M + N of the sorter in the order of
9 decreasing priorities (note that thié — N fictitious packets
from the idling links appear at output linke + N + 1, M +
N +2,...,M + K of the sorter as they have priorities lower
than those of the packets i{t — 1) U a(t)).
(ii) There are only two connection patterns (see Figure)5(b)
for the shifter on the right-hand side of Figure 5(a) and &he
1 x 2 switches at outputd/ + 1, M + 2,..., M + N of the
shifter. If ¢(¢t) = 0, then the connection pattern of the shifter
is realized by thg M + K) x (M + K) identity matrix, i.e.,
the matrix/ = (I; ;) with [; ; = 1fori=jandl,; =0
R s . otherwise, and the input of th&" 1 x 2 switch is connected
' 5 to loss link: of the N-to-K optical priority queue fori =
< 1,2,...,N. It follows that the N lowest priority packets in

C. Constructions of anV-to-K Optical Priority Queue With
N <K
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(a) A construction of aV-to-K optical priority queue with buffer .

®) ¢(t —1)Ua(t) are dumped through loss links2,..., N in

the order of decreasing priorities and t& — N fictitious
packets from the idling links depart from departure linKs+

1, N+2,..., K inthe order of decreasing priorities. Therefore,
we have|d(t)] = K — N and |{(t)| = N when ¢(t) = 0.
On the other hand, it(¢) = 1, then the connection pattern
of the shifter is realized by théM + K) x (M + K) K-
circular-shift matrix, i.e., the matri® = (P; ;) with P, ; =1
forj = (t+M—-1)mod(M + K))+1andP,; =0
otherwise, and the input of th& 1 x 2 switch is connected
to departure link; of the N-to-K optical priority queue for
i=1,2,...,N. It follows that the K" highest priority packets

S°M  d;, where N < K. (b) The two possible connection patterns of thd" q(t—1)Ua(t) depart from departure links 2, ..., K in the

shifter and thelV 1 x 2 switches in (a).

order of decreasing priorities and there are no packets ddmp
through the loss links. Therefore, we ha\&t)| = K and

In this subsection, we suppose théit< K. We will show |((t)| = 0 when¢(t) = 1. Furthermore, we note that in both
in Theorem 3 below that the feedback system in Figure 5ie casec(t) = 0 and the case(t) = 1, the priorities of the
can be operated as aN-to-K optical priority queue with packets at the firsd/ outputs of the shifter are decreasing in
buffer Zij\il d; if the condition in (Al) given in Section | is their link indices.
satisfied at all times. (In Theorem 5 in Section IlI-A, we will

give choices for the fiber delays, do, . .
so that the condition in (Al) is satisfied at all times.)

.,dps in Figure 5(a) Theorem 3 Suppose thatV < K. If the feedback system in

Figure 5(a) is started from an empty system at time O and the

In Figure 5(a), there are tw@\/ + K ) x (M +K) (bufferless) condition in (A1) holds at all times, then it can be operated
optical crossbar switches (a sorter on the left-hand sideaanas an N-to-K optical priority queue with bufferzi]\i 1 d;



under the operation rules described before the statementfodm departure linksl,2,..., K in the order of decreasing
the theorem. priorities. Thus, (P2) and (P4) in Definition 1 are satisfied.

L Furthermore//(t)| = 0 implies that|¢(t)] = 0, and hence it
Proof. Suppose thatv < K and the condition in (A1) holds follows from |d(t)| = K, |q(t — 1) U a(t)| < Zi]\il di + N,

at all times. As in the proof of Theorem 2, we store” | d; and N < K that
fictitious packets in the fiber delay lines to emulate an empty

system at time 0. Note that there are alwaypackets arriving o
from the N arrival links and thek — N idling links. Also, we /()] =0 =max ||q(t —1)Ua(t)] —|d(t)| - Z di, 0| -

see from the operation rules that there are alwaypackets ) o =t S
leaving the feedback system in Figure 5(a), ié(t)UZ(t)| = Therefore, (P3) and (P5) in Definition 1 are satisfied in this
K for all t (note that we havéli(t)| = K — N and|é(t)] = N Subcase. . . u
when c(t) = 0, and we haveld(t)] = K and |{(t)] = 0 Before we present the choices for the fiber delays
whenc(t) = 1). Therefore, there are always’’, d; packets d1:d2;-..,da in Figure 4(a) and Figure 5(a) so that the
stored in the fiber delay lines, i.6G(t)| = ZM; d; for all t. condition in (Al) is satisfied at all times in Section IlI-A,

Furthermore, it is clear that (P1) in Definition 1 is satisfatd W€ €nd this section by mentioning that each of the sorter and
all times. the shifter in Figure 4(a) or Figure 5(a) can be implemented

As in the proof of Theorem 2, we consider the two casdl @ single optical cross_bar switch. The purpose of.havirtg tw
c(t) = 0 and¢(t) = 1 separately. (M + N)x (M+ N) optical crosst_)ar switches in F|_gure 4_(a)
Case 1:c(t) = 0. As the condition in (A1) holds at all Of Wo (M + K) x (M + K) optical crossbar switches in
times, we see from the operation rules that thelowest Flgurg 5(a) is for the ease of presentanon. In practice,came
priority packets ing(t — 1) U a() are dumped through loss Combine these two_ switches mtq one to reduce '_[h_e hardware
links 1,2,..., N in the order of decreasing priorities and th€©St- Furthermore, if one would like to drop an arriving peick
K — N fictitious packets from the idling links depart fromfrom an mput_hn.k when the buffer is full, one can mplement
departure linksV +1, N+2, ..., K in the order of decreasing SUCh an admission control scheme by simply adding>a2
priorities, and we havéd(t) = K — N and |[{(t)| = N. It switch before that input link as in [20].
follows thatd(t) consists of only fictitious packets and hence
d(t) is an empty set, i.eld(t)| = 0. Thus, (P2) and (P4) in Ill. CHOICES FOR THEFIBER DELAYS AND MAXIMUM
Definition 1 are satisfied in this case. The proof that (P3) and BUFFERSIZE
(P5) in Definition 1 are satisfied in this case is exactly the In Section Il, we have shown that if the condition in (A1)
same as that of Subcase (1a) and Subcase (1b) in the prodi@itis at all times, then the feedback system in Figure 4(a)
Theorem 2. or Figure 5(a) can be operated as Anto-K optical pri-
Case 2:¢(t) = 1. As the condition in (A1) holds at all ority queue with buffers>", d; under our operation rules.
times, we see from the operation rules that tiiehighest The remaining problem is how to choose the fiber delays
priority packets ing(t — 1) U a(t) depart from departure d,,d,,...,dy; in Figure 4(a) or Figure 5(a) so that the
links 1,2,..., K in the order of decreasing priorities anccondition in (A1) holds at all times. We give a solution tosthi
there are no packets dumped through the loss links, am@blem in Theorem 5 in Section IlI-A. Then in Section 1ll-B
we have|d(t)] = K and |[{(t)] = 0. Note that as|g(t — we present an approximation analysis for the maximum buffer
Huat) = M, di+ N forall t andg(t — 1) Ua(t) is size that could be achieved by using the constructions in
the subset of the real packets it — 1) U a(t), we have Theorem 5.
0<|gt —1)Ua()| <M d; + N. We then consider the
following two subcases. _ A. Choices for the Fiber Delays
Subcase (2a)) < |¢(t—1)Ua(t)| < K. As in Subcase 2(a) i ) _ "
in the proof of Theorem 2, in this subcase we also see that/Ve first show in the following lemma that the condition
d(t) consists of theg(t — 1) Ua(t)| packets ing(t — 1) Ua(t), N (A2) given in Section | implies the condmpn in (A1), and
i.e., |d(t)| = |q(t — 1) Ua(t)], and the packets in(¢) depart hgnce it follows that the feedback system in Figure A_r(a) or
from departure linkd, 2, .. ., |d(t)| in the order of decreasing Fi9Uré 5(a) can be operated as aRhto-i optical priority

M . .
priorities. Thus, (P2) and (P4) in Definition 1 are satisfiedl'SU¢ with buffer)_;_, d; under our operation rules if the
Furthermoreé(t)| = 0 implies that|(t)] = 0, and hence it condition in (A2) holds at all times.
follows from |d(t)| = |q(t — 1) U a(t)| that

M

Lemma 4 Suppose that the feedback system in Figure 4(a)
o or Figure 5(a) is started from an empty system at time 0. If
[6(#)] = 0 = max |[q(t = 1) Ua(t)| - |d()] — Z di, 0] . the condition in (A2) holds at all times, then the condition i
) o =l ST (Al) also holds at all times and hence the feedback system
Therefore, (P3) and (P5) in Definition 1 are satisfied in thig Figure 4(a) or Figure 5(a) can be operated as ato-K

subcase. o _ optical priority queue with buffe}"", d; under our operation
Subcase (2b)K < [q(t —1)Ua(t)| <372 di+ N.Asin  jes.

