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Abstract

In this paper, we introduce a hand gesture recognition system to recognize continuous gesture before stationary background. The system
consists of four modules: a real time hand tracking and extraction, feature extraction, hidden Markov model (HMM) training, and gesture
recognition. First, we apply a real-time hand tracking and extraction algorithm to trace the moving hand and extract the hand region, then we
use the Fourier descriptor (FD) to characterize spatial features and the motion analysis to characterize the temporal features. We combine the
spatial and temporal features of the input image sequence as our feature vector. After having extracted the feature vectors, we apply HMMs to
recognize the input gesture. The gesture to be recognized is separately scored against different HMMSs. The model with the highest score
indicates the corresponding gesture. In the experiments, we have tested our system to recognize 20 different gestures, and the recognizing rate

is above 90%.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Hand gesture has been one of the most common and
natural communication media among human being. Hand
gesture recognition research has gained a lot of attentions
because of its applications for interactive human-machine
interface and virtual environments. Most of the recent works
related to hand gesture interface techniques [1] has been
categorized as: glove-based method [2,3] and vision-based
method. Glove-based gesture interfaces require the user to
wear a cumbersome device, and generally carry a load of
cables that connect the device to a computer. There are
many vision-based techniques, such as model-based [4] and
state-based [5] which have been proposed for locating
objects and recognizing gesturers. Recently, there have been
an increasing number of gesture recognition researches
using vision-based methods.

Huang et al. [6] use 3D neural network method to
develop a Taiwanese Sign Language(TSL) recognition
system to recognize 15 different gestures. David and Shah
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[7] propose a model-based approach by using a finite state
machine to model four qualitatively distinct phases of a
generic gesture. Hand shapes are described by a list of
vectors and then matched with the stored vector models.
Darrell and Pentland [8] propose space-time gesture
recognition method. Signs are represented by using sets of
view models, and then are matched to stored gesture
patterns using dynamic time warping.

Starner et al. [9] describe an extensible system which
uses one color camera to track hands in real time and
interprets American sign language (ASL). They use hidden
Markov models (HMMs) to recognize a full sentence and
demonstrate the feasibility of recognizing a series of
complicated series of gesture. Instead of using instrumented
glove, they use vision-based approach to capture the hand
shape, orientation and trajectory. The vision-based method
selects the 3-D input data as the feature vectors for the
HMM input, other HMM-based [10,11] hand gesture
recognition systems have also been development. Liang
et al. [12] develop a gesture recognition of TSL by using
Data-Glove to capture the flexion of 10 finger joints, the roll
of palm and other 3-D motion information.

Cui and Weng [13] develop a non-HMM-based system
which can recognize 28 different gestures in front of
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complex backgrounds. The recognition of this system is
93.1% but it relies on a slowly segmentation scheme which
takes 58.3 sec for each image. Nishikawa et al. [14] propose
a new technique for description and recognition of human
gestures. The proposed method is based on the rate of
change of gesture motion direction that is estimated using
optical flow from monocular motion images.

Nagaya et al. [15] propose a method to recognize
gestures using an approximate shape of gesture trajec-
tories in a pattern space defined by the inner-product
between patterns on continuous frame images. Heap and
Hogg [16] present a method for tracking of a hand using
a deformable model, which also works in the presence of
complex backgrounds. The deformable model describes
one hand posture and certain variations of it and is not
aimed at recognizing different postures. Zhu and Yuille
[17] develop a statistical framework using principal
component analysis and stochastic shape grammars to
represent and recognize the shapes of animated objects. It
is called flexible object recognition and modeling system
(FORMS). Lockton et al. [18] propose a real-time gesture
recognition system which can recognize 46 ASL letter
spelling alphabet and digits. The gestures that are
recognized by [18] are ‘static gestures’ of which the
hand gestures do not move.

Different from [18], this paper introduces a hand gesture
recognition system to recognize ‘dynamic gesture’ of which
a gesture in performed singly in complex background.
Different from previous HMM-based gesture recognition
systems, our system do not use instrumented glove, nor any
markers, but use 2D video input. Our system tracks the
moving hand and analyzes the hand-shape variation and
motion information as the input to the HMM-based
recognition system. The system consists of three modules:
areal-time hand tracking, feature extraction, HMM training,
and HMM-based gesture recognition. First, we introduce a
real time hand gesture tracking technique which can track
the moving hand and then extract the hand shape from
complex background. It is a simple and reliable method
developed as a real-time image processing subsystem which
consists of five basic complementary image processes:
motion detection, skin color extraction, edge detection,
movement justification, and background subtraction.

We apply the FD to characterize the spatial information
and the optical flow method for motion analysis to
characterize the temporal information. We combine FD
and motion information of the input image sequence as our
feature vector. With these extracted feature vectors, we can
train our system using HMM approach which is used to
recognize the input gesture. In training phase, we apply
HMM to describe the gestures in term of model parameters
for each different gesture. The gesture to be recognized in
separately scored against different HMMs. The model with
the highest score is selected as the recognized gesture. Our
system consists of 20 different HMMSs which are used to test
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Fig. 1. The flow diagram of hand gesture recognition system.

20 different hand gestures. The experimental results show
that the average recognition rate is above 90%.

Fig. 1 shows the flow diagram of our hand gesture
recognition system consisting of three phases: the feature
extraction phase, the training phase, and the recognition
phase. We combine FD and motion features as the feature
vector to describe the moving object. Each feature vector is
represented by a symbol. Each symbol corresponds to the
designated partition generated through the vector quantiza-
tion of the feature vectors of all possible hand-shapes of the
training gestures. For each feature vector, a symbol is
assigned. In our system, we represent the input image
sequence by a sequence of symbols. In training phase, we
need to build a HMM for each gesture. In the recognition
phase, a given input gesture is tested by every HMM with
different model parameters. The outcome of the HMM with
the maximum likelihood function is identified to recognize
the gesture.

2. Hand tracking and handshape extraction

Here, we develop a real-time hand tracking method
which is robust and reliable in complex background. To
track the moving hand and then extract the hand shape fast
and accurately, we need to consider the trade-off between
the computation complexity and robustness.
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(a) (b)

(c)

Fig. 2. (a) The origin frame, (b) apply our threshold, (c) apply Ostu thresholding.

2.1. Feature extraction

In our system, the motion of the object provides
important and useful information for object localization
and extraction. To find the movement information, we
assume that the input gesture is non-stationary. When
objects move in the spatial-time space (an image sequence),
motion detector is able to track the moving objects by
examining the local gray-level changes. Let F;(x,y) be the
ith frame of the sequence and D;(x,y) be the difference
image between the ith and the (i 4+ 1)th frame defined as

Di(x,y) = T{IF(x,y) = Fip1(x, )} ey

where T; is a thresholding function, F;(x,y) and D;(x,y) are
all 160 X 120 images, and D;(x, y) is binary image defined as
follows

1, IF(x,y) = Fiyi(x,y)l = threshold
by ®

0, otherwise.

(1) Thresholding. Having extracted the moving object
region, we can apply the thresholding on the frame
difference (i.e. Eq. (2)) to extract the possible moving
region in complex background. We find that conventional
thresholding methods, such as Ostu thresholding [27], are
not suitable for the case of detecting motion difference.
Instead, we use a simple thresholding technique to extract
moving regions. The threshold for motion detection is
determined as #; = 0.2u, where  is the average luminous
of captured image F;(x,y). Fig. 2 shows that if there is no

significant movement, Ostu thresholding method will
generate a lot of noise. We choose the weighting factor
0.2 because we do not need highly precise segmented
image. Our thresholding technique is not very sensitive to
the speed of the hand movement, so that our method more
stable than the Ostu method.

(2) Skin color detection. Skin can be easily detected by
using the color information. First, we use the constraint, i.e.
R> G > B, to find the skin color regions which may
include a wide range of colors, such as red, pink, brown, and
orange color. Therefore, we will find many regions other
than the skin regions. However, those non-skin regions
satisfy our constraint will be excluded due to there is no
motion information, e.g. a region in orange color will not be
misidentified as the hand region. Second, we may obtain
some sample colors from the hand region. To find the skin
regions, we compare the colors in the regions with the pre-
stored sample color. If they are similar, then the region must
be skin region. The hand region is obtained by the hand
tracking process in the previous frame. Fig. 3 shows our skin
detection results. The rectangular region is the hand region
in the previous frame. Finally, we may eliminate some skin-
similar colors, e.g. the orange color, and denote the skin
color image as S;(x,y).