Subcase 2(b) in the proof of Theorem 2, in this subcase we
also have thad(t) consists of thé< highest priority packets in Proof. Suppose that the condition in (A2) holds at all times.
q(t—1)Ual(t), i.e.,|d(t)| = K, and the packets id(t) depart As we emulate an empty system at time 0 by stoffqﬁ1 d;

M
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fictitious packets in the fiber delay lines, the conditionAl) Suppose that the feedback system in Figure 4(a) or Figurg 5(a

holds at time0.

is started from an empty system at time 0. Then the feedback

Assume as the induction hypothesis that the condition gystem in Figure 4(a) or Figure 5(a) can be operated as an
(A1) holds up to time —1 for somet > 1. From the operation N-to-K optical priority queue with buﬁe[f‘il d; under our
rules described in Section 11-B and Section 1I-C, it is cldwat operation rules.

there are at mosk highest priority packets and at moat
lowest priority packets irg(t — 1) Ua(t) leaving the feedback

d=l-»_ (1D

system in Figure 4(a) or Figure 5(a) at time Consider a dl> @D
packet that enters th# fiber delay line at time:. Call this sl &’
packet the tagged packet. Since (A2) holds at tintbe tagged 3&:131 S
packet cannot be either one of thehighest priority packets or " T T
one of theN lowest priority packets among all of the packets Ay » @K | ekn ™K
stored in the fiber delay lines for the nekt— 1 time slots,
implying that the tagged packet cannot be either one ofithe i =n (@ DEF L) @R [0
highest priority packets or one of thé lowest priority packets diye2 = (@-DKF20) (DKL) [(@-DK32.1)
among all of the packets stored in the fiber delay lines until donel . o
it appears at the™ input of the sorter. It follows from the du. @i [ = «+ | -l @) | @tLD
induction hypothesis that any packet stored in the fiberydela: }M-lm—mz
lines in Figure 4(a) or Figure 5(a) at timecannot be either dh;,m2+\ i [« v v [ imn VTSI V)
one of theK highest priority packets or one of th€ lowest QT o M
priority packets among all of the packets stored in the fiber B : : :
delay lines until it appears at the firdf inputs of the sorter. dntmp=n —>{ (M-myNon) (MmyN2) | Mom N, 1)
As such, the condition in (A1) holds at timend the induction .
is completed. [ | Ayt =2 (IONFT) | (MANTT) -

In the following theorem, we give choices for the fiber e 27 QLT (A2
delaysd;, ds,...,dy SO that the condition in (A2) holds at A2 ND T MND
all times, and it then follows from Lemma 4 that the feedback e )
system in Figure 4(a) or Figure 5(a) can be operated as an : :
N-to-K optical priority queue with bul‘feEij‘i1 d;. dy=l->{__M.D

Theorem 5 Let m; = nK and my; = nN such thatm; +
mo < M, wheren > 1, and let

d; =

1
VKJJFL fori—=1,2,....my, (4)

4 — {]Vf—zJ Y

N
'I:OI'Z.:]\4—’m2—i—1,]\4—TTL2—|—2,...,]\47 (5)

n < d; < min HailglJ , {51]\_]1” +1,

fori=mi+1,mi1+2,....,M —mao,

(6)
where
(7)

o =

. . +
i+ Y, | (AN w L if N> K,

Jj=2 2

H’Z?:z (i[\,{+m1+m22N(4j2)K)+—" it N < K,
and
Bi = (8)
. ) +
. n mi+mo—i+l1—K—(47—2)N
M—z+1+2j_2R i1 K —(4) ) w
if N> K,
. . +
. n 2mo—i+1—K—(47—2)N
M—Z+1+ZJ_2’7( = 2 (j ) ) —‘7
if N < K.

Fig. 6.
lines.

The fiber delays given by (4)—(6) and the cells of therfidelay

In Figure 6, we show the fiber delays given by (4)—(6).
The proof of Theorem 5 relies on establishingspace-
time advancement propertgnd a monotonically decreas-
ing/increasing propertyor the packets stored in the fiber delay
lines. For this, we view a fiber delay line with delalyas
a “sequential” buffer that consists af cells with each cell
capable of holding one packet. The cells of the fiber delay
lines are also shown in Figure 6. Note that we index the cells
from theinput of a fiber delay line in Figure 6. Specifically,
the (i, 7)™ cell is the ;" cell from the input of thei" fiber
delay line fori =1,2,...,M andj = 1,2,...,d;. Note that
since we view a fiber delay line as a sequential buffer, a gacke
entering the' delay line at time will be stored in the(i, 7)™
cell at timet+j—1for j =1,2,...,d;, and can be accessed
only when it appears at theutputof the ;™" delay line at time
t+d;.

The reason why we divide the fiber delay lines into three
sections, the section consisting of the firsy fiber delay
lines (the first section), the section in between (the second
section), and the section consisting of the last fiber delay
lines (the third section), is as follows. By using the regula
delay assignment for the fibers in the first section and the
third section (there aré( fibers with delays equal t@ in
the first section for; = 1,2,...,n and there areV fibers
with delays equal ta in the third section foi = 1,2,...,n)
together with the space-time advancement property and the
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monotonically decreasing/increasing property developed that
Appendix A for the packets stored in the fiber delay lines, we

can obtain a lower bound on the total number of the packets (o — )N — (M —io) K
stored in the cells of the first columns in Figure 6 with =ig(N+K)-MK—-N
priorities higher/lower than that of a tagged packet when th > (M —ms+1)(N+K)— MK — N

tagged packet enters a fiber delay line (see (56) and (69) in
Appendix A) if the delays of the fibers in the “in-between” = MN —ma(N + K) + K
section are greater than or equalio Such a lower bound > (m1+ma)N —ma(N + K) + K
allows the choices for the delays of the fibers in the in-betwe =K >0.
section to go beyond the regular delay assignment for thesfibe _ _
in the first section and the third section, and it guaranteas tIn other words, et > M_io it follows that
the condition in (A2) is satisfied if the delays of the fibers in ) )
the “in-between” section are less than or equal to the UPPery (d; — 1) = K LM - ZoJ <K Vo - 1J <io—1, (11)
bound in (6). It will be seen shortly in Section III-B that inet N K
case thatV = K, the increase of the delays of the fibers in N(d: _ {M — 1o
: ; ) (diy —1)=N
the in-between section beyond the regular delay assignment

as that in the first section and the third 2section makes_lji1 ¢ 11)=(12) that th dition in (A2) al
possible to increase the buffer size frdﬁ(%) for regular us, we see from (11)-(12) that the condition in (A2) also

. M3 . . holds at timet, in this case.
dglay assignment t0( 5= ) for the optimal delay assignment Case 3y +1 < ig < M—my: In this case, the knowledge
given by Theorem 5.

Proof. (Proof of Theorem 5) It is clear from Theorem 2, that among the packets that enter thefiber delay lines at

Theorem 3, and Lemma 4 that it suffices to show that thiac 20" there arei, — 1 (resp.,M — o) packets with priorities

condition in (A2) holds at all times. For this, consider algetc zlr?(?uerh(:isp.r'o\llzvﬁgt ttrr],aencghnégitgnt?f (fl%gre]gléasa(;l;e; ml'gse not
from theiM output of the shifter that enters tig fiber delay gh ‘o p

line at timet,, wherel < iy < M. Call this packet the taggedas we did in C_ase 1 and Qas_e 2 above. Indeed, the proof
: ) ) : for this case relies on establishing a space-time advanteme
packet. From the operation rules described in Section Ihé a

: X L roperty and a monotonically decreasing/increasing pitgpe
Section II-C, we know that the priorities of the packets éﬁ)r the packets stored in the fiber delay lines. By using

the first M outputs of the shifter are decreasing in their Iinkh v .
indices. Therefore. amona the packets that enterlhéber the space-time advancement property and the monotonically
’ ' 9 P decreasing/increasing property, we can show (see Appéexdix

delay lines at time,, there areio — 1 packets with pr|or|t'|es for a proof) that the total number of packets stored in théscel
higher than that of the tagged packet and there Mre- i . - . ) S
Q[f the firstn columns in Figure 6 at time, with priorities

packets with priorities Iower_ than that of the tagged IOaCkEﬁlgherllower than that of the tagged packet is at legst- 1
WeCthenlcf15|QeLthe.f(l)llci\r/]v.mg three cases. fromi, < (resp.,B3;, — 1). This implies that the total number of packets
v >ase S=to =T I? |sdcase_, Wif tﬁvf Oy = ™M1: stored in the fiber delay lines at timg with priorities higher

= My +mg, My = ni, andm, = niytha (resp., lower) than that of the tagged packet is also at least

J < M — . (12)

(ip — )N — (M — ig)K a;, — 1 (resp.,B;, — 1). Since it is clear that
=io(N+K) -~ MK~ N ai —1| | B —1
. < X . 0 10
<my(N + K) — (mq +ma)K — N K(di, —1) < K mmH K J{ N H
=-N<0 SK{L(’K_lJSOﬁO—l
In other words o= < Mo |t follows that
and
K(d»—l)—KVO_qu_l (9) 1 1
0 K |- 7 N(dio—l)SN-minHaioK_ J 7{&0]\7_ H

i9g— 1 M — iy )
. —1)= — | < <M — . A

N(d;, — 1) N{ e J_N{ ~ J_M io.(10) SN{—BZONlJSﬁm—l-
As we know that among the packets that enter tefiber
delay lines at time,, there arei, — 1 (resp.,M — iy) packets It then follows that the condition in (A2) also holds at time
with priorities higher (resp., lower) than that of the taggeto in this case, and the induction is completed. u
packet, it follows from (9)—(10) that there are at le&%d;, —
1) (resp.,N(d;, —1)) packets stored in th&/ fiber delay lines
at timet, with priorities higher (resp., lower) than that of th
tagged packet. Therefore, the condition in (A2) holds aetim In this subsection, we present an approximation analysis fo
to in this case. the maximum buffer size that could be achieved by using the

Case 2.M —mo+1 < ig < M: In this case, we have from constructions in Theorem 5. For the purpose of illustration

o> M—mo+1, M >mi+me, my =nkK,andms =nN and ease of presentation, we assume tNat= K in the

éB. An Approximation Analysis for the Maximum Buffer Size
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following analysis. Therefore, the condition in Theorem 5 - 1 [A/21 LM/ (192N)]

becomesn; = me =nN, n >1, M > 2my, and N
i=N[3M/(8N)]+1  j=2
7 —1 . 4
di =dp—iv1 = { ¥ J +1, fori=1,2,...,mq,(13) (N[%} +1—M+2N[M] - (4|2 ) - 1)N>
2
o — 1
n<di=dy—it1 < { N J +1, [M/2] [M/(192N)]
S D O -
| M 2y %
fori=m;+1,m1+2,..., {gw , (14) N v = 90
where ~ 147456N2°

5 choosingm; = N[2] ~ 0.333M is at leastO(M?/N?)

for large M. From the numerical results and approximation
Among all of the choices of the fiber delays, da, .. ., dy analysis below, it can be seen that this lower bound is of the
that satisfy (13)—(14), the buffer SiZEij\il d; achieves its same order as the buffer size achieved by choosing the dptima
maximum value when we choose the delays of the fiber in tMalue ofm;.

in-between section to be given by the upper bound in (14),Note that for sufficiently largen, and A/, we can approx-

n - _ (45 — + This shows that the buffer size that could be achieved b
ai—i—i—Z{(Z M +2my — (45 1)N> —‘ (15) y
j=2

ie. imate (17) as follows (note that the expression is exact when
1 N =1):
1 — .
di =dy—it+1 = { N J +1, fori=1,2,...,m1,(16) di = dpr—isn
o — 1 ~ i—1
M 1| [/i—M+2m —(4j—1)N\"