(3) Edge detection. Edge detection is applied to separate
the arm region from the hand region. It is easy to find that
there are fewer edges on the arm region than on the palm
region. Here, we use a simple edge detection technique (e.g.
Kirsch edge operator) to obtain different direction edges,
and then choose the absolute maximum value of each pixel

Fig. 3. (a) The origin frame, (b) extracted skin regions satisfying R > G > B, and (c) compare the colors of the extracted skin regions with the sample skin

color.
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: More edge region

() : Less edge region

(b)

Fig. 4. (a) The origin frame, (b) the edge detection result.

to form the edge image of ith frame as E;(x, y). Fig. 4 shows
that the edges on the arm region are less than those on
the palm region. We combine edge, motion, skin color
region information to allocate the hand region.

(4) Combination of motion, skin color, and edge. The
hand gestures information consists of movement, skin color
and edge feature. We use the logic ‘AND’ to combine these
three types of information, that is

Ci(x’)’) :Di(x9y)ASi(xay)AEi(x’y) (3)

where D;(x,y), S;(x,y) and E;(x,y) indicate the movement,
skin color and edge images. The combined image C;(x,y) as
many features that can be extracted. Because the different
image processing methods have extracted different kind of
information. Each image consists of different

characteristic regions such as motion regions, skin color
regions and edge regions as shown in Fig. 5. Fig. 6 shows
the combined region C;(x,y). The combined image consists
of a large region in the palm area and some small regions in
the arm area. We may separate these two regions to allocate
the hand region.

(d)

Fig. 5. The hand gesture information. (a) Original image F;(x, y), (b) motion
region D;S(x,y), (c) skin color region S;(x,y), (d) edge region E;(x, y).

Fig. 6. The combined region C;(x, y).

(5) Region identification. A simple method for region
identification is to label each region with a unique integer
number which is called the labeling process. After labeling,
the largest integer label indicates the number of regions in
the image. After the labeling process, the small regions can
be treated as noise and then be removed. Fig. 7(a) shows that
the labeling results and Fig. 7(b) shows the center position
p.(i) of the hand region. We use L;(x,y) to indicate the
largest labeled region in Frame i.

2.2. Robustness and low complexity

Using motion and color information is not sufficient, and
hand-shape is not always the largest labeled region. If there
are other skin-color objects moving rapidly, the tracking
process may fail. We need to take advantage of the motion
smoothness constraint for trajectory justification, then use
background subtraction to find the foreground object, and
finally identify the hand region.

2.2.1. Hand gesture trajectory justification

Based on the assumption that the hand object move
smoothly between two connected frames, we develop a
trajectory justification algorithm. We assume that the
movement of the hand is in a constant speed. For current
frame F;, we get the center point p-(7) of the extracted hand
region. We assume smooth trajectory so that the variation of
pc(i) is constrained in a certain range. If the variation of
pc(i) is out of a certain range (i.e.lpc(i) — pr(i — DI > §),
we increase the wrong (or bumpy) position counter, i.e.
WC = WC + 1, else we set pgr(i) = pc(i). To avoid the
trajectory of pc(i) being bumpy for while, we check if
WC > 3. Ifitis not, then the hand gesture is suppose to be at
a right position, and we may set pp(i) = pr(i —1). If
WC > 3, then the hand gesture may be identified at a wrong

é 4

(a) (b)

Fig. 7. (a) The labeling results L;(x, y), (b) the correct center position.
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Fig. 8. The flow diagram of hand gesture tracking system.

position, therefore, we change the right position pg(i) =
pc(i), reset WC = 0, and go to next frame F;, .

2.2.2. Processing ROI

Fig. 8 shows the flow diagram of our hand gesture
tracking system. In previous section, we have mentioned
how to generate five image frames: D;(x, y), S;(x,y), Ei(x,y),
Ci(x,y) and L;(x,y). The three function blocks indicate
motion detection, edge detection, skin color detection,
which can operate in parallel. To reduce the computation
complexity, we do not process the entire image frame but
concentrate on the region of interest (ROI). For instance,
one ROI is a part of F;(x,y), where the corresponding
D;(x,y) # 0. We deal with the first ROI to obtain S;(x, y).
The other ROI is also part of the F;(x,y), where the
corresponding S;(x,y) # 0. Similarly, we process the second

ROI to obtain E;(x,y). Fig. 9 shows the step-by-step
processing of motion detection, skin color detection, and
edge detection. We can dramatically reduce the compu-
tation complexity of our system.