L el — . (19

for i m1+1,m1+2,...,[2—‘,(17) +N;R 5 (19)

whereq; is given by (15) fori = my +1,m; +2,..., [%]. Suppose thal/ is even, therB*(N, M) can be approximated
It follows that the maximum buffer siz8* (N, M) that could by

be achieved by using the constructions in Theorem 5 in th§* N M
case thatV = K is given by ]\1/27 )

; ~22([5] )

BY(N,M) =Y "d;, 1.’ = N
=1 M/2  n . . +
2 t—M+2my; — (45 —1)N
whered; is given by (16)—(17) foi = 1,2, ..., M. + > ZN R 12 ( ) ) w(zo)
If we choosen = [4%] so thatm; = N[4%], then we see i=mitl j=2

from (17) and (15) thaB*(NV, M) can be lower bounded by Denote the first term and the second term on the right-hand
side of (20) asB; (N, M) and B; (N, M), respectively. It is

B (N, M) clear thatBj (N, M) is independent of the choice of;, but
M2 s —1 B3 (N, M) depends on the choice af;.
2 Z QTJJFl) If M =q-2N +r, whereqg >0 and0 <r < 2N — 1 are
i=mi+1 the quotient and the remainder, respectively)bfdivided by
M2 2 2N. Then we can see that
= 2 %
i=mi+1 Bi(N,M) =g+ )N +r(g+ 1)~ (21)
1 [M/2] [M/(3N)] .
S L Z Z forlarge M. In Table I, Table II, and Table Ill, we numerically
- N N[MTGNY 41 = computeB; (N, M) (in the second column) and the maximum
- ! value of B3(N, M) (in the third column) that is obtained
i—M+2N[2] — (45 — 1)N by using the optimal choicen} (in the first column) of the
D) valuem; for N =1, N = 2, and N = 4, respectively. It is
interesting to see from these tables that
) [M/2] |M/(192N)] v
25 my ~ 0.433M and B3 (N, M) ~ 0.000929— (22)

i=N[3M/(8N)]+1 Jj=2 . .
_ " _ + for large M. In other words, the optimal choiceij of the
i—M+2N[35] - (4 - DN value m; is roughly 0.433M and the maximum value of

2 B3 (N, M) is approximateI)0.000QQQ% for large M.
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M m; B (N, M) B3 (N, M) B*(N,M)/B5 (N, M)
4 2=0.5M 6= M?2/AN + M/2 0 1
8 4=0.5M 20 = M2 /AN + M/2 0 1
16 8 =0.5M 72 = M?/AN + M/2 0 1
32 15 ~ 0.469M 272 = MZ2/4N + M/2 12 ~ 0.000366 M3 /N2 1.044
64 28 ~ 0.438 M 1056 = M? /AN + M/2 162 ~ 0.000618 M3 /N2 1.153
128 56 ~ 0.438M 4160 = M2 /AN + M/2 1604 ~ 0.000765M3 /N2 1.386
256 111 ~ 0.434M 16512 = MZ/4N + M/2 14172 ~ 0.000845M3 /N2 1.858
512 | 222~ 0.434M 65792 = M? /4N + M/2 118932 ~ 0.000886 M3 /N2 2.808
1024 | 444 ~ 0.434M 262656 = M2 /4N + M/2 974338 ~ 0.000907M?> /N2 4.710
2048 | 887 ~ 0.433M | 1049600 = M?2/AN + M/2 7887320 ~ 0.000918 M3 /N2 8.515
4096 | 1773 ~ 0.433M | 4196352 = M2 /4N + M/2 63469912 ~ 0.000924 M3 /N? 16.125
8192 | 3547 ~ 0.433M | 16781312 = M2/AN + M/2 | 509252408 ~ 0.000926 M /N2 31.346
16384 | 7093 ~ 0.433M | 67117056 = M?2/AN + M/2 | 4079995388 =~ 0.000928 M /N2 61.789
TABLE |
THE MAXIMUM BUFFER SIZE BY THE OPTIMAL CHOICEmi‘ FORN = 1.
M my BY (N, M) B3 (N, M) B*(N, M)/B5 (N, M)
8 4=05M 12 = M?/AN + M/2 0 1
16 8 =0.5M 40 = M2/AN + M/2 0 1
32 16 = 0.5M 144 = M?/AN + M/2 0 1
64 30 ~ 0.469M 544 = MZ? /4N + M/2 20 ~ 0.000305M3 /N? 1.037
128 56 ~ 0.438 M 2112 = M?2/AN + M/2 306 ~ 0.000583M° /N? 1.145
256 112 ~ 0.438M 8320 = M? /4N + M/2 3128 ~ 0.000746 M3 /N2 1.376
512 222 ~ 0.434M 33024 = M2/4N + M/2 27980 ~ 0.000834 M3 /N2 1.847
1024 | 444 ~ 0.434M 131584 = M2 /4N + M/2 236444 ~ 0.000881M3 /N2 2.797
2048 | 888 ~ 0.434M 525312 = M2 /4N + M/2 1942930 ~ 0.000905M°3 /N2 4.699
4096 | 1774 ~ 0.433M | 2099200 = M?/4N + M/2 15751284 ~ 0.000917M3 /N2 8.504
8192 | 3548 ~ 0.433M | 8392704 = M2/AN + M/2 | 126846724 ~ 0.000923M3 /N2 16.114
16384 | 7094 ~ 0.433M | 33562624 = M?2/AN + M/2 | 1018130954 ~ 0.000926 M3 /N2 31.335

TABLE I
THE MAXIMUM BUFFER SIZE BY THE OPTIMAL CHOICEm’{ FORN = 2.

M mt BT (N, M) B3 (N, M) B*(N, M)/B: (N, M)
16 8 =0.5M 24 = M?/AN + M/2 0 1
32 16 = 0.5M 80 = M2/AN + M/2 0 1
64 32=05M 288 = M2 /AN + M/2 0 1
128 60 ~ 0.469M 1088 = M2/4N + M/2 38 ~ 0.000290M 3 /N2 1.035
256 | 112 ~ 0.438M 4224 = MZ2JAN + M/2 595 ~ 0.000567 M3 /N2 1.141
512 | 224 ~ 0.438M 16640 = M2/AN + M/2 6178 ~ 0.000736M3 /N? 1.371
1024 | 444 ~ 0.434M 66048 = M2/AN + M/2 55618 ~ 0.000829M3 /N2 1.842
2048 | 888 ~ 0.434M 263168 = M2/AN + M/2 471477 ~ 0.000878 M3 /N2 2.792
4096 | 1776 ~ 0.434M | 1050624 = MZ2/AN + M/2 3880131 ~ 0.000903M3 /N2 4.693
8192 | 3548 ~ 0.433M | 4198400 = M2/AN + M/2 | 31479398 ~ 0.000916M> /N2 8.498
16384 | 7096 ~ 0.433M | 16785408 = M2/AN + M2 | 253600425 ~ 0.000923M3 /N2 16.108
TABLE III
THE MAXIMUM BUFFER SIZE BY THE OPTIMAL CHOICEm’{ FORN = 4.
. : 1 1 - N 3 3
To see this, we replace:; by oM with £ < o < 3, j4% _ M (2(1 B 1) —Ba-17°), 23)
can be 24N? 2

by z, and

by y, then the double sum B3 (N, M)

approximated by the following double integral

By <N M)

1
/2/ (y — 1+ 2a — 4z) M dady

2 y—1+42a)/4
—ﬁ/a [

1
20— 3

M3

_ 2
=3 z°dz

3a—1

(y — 1+ 2a —4x) dzdy

where the first equality holds due to the restriction that %
and in the second equality we have used the change of variable
z = y— 1+ 2«. The optimal valuex* that maximizes (23) for

ain [4, 3] can be obtained by solving the following quadratic

equatlon.

2 <2a*
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The result is and the exponential upper boué2( —2N) 10%2(1+%>) given

14+ /6 in (27). Whether it is possible to achieve such an exponentia
= 38 ~ 0.433. bound, and if possible, how to do that, remains an open
research problem.
By using the optimal value* ~ 0.433 for B5(N, M) in (23),
we see that IV. CONSTRUCTIONS OFFAULT TOLERANT OPTICAL
e PRIORITY QUEUES WITHMULTIPLE INPUTS AND
B3 (N, M) =~ ODOO%QW (24) MULTIPLE OUTPUTS
In Section 1lI-A, we have shown that if the fiber delays
for large M. Therefore, we see from (21) and (24) that th% ,da,...,dys are given as in Theorem 5, then the feedback

maximum buffer size that could be achieved by using tfg%,

. . g ; stem in Figure 4(a) or Figure 5(a) can be operated as an
constructions in Theorem 5 in the case that= K is 9 (2) 9 (2) P

N-to-K optical priority queue with bu1‘fe[:i]\i1 d; under our
operation rules. The problem with such a construction is its
fault tolerant capability. When some of the fiber delaysdine
for large M. are broken/malfunctioning (e.g., fiber cut, fiber shorting,o
Note thatB (N, M) = O(JZLVL;) is the buffer size achieved tc), the delays of the remaining unbroken/functioningrébe
by the regular delay assignmedt = dy; ;1 = |i5L| +1 May not satisfy the condition in Theorem 5, and hence the
fori=1,2,....[M], andB*(N, M) = O(ﬁ) is the buffer construction in Theorem 5_ no longer works. An interesting
L2t ’ N Ad challenging question is then: when some of the fiber

. . lays lines are broken/malfunctioning, could the feeldbac
by (16)—(17). Th & (N, M)/B:(N, M) €' 9
given by (16)—(17). The improvemedt: (N, M)/ Bi (N, M) system in Figure 4(a) or Figure 5(a) still be operated as an

of the buffer sizeB*(N, M) over the buffer sizeB; (N, M
(N, M) PN, M) N-to-K optical priority queue with a “smaller” buffer size by

is shown in the last columns of Table |-Table Ill. In Ta-" S L
ble I-Table IIl, M is a multiple of 2N and hence we have using the remaining unbroken/functioning fibers? The answe

BI(N, M) = 24_; " % We make the following observations:'S affirmative if the fiber delays are carefully chosen as will

. . : be seen in Theorem 8 below.
(i) The improvementB*(N, M)/B;(N, M) is small when : : .
M is small (note that we havi*(N, M)/B(N, M) < 2 Before we state Theorem 8, we first show in the following

for A < 256); (ii) The improvementB*(N, M)/B: (N, M) Ie_mma_l that if .the flbgr delayg,, ds, . .. ,dM.sat!sfy the.con
N . . M . dition in (A3) in Section I, then the condition in (A2) is also
increases linearly withl/ when % is sufficiently large. o :
. : : . satisfied, and hence it follows from Theorem 2, Theorem 3,
When N = K = 1, the maximum buffer size achieved in

[26] is B:(1, M) — M?/4+ M/2 and the maximum buffer a_nd Lemma 4 that the feedback system in_ Figure_z 4_1(a) or
size achieved by using the constructions in Theorem 5 l?gure 5(a) can be operated as aito-K optical priority

. M
B*(1,M). The results in Table | show that the buffer siz&eYe with buffery ;. di.

B*(1,M) is larger thanBj(1,M) for M > 32, and the | emma 7 Suppose that the feedback system in Figure 4(a)
improvementB* (1, M)/Bj (1, M) increases linearly with/  or Figure 5(a) is started from an empty system at time 0. If
when M is large (asB*(1, M) = O(M?) and Bi(1,M) = the fiber delaysiy, ds, ...,d) satisfy the condition in (A3),

O(M?)). Therefore, our constructions not only extend thghen the feedback system in Figure 4(a) or Figure 5(a) can

previous constructions from a single input and a single @uthe operated as atv-to-K optical priority queue with buffer
to multiple inputs and multiple outputs, but also improve OEM1 d; under our operation rules.
i=

the previous constructions [25]-[26] of single-input daig ) _
output optical priority queues. Proof. As commented above, it suffices to show that the

In the following theorem, we show an upper bound on tHeondition in (A2) holds at all times. Consider a tagged packe
maximum buffer size of aiV-to-K priority queue by using thatenters thé" fiber delay line at time. Under our operation
fiber delay lines as the storage devices. rules, we know that among the packets that enterith&ber

delay lines at timet, there arei — 1 packets with priorities

Theorem 6 Suppose that anN-to-K priority queue with higher than that of the tagged packet and there Mre- i

buffer B is constructed by using SDL elements that contaffickets with priorities lower than that of the tagged packet

M fiber delay lines as the storage devices. Then we have the fiber delaysii, ds, ..., dy satisfy the condition in (A3),
then we can see that

B*(N, M) = Bi (N, M) + B3 (N, M) ~ 0.000920= (25)

size achieved by the optimal delay assignment that could

B < (K? + 2K + N)2M=N=HK)log; (1450), 26 | — —i
<( ) (26) K(di—l)SKminHZKlJ,{MN ZH
In particular, if N = K, then we have o
1 — )
B< (N2 + 3N)2(M—2N) logy(1+37) (27) <K { I J <i1—1
Proof. See Appendix B. m and , ,
Note that for the special case thal = K = 1, the N(d; — 1) < N min HZ— 1J ’ VVI—’”
exponential upper bound given by (27) @2*'), which is K N
the same as thag obtained in [25]. Furthermore, there is a gap <N M —i < M—i
between theD(4L;) buffer size achieved by our constructions = N | ="
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Therefore, the condition in (A2) holds at tinie B an N-to-K optical priority queue with bufferZ?il d; =
It is clear that the maximum buffer size that could b&1l. However, when the third fiber with delays = 2 is
achieved under the condition in (A3) is by choosidg = broken/malfunctioning, the delays of the remaining unbro-
min [[ 2], [25=4]] + 1 for i = 1,2,..., M. Suppose that ken/functioning fibers do not satisfy the condition in (A3)
M=q(N+K)+r, whereq>0and0<r < N4+ K -1 (with M = 11 in (A3)) no matter how we re-index the
are the quotient and the remainder, respectivelyyfoflivided remaining unbroken/functioning fibers.
by N + K. Then the fiber delays are given by On the other hand, if we choosgl;,ds,...,d12) =
G (—1)K+1<i<jKandl<j<g, (1,1,2,2,3,2,2,2,1,1,1,1) o] that  the delays
g+ 1, if gK+1<i<qK+, (.d1,d2,...,d-11) = (1,1,2,2,3.,-2,2,.2,1,1,1).Of the
first eleven fibers satisfy the condition in (A3) (witlf = 11

di=<¢ ¢—Jj+1, : - ;
it ok DN 4+1<i<ak v in (A3)) and the delay of the Iqst f|_ber is _equal to 1. Then it
Ian%l i;igj IN+1<i<gK+4r+] can be seen that when the third fiber with detay= 2 is

broken/malfunctioning, we can re-index the the twelfth ffibe
As such, the maximum buffer size that could be achieved undgy the third fiber. As such, after the re-indexing the delays
the condition in (A3) is equal /%™ (N + K) + (¢ + of the remaining unbroken/functioning fibers satisfy the
1). In the special case thaV = K, the maximum buffer condition in (A3) (withM/ = 11 in (A3)). Similarly, it can be
size that could be achieved under the condition in (A3) keen that when any one of the fibers is broken/malfunctioning
qlqg + 1)N + r(q + 1), i.e., O(%F), which is smaller than we can re-index the remaining unbroken/functioning fibers s
the O(]]‘\',Lz) buffer size that could be achieved by using ththat the condition in (A3) (withAM/ = 11 in (A3)) is satisfied
constructions in Theorem 5. However, we will see shortly thand hence the feedback system in Figure 4(a) or Figure 5(a)
the condition in (A3) can be used to design the fiber delagan be operated as a¥i-to-K optical priority queue with a
dyi,ds,...,dy as given in Theorem 8 below such that théuffer size at Ieasgj‘il d; — ds = 16 (note thatds is the
feedback system in Figure 4(a) or Figure 5(a) can be operataryest fiber delay among the twelve fiber delays).
as anN-to-K optical priority queue that can tolerate upfb  The idea of our choice of the fiber delays da, ..., dys in
broken/malfunctioning fibers, whefe< FF < M — 1. Theorem 8 below is to choose the dela¥sds, ... ,dy—F

In our constructions of fault toleran¥V-to-K optical pri- of the first M — F fibers such that they satisfy the con-
ority queue, we assume that th@/ + max|[N, K]) x (M 4+ dition in (A3) (with M replaced byM — F in (A3)) and
max [N, K]) switch in Figure 4(a) or Figure 5(a) is accomchoose the delay8y,_ri1,dr—pio,...,dy Of the lastF
panied with a detection circuitry that can detect whetherfiers to be equal to 1. The lat fibers with delays equal
fiber is broken/malfunctioning (e.g., fiber cut, fiber shogti to 1 can be regarded as the “backup” fibers for the first
out, etc). This can be done by simply sending pilot signalel — F fibers. When some of the first/ — F fibers are
through the fiber delay lines. If the pilot signals are ndiroken/malfunctioning, we can then replace them by using
received at a pair of input/output ports, then a fiber cut madlie unbroken/functioning fibers among the ldstfibers. As
have occurred on the fiber connecting that pair of inputfeutpthe delays of the last’ fibers are chosen to be equal to 1, it
ports, and if the pilot signals are received immediately aan be shown that the remaining unbroken/functioning fibers
a pair of input/output ports, then the fiber connecting thatill satisfy the condition in (A3) (withM replaced by the
pair of input/output ports may be shorting out. As sucmumber of the remaining unbroken/functioning fibers in (A3)
if some of the fibers are broken/malfunctioning, then wand hence the feedback system in Figure 4(a) or Figure 5(a)
can just disregard the input/output ports corresponding ¢an be operated as aW-to-K optical priority queue with a
the broken/malfunctioning fibers, and view the remainingmaller buffer size.
input/output ports as the input/output ports of a smallatciw Suppose thab < FF < M — 1. Let

Note that even with the fault-detection mechanism as de- el M—F—i
scribed above, the condition in (A3) still does not guarante ,, mlr; HTJ ' L N H +1L

R : . f = ori=1,2,...,M — F, (28)

that the construction in Figure 4(a) or Figure 5(a) is faoliett- ' L fori= M —F a1 M—F42 M
ant. In order to make sure that the construction in Figuré 4(a ’ ’ T
or Figure 5(a) can tolerate up tB broken/malfunctioning Let

fibers, whered) < F' < M — 1, what we need is a more re- M—F
strictive condition (we will give such a condition in Theare3 B*(N,K,F,M) = Z disys (29)
below) on the fiber delayd,, ds,...,dy such that after up i=1
to F' of the fibers are broken/malfunctioning, the delays of ﬂ\ﬁhere dfi is the i smallest delay in{d}, s, ....d3,} for

remaining unbroken/functioning fibers still satisfy thende . _ ; * * *
tion in (A3) (with M replaced by the number of the remaininglir; tﬁe%j.élgy];{" Cllf the delaysif,) < diy) < --- < diy
unbroken/functioning fibers in (A3)) after a proper re-irithg largest. b
of the remaining unbroken/functioning fibers. For example,

consider the case tha/ = 12, N = 3, and K = 2. If

we choose(dy, ds,...,d12) = (1,1,2,2,3,3,2,2,2,1,1, 1), Th(?)olr_(zT 8 Suppose thab < I < M — 1.
then the condition in (A3) is satisfied and hence the feedback
system in Figure 4(a) or Figure 5(a) can be operated as 1<d; <df, fori=1,2,..., M, (30)

., dy, ordered from the smallest to the
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whered; is given by (28) for = 1,2,..., M. In other words, i € J’, and it then follows that

the delay_s_dl,c{Q, .. .,dM,_F of the firstM — F fiber_s satisfy o d;, forie I\,

the condition in (A3) (withM replaced byM — F'in (A3)) Ty Lforie ' U{M—F+1,...,M— F'}.
and the delaygp;—p11,dar— 2, - - -, das Of the lastF fibers , )

are all equal to 1. Then after up t& of the M fibers in If @ € I\I’, then we see from (31), (30), (28), add < F°

the feedback system in Figure 4(a) or Figure 5(a) are brghat

(31)

ken/malfunctioning, the remaining unbroken/functiorfibgrs g < df — min Hz - 1J {M —F - z” +1
can be re-indexed so that their delays after re-indexinty sti ‘ e K |’ N

satisfy the condition in (A3) (withi/ replaced by the number ) i—1 M—F —i

of the remaining unbroken/functioning fibers in (A3)) and < min H K J’L N H 1

hence the feedback system could be operated a¥ #o-K

optical priority queue with a buffer size at Iea@i]\i;F diy On the other hand, if € I; U{M — F +1,....M — F'},

where d;) is the i" smallest delay in{d;,ds,...,dy} for then it is clear from (31) that
i =1,2,...M. In particular, if we choosel; = d} for i = J — 1 < min 1—1 M—F —i 1
1,2,..., M, then the buffer size is at lea&*(N, K, F, M), = K |’ N '

where B*(N, K, F, M) is given by (29). , As such, the delay8), d}, . .., d}, . of the remainingl/ —