2.2.3. Background subtraction

For gesture recognition process, we need more hand
gesture information. We use a simple background subtrac-
tion technique to obtain the hand gesture shape. We create
the background model BG; by using the first frame F(x, ).
Fig. 10 shows the foreground region, and Fig. 11 shows the
procedure to obtain the foreground.

To update our background model, we adapt our back-
ground model by using current frame F; and foreground
region FG;. We have generated two different types of
foreground regions, one is FG1; = FG;, which is used to
obtain the hand gesture region; and the other is FG2;, (FG2;
is obtained by dilating FGl;), which is applied for
background updating process. FG1; has a compact shape,
so that it can be used to obtain the hand region. Because
there are small errors on the boundary of foreground and
background, we do not use FG1; to update the background.
We generate FG2; for background updating. We only
update the background region where FG2; # 0. Fig. 12
shows the difference of these foreground regions. The
background update equation is

BG,,, = (1 — w)BG; + wF, 4)

We update background gradually, and the weighting
factor w is 0.1. The updating process is more reliable for a
smaller w. Finally, we have the foreground region which
does not really indicate the human hand. We need to apply
the skin color analysis and the hand region position tracking
to correctly extract the hand region. Fig. 13 shows the
results of hand gesture region extraction process.

2.2.4. Local tracking of the hand gesture region

To find a more precise hand region, we use the
foreground region information. The hand position has
been found by using motion, skin color and edge
information. Sometime, the identified locations will not at
the center of the real hand region. This is because the
extracted information are located on the boundary of

() Di(x, »).

Fig. 9. The three function blocks: (a) motion detection, (b) skin color detection, (c) edge detection.

(b) Si(x, y).

(©) Ei(x, »).
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Fig. 11. Background subtraction process.

the moving object. Therefore, the local refinement is
necessary. The overall system for hand region tracking
has two stages: the first stage is focus on the motion
information, whereas the second stage is focus on the
foreground information. The local tracking processing is

(b)

mentioned as follows: (a) select the foreground and skin
color region near the inaccurate center; (b) select
the boundary points in the foreground region; and (c) find
the center of the boundary points as a new center. We may
formulate the process as

pca() = Te{Tr(pc (@), FG; ANE; AS)} )

Where pc, (i) is the new center at the second stage. T-{e®} is
a center finding operator, and TR (A, B) is an operator to find
a region in B that is near the point A. Fig. 14 shows the
difference between those two stages.

After refining the hand gesture center point, we may find
the bounding box of hand region. We find the bounding box
by using the foreground, the skin color information, and the
center point located in the second stage. We search the
boundary of hand region from center to top, bottom, left,
and right. We use four parameters to describe the width and
the height of the extracted hand region, e.g. LW,.RW,TH,
and BH shown in Fig. 15(a).

Since the arm region is not the target region, we
develop a simple criterion to obtain a more precise hand
region. The bounding box is determined by the following
criteria: (1) If RW >LW then RW = 1.1LW else
LW = 1.1RW; and (2) If TH > BH then TH = 1.1BH
else BH=1.1TH. In the Fig. 15(a), the length TH is
shorter than BH, we let BH= 1.1TH, and similarly
RW = 1.1LW. Fig. 15(b) shows the updated bounding
box. The new bounding box does not include the arm
region. The method is effective for the following gesture
recognition process.

2.3. lllustrations and discussion

Here, we illustrate some experimental results of the hand
tracking process. The tracked hand-shape includes different
types of gestures and the gestures made by different persons.
We assume no camera panning nor zooming, and there is
only one hand needs to be tracked. We allow the other
moving objects in the background, but there is only one
moving hand in the foreground. For each frame of the video
sequence, the bounding box tracked automatically is
compared to a bounding box selected manually to measure
the error in width w and height h. There are two

(c)

Fig. 12. Different type of foreground: (a) original image, (b) foreground FG; for gesture tracking, (c) foreground FG, for updating the background.
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(a) current frame.

(b) foreground.