~ (if) Conversely, assume that when at mésof the M fibers — p nnroken/functioning fibers satisfy the condition in (A3)
in the feedback system in Figure 4(a) or Figure 5(a) are brc{‘with M replaced byM — F” in (A3)), and hence the feedback
ken/malfunctioning, the remaining unbroken/functiorfibgrs system in Figure 4(a) or Figure 5(a) could be operated as
can be re-indexed so that their delays after re-indexinty st'%ln N-to-K optical priority queue with buﬁeEM;F, d.. As

satisfy the condition in (A3) (witti/ replaced by the number ., _ F andd. d d
. L N . < (1),de), -+, dv—ry are the smallest/ — F
of the remaining unbroken/functioning fibers in (A3)) angelays in{dy,ds, ...,dn}, We have

hence the feedback system can be operated a®vdo-K

optical priority queue with a buffer size at leaBY. Then we M_F M-F M-F
must haveB’ < B*(N, K, F,M). Z d; > Z d; > Z diy-
=1 1=1 1=1

Proof. (i) Index theM fibers with delaysl;, da, . . ., dys from (i) First note that there are at leaBt+ 1 fibers with delays

1 to M. Assume thatF’ fibers are broken/malfunctioning,equal to 1, sayl; = 1fori =M — F,.M — F +1,...,M.

where 0 < F’ < F. Let m and n be the numbers Otherwise, if all of the fibers with delays equal to 1 are

of broken/malfunctioning fibers with indices in the setroken/malfunctioning, then the delays of the remaining un

I = {1,2,...,M — F} andJ = {M — F + 1,M — broken/functioning fibers cannot satisfy the condition A8)

F +2,...,M}, respectively. Note thatn + n = F’. Let as the condition in (A3) requires that at least one of the

I' = {iy,is,...,im} C I be the index set of the “bro- remaining unbroken/functioning fibers has a delay equal to

ken/malfunctioning” fibers with indices id and letJ’ = 1.

{j1,92,--.,jr—n} C J be the index set of the “unbro- Let dy and d;; be the i smallest delay in

ken/functioning” fibers with indices ir. {di,da,....,dn} and {di,d5,...,d3;}, respectively,
Now we re-index the remaining\/ — F’ unbro- for i« = 1,2,....M. As d; = d;j = 1 for

ken/functioning fibers with indices it/ \I’)U.J’. We re-index ¢ = M — F + 1,M — F + 2,..., M, it follows that

the i fiber as thei" fiber fori € I\I’, re-index thej!" fiber d;) = di;) = 1 fori = 1,2,...,F, and d(p.; and and

as thez't,? fiber fork = 1,2,...,m (note that this is feasible asd[. ;) are thei™ smallest delay in{d,ds, ...,dy_r} and
we havern = F/ —n < F' —n), and re-index thg‘}ﬁh fioeras {dj,ds,...,d5,_p}, respectively, foi =1,2,... .M — F.
the (M — F +k—m)" fiber fork =m+1,m+2,...,F—n Consider the case that theg" fibers with delays
(see Figure 7 for an illustration of the re-indexing). dy—pi1,dy—Fao,...,dy  (the smallest 7 delays in
{dy,da,...,dy}) are broken/malfunctioning. As we assume
- e ME M G b e et e M that the remaining/ — F' unbroken/functioning fibers can
; be re-indexed so that their delays satisfy the condition in
/ (A3) (with M replaced byM — F' in (A3)), there exists a
! permutations on {1,2,..., M — F} such that the™" fiber is
| 4 1 1 re-indexed as thés (i)™ fiber and afte_r re-indexing the delays
L R di =dg-10y,1=1,2,..., M — F, satisfy
X : broken/malfunctioning fiber I d;/ — dafl(i)
A\ : unbroken/functioning fiber .
g <minH_1J {M_F_ZHH_CJ*
Fig. 7. An illustration of the re-indexing in the proof of Tdvem 8. - K |’ N v’

fori=1,2,....M — F. (32)

Letd),ds,...,d),_p be the delays of the remaining —
F’ unbroken/functioning fibers after re-indexing. 4% C J
andd; = df =1 for all i € J, we see thatl; = 1 for all dpyi) < dE‘FH), fori=1,2,...,M — F. (33)

It then follows that
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To see this, note thadi’(*FH) is the i"" smallest delay in APPENDIXA

{d},ds,...,d},_r}, and hence there exidt, ko, ..., k; € PROOF OF THECLAIM IN CASE 3 IN THE PROOF OF
{1,2,...,M — F} such thatd; < dp, forall j = THEOREMS

1,2,...,i. Thus, we see from (32) that,—(y,) < dj < Recall that in the proof of Theorem 5, the tagged packet

dip g, forallj =1,2,...,i, i.e., there are at leastdelays ynder consideration enters th# fiber delay line at time

in {dy,da,...,dy-p} that are less than or equal & . ¢,. In this appendix, we prove the claim in Case 3 in the
This implies that the™ smallest delay if{d:,do, ....dv—r}  proof of Theorem 5 that the total number of packets stored in
is less than or equal tdr ) i.e., d(piq) S,dfmi)' _ the fiber delay lines at time, with prioriti_es higher (resp.,
Now consider the case that thé fibers with de- lower) than that of the tagged packet is at leasf — 1
lays diyr—py1y, dovi—r42),- -, dary  (the largest F' de- (resp., 3, — 1), wherem; + 1 < iy < M — my and

lays in {d1,ds,...,dr}) are broken/malfunctioning. As theq,, (resp.,3;,) is given by (7) (resp., (8)). To do so, we
remaining A — F unbroken/functioning fibers with de-will first establish a space-time advancement property and a
lays d(1),d2),.-.,d—r) can only store a maximum of monotonically decreasing/increasing property for thekpte
Zj‘i{ d(;) optical packets, and the feedback system witstored in the fiber delay lines, and then show that there are at
the remainingM — F unbroken/functioning fibers can still leasta;, (resp.,5;,) packets stored in the fiber delay lines at
be operated as aN-to-K optical priority queue with a buffer time ¢, with priorities higher (resp., lower) than or equal to

buffer at leastB’, we must have that of the tagged packet. As there is a total order among all
M—F of the packets stored in the fiber delay lines, the only packet
B < Z dii)- (34) that has the same priority as that of the tagged packet is the

Pt tagged packet itself. Therefore, the total number of packet

stored in the fiber delay lines at tintg with priorities higher
(resp., lower) than that of the tagged packet is at legst- 1
(resp.,3;, — 1), and the claim is proved.

In the following, we divide our proof into two parts.

It then follows from (34)d;) = d?i) =1for1=1,2,...,.F,
(33), and (29) that

M—-F M—-F

B < diy < di,y = B*(N,K,F,M).

; © ; @ A-1. The first half of the proof
The proof is completed. u In the first half of the proof, we show that there are at
leasta;, packets stored in the fiber delay lines at titpevith
priorities higher than or equal to that of the tagged padket.

this, we letp; ;(t) = 1 if the priority of the packet stored in

: _ _ h
In this paper, we have considered the constructions @, ; syt cell at timet is higher than or equal to that of the
N-to-K optical priority queues by using a single\ + tagged packet, and let_;(t) = 0 otherwise.
max[N, K]) x (M +max[N, K1) optical (bufferless) crossbar 'g;.e 4 packet stored in the, )™ cell at timet must be
switch, min[N, K] 1 x 2 optical (bufferless) crossbar switchesg, o4 in the(i, j — 1) cell at timet — 1, we havep; ;(t) =
) ’ 1, -

and M fiber delay lines with delaysiy,da,....dy- By ;1) In general, we have the followingpace-time

estgbhshlng a sp.ace_-tlme aFjvancement property and a mo vancement propertisee Figure 8):

tonically decreasing/increasing property for the packétsed

in the fiber delay lines, we showed that such constructions ca p;,;j(t) =pij—1(t —1)=---=p;1(t — (7 — 1)),

be used for exact emulation of an optical priority queue with for j=1,2,...,d; andi = 1,2,..., M. (35)

buffer>- | d;. We also showed that our constructions achieve

a buffer size 0@(%—2) in the case thalv = K. In particular,

for the speci?l case thaf = K = 1, we can a;:hieve a buffer v v v

size of O(M*), which is better than th& (M=) buffer size - o . . . o

previousl§/ obzained in [25] and [26]. ( [ Ps® =1 PuneD = ~TPuG-D) |
Fugthermore’ we showed that there is a gap between Eﬂ& 8. The space-time advancement property in (35)jfer 1,2,...,d;

O(]]"Viz) buffer size achieved by our constructions and thédi=1,2,..., M.

exponential upper boun@(2(M ~2N) log>(1+ %)) given in (27)

for the case thafV = K. Whether it is possible to achieve According to the operation rules of our constructions of an

such an exponential bound, and if possible, how to do thaptical priority queue, the packets at the inputs of Miefiber

remains an open research problem. For the special case @ielay lines are sorted according to their priorities. Thus,

N = K =1, it can be seen from a comment in [26] that if afave

optical priority queue has only., priority classes of packets

and one is willing to relax the requirement of exact emufatio Pra(t) 2 paa(t) 2 - 2 pua(t), forall ¢, (36)

of an optical priority queue, then the exponential uppemubuAs we assume thaf;, = L%J + 1 fori = 1,2,...,mq,

O(2M) can be achieved by usinf optical FIFO queues for d; = LMJ\fiJ +1lfori=M—-—mo+1,M—ma+2,...,M,

theseL classes of packets. This is possible because an optiaa d; > n for i = m; + 1,my + 2,..., M — my, where

FIFO queue with buffe can be constructed with(log B) my = nK, ms = nN, andm; + me < M, the definition of

2 x 2 optical crossbar switches [20]. pij(t) forj=1,2,....,nandi=(j —1)K+1,(j — 1)K +

V. CONCLUSION

At time t At time t-1 At time t-(j-1)
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following monotonically decreasing properfgee Figure 9):

PG—1)E+1,5 (1) = Pii—)r+25E) = = pr——1yn,5 (1),

forj=1,2,..

Ln. (37)
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,...,M—(j—1)N isfeasible It then follows from (36) and fiber delay lines at time with priorities higher than or equal
the space-time advancement property in (35) that we have tbehat of the tagged packet fgr= 1,2

o..,m, e,
JK JK
Ly (t) = Z Pi,d; (t) = Z Pij (t),
i=(j— 1)K +1 i=(j—1)K+1

forj=1,2,...,n, (40)

We note that the space-time advancement property in (35) _
and the monotonically decreasing property in (37) are thye kand letz(¢) be the total number of packets stored in the last

properties for our proof.
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Fig. 9. The monotonically decreasing property in (37) arel definition of
p;j(t) in (38) forj =1,2,...,n.

We need some more notations for our proof. L) be the
total number of packets stored in the cells of th#& tolumn”
in Figure 6 at timet with priorities higher than or equal to
that of the tagged packet fgr= 1,2,...,n (see Figure 9),
ie.,

M—(j—1)N

>

i=(j—1)K+1

pj(t) = pi,j(t)a forj =1,2,...,n. (38)
As p; ;(t) only assumes two values, i.@,;(t) = 0 or 1, we
have from (38) that

0<pit) <M—-(j—-1)(N+K), forj=1,2,...,n. (39)

Note that forj = 1,2,...,nandi = (j — 1)K +1,(j —
1)K +2,...,7K, we have from (4) thad; = j and hence the
last cell of thei™" fiber delay line is thei, j)™ cell. Letz;(t)

cells of the firstm, fiber delay lines at time with priorities
higher than or equal to that of the tagged packet, i.e.,

miy

n IK
.%'(t) = Zpi;di (t) = Z Z Pi,d; (t)

j=li=(j—1)K+1

(41)

Similarly, forj =1,2,...,nandi = M—jN+1, M—jN+
2,...,M—(j—1)N, we havel; = j and hence the last cell of
the i fiber delay line is the, j)™ cell. Lety;(t) be the total
number of packets stored in the last cells of thé—j N +1)™,
the (M —jN +2)", ..., and the(M — (j — 1) N)™ fiber delay
lines at timet with priorities higher than or equal to that of

the tagged packet fof = 1,2,...,n, i.e.,
M—(j—1)N M—(j—1)N
yt)= > pat)= > pijt),
i=M—jN+1 i=M—jN+1

forj=1,2,...,n, (42)

and lety(t) be the total number of packets stored in the last
cells of the lastm, fiber delay lines at time with priorities
higher than or equal to that of the tagged packet, i.e.,

M n M—(j—1)N
yt) = > pa®=> > pia)
i=M—mo+1 j=1i=M—jN+1
=> y;(t). (43)
=1

In Figure 10, we illustrate the definitions of (¢) in (40) and
y;(t) in (42) forj =1,2,...,n, andz(t) in (41) andy(t) in
(43).

Now we present three lemmas that will be used in our proof.
In the following lemma, we show that if the inequality on the
right-hand side of (39) holds with strict inequality for sem
2 < j < n, then we can obtain an upper boundgn ;. (t—j)
in terms ofp,(¢) for ;' =1,2,...,5 — L.

Lemma 9 If p;(t) < M—(j—1)(N+K) forsome2 < j < n,
then

pi—y(t—7") <pjt)+ 7K, forj =1,2,....5— 1. (44)
Proof. From (38) and) < p; ;(t) < 1 for alli andj, itis easy
to see that ifp;(t) < M — (j — 1)(N + K), thenp,,, ;(t) =0
for some(j — 1)K +1 <m < M — (j — 1)N. From the

space-time advancement property in (35), we can see that

be the total number of packets stored in the last cells of the

((j— 1K +1)", the ((j — 1)K +2)™, ..., and the(j K)"

Pm,j—1(t = 1) = pp,;(t) = 0.
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Fig. 10.  The definitions ofz;(t) in (40) andy;(t) in (42) for j =

1,2,...,n, andz(t) in (41) andy(t) in (43).

It follows from the monotonically decreasing property irv}3

andp; ;(t) > 0 for all ¢ andj that

Pmj-1(t =1) = pmyrj-1(t —1) = -~

= pl\,{f(j72)]\]_’j,1(t — 1) = 0. (45)
Thus, we have from (38)p; ;(t) < 1 for all < and j, the
space-time advancement property in (35), and (45) that

pj—1(t—1)
M—(j—2)N
i=(j—2)K+1
(-1K
i=(j—2)K+1
M—(j—2)N
i=M—(j—1)N-+1
M—(j—l)N
i=(j—1)K+1
=p;(t) + K.

Pij—1(t —1)

M—(j—1)N

>

i=(j—1)K+1

Pij—1(t) + pij-1(t—1)

+ pij-1(t —1)

<K+

pij(t) +0
(46)

From (46) and the assumption tha{(t) < M —(j—1)(N+
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K), we have

pj—1(t—1) <p;(t) + K
<M-(G-1)(N+K)+K
<M-(j-2(N+K).

By repeating the above argument that leads to (46), we obtain
pj,Q(t — 2) S pjfl(t - 1) + K S pj(t) + 2K.

It should be clear that by repeating the above argument’for
times, we obtain (44) foj’ = 1,2,...,j — 1 and the proof is
completed. |

In the following lemma, we give an upper bound 9(Y)
in terms ofz(t).

Lemma 10
z(t) +ma —mq, Iif N>K,
“”S{um if N < K. (47)
Proof. If N > K, then from (43), the monotonically

decreasing property in (37), ;(¢) < 1 for all s and j, (41),
my = nK, andmy = nN, we have
—(-1N

ity => >

j=1i=M—jN+1

pi;(t)

n M—jN+K M—(j—-1)N
=3 > i)+ > b))
j=1 \i=M—jN+1 i=M—jN+K+1
n K

Di,j (t) +N-K
J i=(—1)K+1
=z(t) + n(N — K) = x(t) + ma — my.

On the other hand, iV < K, then it is clear from (43),
the monotonically decreasing property in (3j),(t) > 0 for
all s andj, and (41) that

n M—(j—1)N (j—1)K+N

gy =Y. > pii<> >

j=1i=M—jN+1 j=li=(j—1)K+1

pi;(t)

The proof is completed. [ |

In the following lemma, we derive the key inequalities that
will be useful in finding a lower bound on the total number
of packets stored in the fiber delay lines with prioritiesh@g
than or equal to that of the tagged packet.

Lemma 11
() z(t) <z(t-1)+ K.
(i) z(t—1) — K < p1(t)
20t — 1)+ M — 2my + N, if N> K,
= 2z(t—1)+ M —m; —ma+ N, Iif N<K.
(i) z(t —1)<p;(t)+ (2 — 1)K for j =2,3,...,n.
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Proof. (i) For j = 2,3,...,n, we have from (40), the that
monotonically decreasing property in (37), and the spane-t

advancement property in (35) that W(t—1) Zpl 4 (t—1)
G-DK M—ma
viat—1)= > pijalt—1) = sz'.,di (t=1+ Y piat-1)
i=(j—2)K+1 i=1 i=mi+1
G-DK M
> Z Pitr,j—1(t —1) + Z pia; (t—1)
i=(j—2)K+1 i=M-—ma+1
JK M—mo
= > pijalt-1) =at-D+ " pia(t—1) +y(t —1)50)
i=(j—1)K+1 i=mi+1
iK Also, it is clear that) < na(t) < N.
= > pilt)==,(). (48)  We consider the two case$ > K and N < K separately.
i=(G—1)K+1 Case 1:N > K. From the operation rules in Section II-B,

we see that ife(t) = 0, then we haveny () = 0 (as in this
It follows from (41), (40),p; ;(t) < 1 for all i andj, and Case there are no packets departing from the departure links

(48) that at timet, and theN packets dumped through the loss links at
time ¢ are theN lowest priority packets ig(t — 1) Ua(t) so
n that they have priorities lower than that of the tagged pg¢cke
ij = (t ij(t) and if ¢(t) = 1, then we haveny(t) = K (as in this case
j=2 the K packets departing from the departure links at tinzge
n the K highest priority packets ig(t — 1) U a(t) so that they
= me(t) + ij (t) have priorities higher than that of the tagged packet, aed th
' j=2 N — K packets dumped through the loss links at titnare
n the N — K lowest priority packets imj(t — 1) U a(t) so that
SK+Y za(t—1)=K+> x(t—1) they have priorities lower than that of the tagged packet). |
j=2 j=1 follows that0 < n4(t) < K.
n-l Thus, we have from (49), (50p, ;(t —1) > 0 for all < and
SK+Y ajt—D4a(t—1)=a(t-=1)+K.  j ny) >0 andn(t) < K that
j=1
pi(t)

(i) Note thatp,(t) = M p;1(t) is the total number of =

packets stored in the celld, 1), (2,1), ..., (M, 1) at timet ot —1) + . Z Piai(t = 1) +y(t — 1) +na(t) — na(t)
with priorities higher than or equal to that of the taggedkeac ot —1)— sz1+1

TheseM packets can only come from the packets stored =

in the last cells of theV/ fiber delay lines at timé — 1, i.e., and we have from (49), (50, ;(t — 1) < 1 for all i and j,
the cells(1,dy), (2,d2), ..., (M,dyn), the N packets arriving (47), no(t) < N, andny(t) > 0 that

from the N arrival links at timet, and the K — N packets

arriving from the K — N idling links at timet (in the case pa(t)

that N < K). Letn,(t—1), n2(t), andns(t) be the number of M—mz
packets stored in the last cells of théfiber delay lines at time = (¢ — 1) + D pia(t—1) +y(t— 1) +na(t) —na(t)
t — 1, the number of packets arriving from tié arrival links i=mi+l

at time¢, and the number of packets arriving from the— N < z(t — 1) + (M —ma —m1) + (z(t —= 1) + mg —m1) + N
idling links at timet¢ (in the case thalV < K), respectively, = 2z(t — 1) + M — 2m; + N.