(c) hand region

Fig. 13. Foreground region combining skin color and hand gesture position.

performance measurements; one is the gesture location
missed percentage

number of times the centers are not located
em = (6)
total frame number

The other is the normalize error in bounding box size

defined as below
w(i) . h(i)

e and e,(i) = 1 %0
where w(i) and h(i) are the correct dimensions of the
bounding box of ith frame selected manually, and
wy (i) = LW(@) + RW(@), h, (i) = TH@G) + BH(@) are the
dimensions of the bounding box of ith frame selected
by our system. The image size is 160 X 120. Fig. 16
shows some input image sequences and the extracted
hand shapes. In the experiments, we have tested about
200 video sequences, and the accuracy percentage is
measured in terms of e, e, and e, which are shown in
Fig. 17.

ey() =1- (M

3. Feature selection for object description

Features are obtained from the input image sequence of
hand gestures, they are further converted to symbols which
are the basic elements of the HMM. Effective and accurate
feature vectors play a crucial role in model generation of the
HMM. For selecting good features, the following criteria are
considered useful: (1) Features should be preferably
independent on rotation, translation and scaling. (2)
Features should be easily computable. (3) Features should

First stage center

Local tracking
center

Fig. 14. Difference between the first stage center and the local tracking
center. The solid line is the trajectory of the first stage center, and dotted
line is the trajectory of the second stage center.

be chosen so that they do not replicate each other. This
criterion ensures efficient utilization of information content
of the feature vector. The features obtainable from the image
sequence of hand gesture are spatial and temporal features.
To extract the shape features, we choose the FD to describe
the hand shape, and to extract the temporal features, we use
motion analysis to obtain the non-rigid motion character-
istics of the gesture. These features should be invariant to
the small hand shape and trajectory variations and it is also
tolerant to small different gesture-speed.

3.1. Fourier descriptor

We may describe the objects by their features in the
frequency domain, rather than those in the spatial domain.
The local feature property of the node is represented by its
Fourier Descriptors (FD) [19,20]. Assume the hand-shape is
described by external boundary points, {x(m),y(m)}, then
we may use the FD representation for boundary description.

(b)

Fig. 15. (a) Four parameter of hand gesture bounding box, (b) new hand
gesture bounding box.
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Fig. 16. Some image sequence in our database and processing result.

To extract the external boundary points of a hand shape, we
may use the contour following algorithm. To represent the
boundary points, we may find the Fourier series of x(m) and
y(m), which are defined as a(n) and b(n). For a closed
boundary, this representation is called FD. The elements of
the vector are derived as S(n) = r(n)/r(1) where, r(n) =
[(a(n)® + (bm)*1*,n=1,2, ... Using of FD vectors of
dimension 10 for hand written digit recognition is sufficient
[20]. Here we assume that the local variation of hand-shape
is smooth so that the high order terms of its FD are not
necessary, so using 22 harmonics of the FD’s is enough to
describe the macroscopic information of the hand figures.
The advantage of using the FD is due to its size-invariant
properties. For different scaled objects, only the magnitudes
of their FD coefficients are changed by the same factor.
Furthermore, from Fig. 18, we may find that rotating the
object only causes a phase change. The magnitude S(n) is
independent of the phase, and it is unaffected by rotation. If
the magnitude of the FD coefficients is normalized, the FD

representation is invariant to object size. Finally, we
consider the effect of noise and quantization errors on the
boundary. This will cause local variation of high frequency,
and it will not change to low frequencies. Hence, if the high
frequency components of the spectrum are ignored, the rest
of the spectrum is unaffected by noise.

100%

80%

60%

0% e e
20% : a ul
0%

Fig. 17. The percentage error in bounding box size and location loss rate.
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Fig. 18. Illustration the invariant properties of Fourier descriptor.

3.2. Motion analysis

In the image sequence of hand gesture, there are local
motion and global motion. The global motion is the
translation of the hand and the local motion is non-rigid
motion of the fingers or rotation of the hands. Therefore,
we need to estimate the entire motion field of the two
consecutive image frames. The motion estimation is
based on the space-temporal image intensity gradients
called the optical flow Equation [21]. The optical flow
equation is developed in conjunction with an appropriate
space-temporal smoothness constraint, which requires that
the neighboring displacement vectors very smooth. The
magnitude and phase of the motion vector field indicates
the speed and moving direction of the moving object.
The histogram distribution of the magnitude and phase of

(@)

The 40 41 motion vecotorangle vs level Figure
14000 T T T T T T T T
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the motion vector field are extracted as the motion
features.

Here, we partition the magnitude distribution of the
motion vectors into ten intervals. Let P.(i) denote the
number of motion vectors belonging to magnitude interval i,
then we have f,(i) = P.(i)/ (total pixels of a frame), where
1 =i = 10 and £,(i) denotes the features extracted from the
magnitude of the motion vector. We also partition the phase
distribution of the motion vector field into 8 intervals. Let
P,(i) denote the number motion vectors belong direction
interval I, we have f,(i) = P,()/(total pixels of a frame),
where 1 =i =38andf,(i) denote the features extracted
from the direction of the motion vector.