with priorities higher than or equal to that of the taggedkeac i , i

Also, let n4(t) be the number of packets leaving the system C@S€ 2:V < K. From the operation rules in Section II-C,

at time¢ with priorities higher than that of the tagged packe{"’e see that ifc(t) = 0, then we haveus(t) = 0 (as in this
Clearly, we have case the/{ — N fictitious packets from the idling links depart

from the lastK’ — N departure links at time, they cannot be
the tagged packet and hence they have priorities lower than

pi(t) _ that of the tagged packet) and(¢) = 0 (as in this case the
_ { it = 1) 4+ n2(t) —na(t), it N> K, 49y K — N packets departing from the departure links at time
n(t = 1) +na(t) +n3(t) —na(t), i N <K are theX — N fictitious packets from the idling links and the

N packets dumped through the loss links at tilmare the
From the definition ofp; ;(¢), we immediately see that N lowest priority packets ij(t — 1) U a(t) so that they all
n(t—1) = Z?ilpim (t —1). It follows from (41) and (43) have priorities lower than that of the tagged packet), and if
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¢(t) = 1, then we have) < n3(t) < K — N (as in this case It follows from (41), (53), and (54) that

the K — N fictitious packets from the idling links at timeare

routed to the fiber delay lines) and (¢) = K (as in this case z(t — 1) Zpl d; ) <mq <p;(t)+ (25 — 1)K. (55)
there are no packets dumped through the loss links at#jme

and theK packets departing from the departure links at timghe proof is completed by combining (51) and (55). m

t are theK highest priority packets ig(t — 1) Ua(t) so that ~ We are now in a position to show that the total number of
they have priorities higher than that of the tagged packet).packets stored in the fiber delay lines at titgavith priorities

follows that — K < n3(t) — na(t) < 0. higher than or equal to that of the tagged packet is at legst
Thus, we have from (49), (50p, ;(t —1) > 0 for alli and Clearly, it suffices to show that the total number of packets

J» n2(t) > 0, andnz(t) — na(t) > —K that stored in the cells of the first columns in Figure 6 at time
M—m; to with priorities higher than or equal to that of the tagged

pi(t) =zt —1)+ Z pia,(t—1)+ylt—1) packet is at leasty,, i.e., >>7_, p;(to) > «a;,. Indeed, we
i=my+1 have from Lemma 11(iii), the upper bound in Lemma 11(ii),

+na(t) + ns(t) — na(t) the fact thatp; ;(¢) is an integer, ang; (to) = io that
>a(t—-1)- K,

i(t
and we have from (49), (50); ;(t — 1) <1 for all + and j, ;pﬂ( 0)
(47),na(t) < N, andns(t) — ng(t) <0 that

M—mg = pl (to) —|— ij(to)
prt) =x(t—1)+ Y pig(t—1)+yt—1) =
i=mi+1
+na(t) + na(t) — na(t) > palto) + Z to— 1) — (2j - DK)*

<z(t—1)+(M—-—ma—mi)+z(t—1)+N+0

pl(to) (1\172m1+N)7(4j72)K +
= 23(t— 1)+ M —my —ma + N. pl(foHZg‘:zf( 2 ) Ng}l
(i) Let 2 < j <n. If pj(t) <M —(j —1)(N + K), then Z pi(to) + 3" |’(P1(to)—(]w—ml—m2+N)_(4j—5)K)7+‘|
from (44) with j/ = j — 1, the lower bound in Lemma 11(ii), =2 2 it N < K ’
and Lemma 11(i), we have o4 ((i07M+2m172N7(4j72)K)+1’
pit)+ (G — DK >pi(t—(j—1)) = if N> K,
> a(t=j) - K T o+ X (e TN (2
>at—j+1)—2K if N <K.
. = aio. (56)
>zt —1) - jK. A-2. The second half of the proof
It follows that In the second half of the proof, we show that there are at
2t —1) < p;(t) + (2§ — K. (51) |e§.St.B.i0 packets stored in the fiber delayilin_es at titgevith
. ] priorities lower than or equal to the priority of the tagged
On the other hand, ip;(t) = M — (7 — 1)(IN + K), then packet.

we have Let p”( ) = 1 if the priority of the packet stored in the

pit)+ (2 — 1)K =M—(j—1)(N+K)+(2j —1)K  (i,j)™ cell at time¢ is lower than or equal to that of the
=M-(j—-1)(N-K)+K. (52) tagged packet, and let ;(t) = 0 otherwise. Then we have

the following space-time advancement property
For N > K, we have from (52)2 < j < n, m; = nk,

mg =nN, and M > m; +my that pii(t) =0 ;1 (t=1) = =pi(t—(j - 1)),
pi)+ (2~ 1)K =M—(—1)(N-K)+K forj=1,2,...,d; andi =1,2,..., M. (57)
>M-—(n-—1)(N-K)+K and we have the followingronotonically increasing property

=M —mo+mi +N PG-1k+1,5 ) S PG-nkt2,E) < Py, (),

> my. (53) forj=1,2,...,n. (58)
For N < K, we also have from (522 < j <n, andM > Let p;(t) be the total number of packets stored in the cells
my + my that of the “j™ column” in Figure 6 at time with priorities lower

. than or equal to that of the tagged packet fot 1,2, ...
pi(t) + (2] — DK = M — (j — )(N — K) + K fhan or equ gged packet jor 1,2,....n
>M-2-1)(N-K)+K P
=M+2K-N Py =Y P, forj=12...,n (59

> my. (54) i=(j—1)K+1
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As 0 < p; ;(t) < 1forall i andj, it follows from (59) that Lemma 14

. . i)y (t) <y (t—1)+ N.
0 §p;-(t) <M—-(G-1)(N+K), forj=1,2,...,n. (60) E"))yy/((g_ 1y)(_N ip/l(t)
Let 2 () be the total number of packets stored in the last S WE-D+M-—m-—my+ K, if N>K,
cells of the((j — 1)K +1)", the (j— K +2)", .., andthe = — | 2y/(t=1) + M —2my + K, if N <K.
(j K )™ fiber delay lines at time with priorities lower than or (i) ¥'(t = 1) <pj(t) + (25 — )N for j = 2,3,...,n.
equal to that of the tagged packet fpe=1,2,...,n, i.e., Proof. (ii) Let n)(t — 1), ny(t), n4(t), andn,(f) be the

iK JK number of packets stored in the last cells of tHefiber delay
50; (t) = Z pé,di (t) = Z p’i,j(t), lines at timet — 1, the number of packets arriving from thé
i=(j—1)K+1 i=(j—1)K+1 arrival links at timet, the number of packets arriving from the

forj=1,2,...,n, (61) K- N idling links at timet (in the case thalVv < K), and the

and leta’(¢) be the total number of packets stored in the lagtgmber of packets leaving the system at timeespectively,

cells of the firstm, fiber delay lines at time with priorities W'th priorities lower than or qual to that of the tagged pick
. As in the proof of Lemma 11(ii), we can see that
lower than or equal to that of the tagged packet, i.e.,

m n K Pi(t)
d) = pia )= Y phalt) _ it = 1)+ na(t) —ni(t), if N> K,
i=1 J=1i=(j—1)K+1 T it — 1)+ nh(t) +nh(t) —ny(t), if N < K.(67)
_ zn:x; (). 62) From the definition o ;(¢), (62), and (64), we see that
Jj=1

M
Similarly, lety;(t) be the total number of packets stored in ni(t—1) = Zpé,di (t=1)
the last cells of thg M — jN + 1), the (M — jN + 2)1, =1
..., and the(M — (j — 1)N)" fiber delay lines at time with R _ / _
priorities lower than or equal to that of the tagged packet fo N Z;pi’di -1+ _7Z+1pi’d7‘ (t=1)
j=1,2,....n, ie., - o

M—mg

M
M—(j-1)N M—(j-1)N + Z P (t—1)
i = > pa®= > P, i=M—ma+1
i=M—jN+1 i=M—jN+1 M—mao
forj=1,2,...,n, (63) =a2/(t—1)+ > plat—1)+y (t—1)68)

. = 1
and lety’(t) be the total number of packets stored in the last e

cells of the lastn, fiber delay lines at time with priorities AlSO, it is clear tha) < nj(t) < N.

lower than or equal to that of the tagged packet, i.e., We consider the two case¥ > K and N < K separately.
v M—(G-1)N Case 1:N > K. From the arguments in Case 1 in the proof
/g — ) — - 4 - of Lemma 11(ii), we can see that i{t) = 0, then we have
y(= D a®=> > #a) (1) = N, and if (t) = 1, then we haver,() = N — K. It

=Mt J=H MmN follows that N — K < n}(t) < N.

_ iy/‘(t) (64) Thus, we have from (67), (68); ;(t —1) > 0 for all 7 and
= ' j, nh(t) > 0, andn/(t) < N that

The following three lemmas (Lemma 12-Lemma 14) arg(t)

the counterparts of the three lemmas (Lemma 9-Lemma 11) M—m;
in the first half of the proof. They can be obtained froms z'(t — 1) + Z Pia,(t = 1)+ 9 (t = 1) +ny(t) —nj(t)
Lemma 9-Lemma 11 by replacing(¢), z(t), andy(t) with i=mi+1

p;(t), y'(t), anda’(t), respectively, interchanging” and N, >y/(t —1) — N,
and interchangingn; andms. As the proofs for Lemma 12—
Lemma 14 are very similar to those for Lemma 9-Lemma 1
we only give the proof of Lemma 14(ii) here.

nd we have from (67), (68); ;(t —1) <1 for all i andyj,
6),n45(t) < N, andn}(t) > N — K that

/
pi(t)

Lemma 12 If p/i(t) < M — (j — 1)(N + K) for some2 < M—ms
j < n, then =2/(t—1)+ Z Pia,(t—1)+ 9 (t—1) +n5(t) —ny(t)

! -/ ! -/ -/ . i=mi+1
Py (t—3") <pi(t)+4'N, for i’ =1,2,...,5 - 1. (65) '

I J =y (t—-1)+(M—-my—m1)+y(t—1)+N—(N-K)
Lemma 13 =2y (t—1)+ M —mqg —ma+ K.