From motion analyzing of two consecutive image
frames, we find that the motion vectors are pointing in
different directions. The motion of different fingers creates

(b)

x10°  The 2604 40--41 Motion Vector Magnitude vs Level Figure
5

Pixels number

4 6 8 10 12
Level

Fig. 19. (a) Phase distribution and (b) magnitude distribution of the motion vectors.
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the motion vectors in various directions. From the phase
histogram, we find that the peaks of some intervals represent
the major directions of different local motions. From the
magnitude histogram, we can also find the only peak of the
first interval that indicates the global motion (see Fig. 19).

Besides the above analysis of the motion direction and
magnitude distribution, we can find other features related to
the distribution of the motion vector field. We can assume
that the motion vector field is an intensity of motion in 2D
space X = {(x,y)}. We apply the vector field v(x,y,t) to
characterize the motion distribution. A suitable feature for
the characterization of the motion distribution at time
instance ¢ is the center of gravity 7m(f)! = [mx(r), my(t)] as

Zx»)’ V(.X, Y, t) Zx’y V()C, Y, t)

The vector m(t) can also be interpreted as the ‘center of
motion’ of the image. v(x, y, f) denotes the magnitude of the
motion vector at position (x,y) at time t. To increase
the modeling capacity of the HMMs for the movements of
the center, we include the delta features Am(t) of m(z) for the
‘center of motion’ into the feature vector. The delta features
are defined as Amx(t) = mx(t) — mx(t — 1) and Amy(t) =
my(t) — my(t — 1). Another useful feature is the average
absolute deviation of the motion in all points of the images
from the center of motion ox(r)" = [ox(7), oy(t)], which is
defined as

mx(t) = ®)

my(t) =

3 vyl = mx(o)l

ox(t) = Zx,y v(x,y,1) o
(1) = Zx,y v(x, y, t)'y - my(t)l
" D VE D

This feature is very similar to the second translation
invariant moment of the distribution, but it is more robust
against noise in the image sequence. It can also be
considered as ’wideness of the movement’. In motion
analysis, we have created 24 features, they are 10 motion
magnitude features, 8 motion direction features,
my, my, Am,, Am,, oy, and a,.

4. Gesture recognition using HMMs

HMMs have been widely and successfully used in speech
recognition and handwriting recognition [22]. Consequently,
they seem to be effective for visual recognition of complex,
structured hand gestures such as sign language recognition
[23,24]. AHMM can be employed to represent the statistical
behavior of an observable symbol sequence in terms of a
network of states. For each observable symbol, it can be
modeled as one of the states of the HMM, and then the HMM
either stays in the same state or moves to another state based on
a set of state transition probability associated with the state.

The variety of the observable symbols for which the HMM
uses a particular state is described in terms of the distribution
of probability that each observable symbol will occur from
that state. Thus, an HMM is a doubly (observable and hidden)
stochastic model where the observable symbol probability
distribution for each state captures the intra-state variability of
the observable symbols, and the state transition probability
describe the underling dynamic structure of the observable
symbols.

We use HMMs to recognize different gestures because of
their simplicity and reliability. The HMM uses only three
parameters: the initial state probability vector, the state-
transition probability matrix, and the observable symbol
probability matrix. Analysis of dynamic images naturally will
yield more accurate recognition than that of a single static
image. Gestures are recognized in the context of entire image
sequences of non-constantlengths. Usingan HMM for gesture
recognition is advantageous because it is analogous to human
performance whichis adoubly stochastic process, involving a
hidden immeasurable human mental state and a measurable,
observable human action.

4.1. Vector quantization for symbol generation

To model various gesture expressions, we train different
HMMs to model different hand gestures. First, we must
convert multi-dimensional vector sequences to one-dimen-
sional symbol sequences. The preprocessing algorithm is
the vector quantization (VQ) [25,26]. In an HMM-based
approach, we need to quantize each multi-dimensional
feature vector sequence into a finite symbol sequence for
HMMs. The purpose of designing an M-level VQ (called a
codebook with size M) is to partition all k-dimensional
training feature vectors into M clusters, whose centroid is
the k-dimensional vector ¢, with a quantized value named
codeword (symbol) o'. VQ will cause a quantization error
between each training feature vector x and ¢'. As the size of
the codebook increases, the quantization error decreases,
however, the required storage for the codebook entries
increases. There is a trade-off to define the size of the
codebook.