(1) < y'(1), ?f N2 K, 66 Case 2:N < K. From the arguments in Case 2 in the proof
y'(t) +my —mo, if N<K. of Lemma 11(ii), we can see that if{¢) = 0, then we have
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n4(t) = K — N andn/(t) = K, and if ¢(t) = 1, then we with delays equal to 1. To see this, assume that thereBare
have0 < n4(t) < K — N andn)(t) = 0. It follows that packets stored in the priority queue at timeThen it is easy

—N < nf(t) —njy(t) < K — N. to see that the highest priority packets must be stored in
Thus, we have from (67), (68); ;(t—1) > 0 for all i and the last cells ofK" fibers at timet. Otherwise, if at least one
J, nh(t) >0, andnj(t) — nj(t) > N that of the K highest priority packets is not stored in the last cell

M—ms of a fiber at timet, then when the control input is enabled at
P = 2t — 1) & D) (-1 timet + 1_ an(_j there are no arriving pa(_:kets at tlm_e 1, that
nlt) = ) izg;ﬂp“dl( A ) packet will still be stored in its fiber at time+ 1 and it cannot
depart from the priority queue at tinte+- 1, and we will have
5(t 5() —nj(t o o : :
+,n2( )+ m(t) = (?) a contradiction to the priority departure property in (P#) i

Definition 1. Similarly, theN lowest priority packets must be
and we have from (67), (68)y;(t — 1) < 1 for all i and, §t0red in the last cells of anothé_fr fi_bers at timc—_t. Otherwise,_

(66), ny(t) < N, andny(t) — n4( ) < K — N that if at least one of theV lowest priority packets is not stored in
the last cell of a fiber at timg then when the control input is

) ) Ml . disabled at time + 1 and there areV arriving packets at time
pi(t) =a'(t = 1) + Z Pia,(t=1) +y(t—1) t+4 1 with priorities higher than those of th¥ lowest priority
) it packets, that packet will still be stored in its fiber at time1l
+ny(t) +n3(t) — ny(t) and it cannot be dumped from the priority queue at timel,
< (Wt —=1)+m1s—ma)+ (M —ms—mq) and we will have a contradiction to the priority loss progert
+y'(t—1)+ N + (K — N) in (P5) in Definition 1. Furthermore, assume that the control

input is disabled at time+ 1 and there are no arriving packets
at time¢ + 1. Then it is clear that thé? packets stored in the
The proof is completed. m priority queue at timg remain stored in the priority queue at
Now we can show that the total number of packets stordithe ¢ + 1, and hence thé< highest priority packets and the
in the fiber delay lines at timé, with priorities lower than N lowest priority packets that appear at the outputsVof K’
or equal to that of the tagged packet is at least It is clear fibers at the beginning of thg+ 1)™" time slot must be routed
that it suffices to show that the total number of packets dtorto the inputs of N + K fibers and stored in the “first” cells
in the cells of the firstx columns in Figure 6 at timé, with  of those N 4 K fibers at timet 4- 1. As there areB3 packets
priorities lower than or equal to that of the tagged packet #ored in the priority queue at time+ 1, it follows from the
at leastgs;,, i.e., > =1 P(to) > Bi,. This can be seen from above argument that th& highest priority packets and the
Lemma 14(iii), the upper bound in Lemma 14(ii), the fact thaV lowest priority packets must be stored in the “last” cells

=2y (t—1)+ M —2ms + K.

p; ;(t) is an integer, ang (to) = M —io + 1 as follows: of those N + K fibers at timet + 1. Apparently, this is only
n’ possible if thoseV + K fibers have delays equal to 1. This
Zpl’(t ) shows that there are at leaSt+ K fibers with delays equal
£ PO to 1.
Jj=1
n Let
/ /
= pi(to) + Y _ Pj(to) Fodi+1
j:2J J = max N+K§jISM:dk+1S Z:ZZITZ_F
> pi(to) + (4 (to — 1) = (25 — 1)N)T forall k=0,1,...,j —1}.
j=2
, n P (to) — (M—rmy —may+ K)—(4j—2)N \ 4 In other words, ifN + K < j < M — 1, thenj is the unique
pl(t0)+zj:2[( 2 N >K) 1, positive integer il N + K, N+ K +1,..., M — 1} such that
| ko di+1 .
= (o) + S [(Prlio)=(M=2mat K)—(4j=2)N yq diy1 < [Z= ] for all k= 0,1,...,j — 1 andd; 41 >
p1tto J=2 if N < K. [M] + 1. On the other hand, if = M, thend;; <
E?:l dit+1 —
M —io+1+3 5 ,[( 2 )l We claim that
- if N> K, ‘
= . n 2ma—io+1—K—(4j—2)K \+ J
M 20+1+2j:2(( : 0. 5 ) -|7 BSZdZ (70)
if N <K. P
= Bio- (69) If j = M, then (70) holds trivially as thé/ fibers with delays
dyi,ds, ..., dy canonly accommodate a maximumznj'f‘i1 d;
APPENDIX B packets at any time. On the other handyif- K < j < M —1,

PROOF OFTHEOREM6 then we prove (70) by contradiction. Suppose on the contrary

Letd; < ds < --- < dy be the delays of thd/ fiber delay thatB > Zzzl d;+1. Assume that the priority queue is empty
lines in the N-to-K priority queue. First note that; = 1 for at timet, there is an arriving packet at time-1,¢+2,...,t+
i1 =1,2,...,N + K, i.e., there are at leas¥V + K fibers ’_, d;, and the control input is disabled at time+ 1,¢ +
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L t+37_, d;. Thenitis easy to see that there and_, d St d+1 n lrdNJrKJrl—‘

packets in the priority queue at time->_7_, d; and they must K K

be stored in thej fibers with delaysd;,ds,...,d; at time b b

t+>7_, d;. Otherwise, if at least one of tHe)]_, d; packets <b+ { -‘ <b+ ( + 1)

in the priority queue at time + >_7_, d, is stored in one of 1

the M — j fibers with delaysi;1,d;,2,...,dy attimet + =(b+ K) (1 + —) - K,
7_, d;, say the fiber with delayi;, wherej +1 < j' < M, K

then that packet must have entered the fiber with déjat d < Zf\gK” di +1

some time’ with t+1 < ¢’ < ¢+3"/_, d;. In the case that the =53 K

control input is enabled at timé+1,¢'+2, ... and there are no NAK4+1

arriving packets at timé&+1,¢'+2, . . ., the packet entering the 2iz1 di +1 + [dNJrK“w

fiber with delayd;, at timet’ cannot depart from the priority K K

IN

queue duringt’, t’ +d; — 1], and we will have a contradiction 1

to the nonidling property in (P2) in Definition 1 requiringath <(b+K) (1 + E) - K

all the ¢’ — t packets stored in the priority queue at tirtie 1

should depart from the priority queue durifity-1, ¢/ + [ L=t = + Pb +K)(L+ %) - KW

(the contradiction can be seen froh‘—‘uK—1 < ZITld] < K )
(=it < gy 1< dj - 1), Furthermore, assume that < (b+K) ( n l) K+ (b+K) (1+ %)
there is an arriving packet at tinte- > d;+1, there are no K K
arriving packets at time+ 37, d; +2,t+>_ d;+3,..., 64 K) (1 . i>2 .

and the control input is disabled at time- "/, d; + 1 and N K ’

is enabled at timeé + >/ d; +2,6+> 7 d; +3,.... As

we just showed that there ale]_, d; packets stored in the

j fibers with delaysl;,ds, ..., d; at timet+ Y7, d;, these d; Z Ldi+1

J fibers are full of packets at time+ _7_, d; so that there K

are j packets at the outputs of thegdibers at the beginning Z 20 41 d-

of the (t + >_7_, d; + 1)™ time slot. Since the control input { K —‘ [ JKIW

is disabled at time +>_7_, d; + 1, it follows that among the

packet arriving at timeé + >_7_, d; + 1 and thej packets that J—N-K=2

appear at the outputs of thegdibers at the beginning of the < (b+K) (1 + E) - K

(t + 327, d; + 1) time slot, at least one of them must be (b+K) (1+ )ijfoQ %
stored in the first cell of one of th&/ — j fibers with delays + K
djt1,djt2,...,dy at timet + Y7 d; + 1, say the fiber [ K —‘
with delayd;~, wherej +1 < j” < M, as there are at most 1\~ N-K-2

j packets that can enter thdibers with delaysi;, do, . .. , d; < (b+K) (1 + E) - K
attimet+)_7_, d;+1. It follows that the packet entering the L\ j—N—K—2

fiber with delayd  attimet+)_7_, d;+1 cannot depart from + (b+K) (1 + ?)

the priority queue duringt +>°7_, d + 1,437 di+dj], K Nkt

and we will have a contradictlon to the nonidling property in b4 K) (1 N i)] e
(P2) in Definition 1 requiring that all thg"]_, d; 4+ 1 packets K '

stored in the priority queue at time+ > 7, d; + 1 should .
priorty 4 Zicy, Therefore, it follows from (70)p = [AEE+HL] < M42K gngd

- . ' — <
depart from the priority queue during+ >/, d; +2,¢t + N+ K <j< M that

1 di+ (M] +1] (the contradiction can be seen from
J d +1 J N+K
[E“T] +1 <dj;41 <dj»). As such, we have shown thatB < d — d; _
. 7 + dl
(70) also holds iftN + K < j < M — 1. _Z Z Z

NAK41 ) = i=N+K+1
Letb:(ﬁ].Asdi:1forz:1,2,...,N+Kand <(N+K)
dp1 < (721‘:% ) forall k =0,1,...,5 — 1, we can use j 1\ N-K-1
the inequality thafz +y] < [x]+ [y] for 2,y > 0 to deduce + Z <(b+K) ( —> — K)
that i=N+K+1
1 J—N-K
ZN+Kd+1 N4 K+1 =(N+K)+(b+K)K<<1+?) —1)
dnt+r+1 < I = I =0,
—K(j— N -K)

N+K+1 N—K
- d; +1 1
dn+r+2 < {ZZ_#W S(N+K)+(K2+2K+N)<(1+E) _1>
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1 M—-N-K
(K? 42K + N) <1 + E) [19]

(K2 + 2K + N)Q(ZW_N—K) 10g2(1+%)'
[20]

The proof is completed.
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