To have a good recognition performance in using
HMMs, we design a codebook for vector quantizing each
k-dimensional training feature vector x into a symbol o’ with
minimum quantization error. According to our
experimental result, the recognition system has high
performance when the size M = 64 of the codebook. This
VQ algorithm uses iterative method, splits the training
vectors from assuming whole data to be one cluster to
2,4,8,...,M(M = 2") clusters, and determines the centroid
for each cluster. The centroid of each cluster is refined
iteratively by k-means clustering. Once the final codebook
is obtained, it is used to quantize each training and testing
feature vector into a symbol. A symbol is assigned to each
partition of the k-dimensional VQ space. The symbol
generation process is illustrated in Fig. 20.
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Fig. 20. Preprocessing of the hand gesture recognition system.

4.2. Hidden Markov models

In the Markov model, the state sequence is obser-
vable. The output observable event in any given state is
deterministic, not random. This will be too constraining
when we use it to model the stochastic nature of the
human performance, which is related to doubly stochastic
processes, namely human mental states (hidden) and
human actions (observable). It is necessary that the
observable event is a probabilistic function of the state.
HMM is a representation of a Markov process and is a
doubly embedded stochastic process with an underlying
stochastic process that cannot be directly observed, but
can only be observed through another set of stochastic
processes that produce the sequence of observable
symbols.

We define the elements of an HMM as follows. N is
the number of states in the model. The state of the model
at time t is g, 1 = ¢, =Nand1 =,=T where T is the
length of the output observable symbol sequence. M is
the size of the codebook or the number of distinct
observable symbols per state. Assume o, is one of all
possible observable symbols for each state at time ¢, then
0=o0,=M — 17y is an N-element vector indicates the
initial state probability. my = {m}, where m = P(q, =
i),)1 =i =N. Ayxy is an N XN matrix specifying the
state-transition probability that the state will transit from
state i to state j. Ayxy = {a;} where a; = P(q, =jlg,_, =
D, 1=ij=Nanda=0,>,"a;=1. Byyy is an M XN
matrix specifying that the system will generate the
observable symbol o, at state j and at time ?. By =
{bj(0,)} where b;(0,) = P(O, =0/ |q,=)),] =i =N,0 =
0, =M — 1,bj(0) Z 0, and ¥} b;(0,) = 1.

The complete parameter set A of the discrete HMM is
represented by one vector 7 and two matrices A and B. To
accurately describe a real-world process such as gesture

with an HMM, we need to appropriately select the HMM
parameters. The parameter selection process is called the
HMM ‘training.” This parameter set A can be used to
evaluate the probability P(OI)), that is to measure
the maximum likelihood performance of an output obser-
vable symbol sequence O, where T is the number of frames
for each image sequence. For evaluating each P(Ol)), we
need to select the number of states N, the number of
observable symbols M (the size of codebook), and then
compute the results of probability density vector 7 and
matrices A and B by training each HMM from a set of
corresponding training data after VQ.

There are three basic problems in HMM design: (1)
Probability evaluation: How do we efficiently evaluate
P(Ol)), the probability (or likelihood) of an output
observable symbol sequence O given an HMM parameter
set A. (2) Optimal state sequence. How do we determine an
optimal state sequence ¢ = {qy, ¢5,...qr}, Which is associ-
ated with the given output observable symbol sequence O,
by given an HMM parameter set A. (3) Parameter
Estimation. How do we regulate an HMM parameter set A
to maximize the output probability P(OIA) of generating the
output observable symbol sequence.

(1) Probability evaluation using the forward-backward
procedure. We compute the output probability P(OIX) with
which the HMM will generate an output observable symbol
sequence O = {01,0,,...07} given the parameter set A =
(m,A, B). The most straightforward way to compute this is
by enumerating every possible state sequence of length 7,
so there will be N7 possible combinations of state sequence
where N is the total number of states. Suppose there is one
state sequence ¢ = {q, ¢», ...q7 }. Fortunately, we can use a
more efficient procedure called the Forward-Backward
procedure [29] to overcome this limitation.

(2) Optimal state sequence using the viterbi algorithm.
We use a dynamic programming method called the
Viterbi algorithm [28] to find the single best state sequence
q=(ql,q2,...qT) (or the most likely path) given the
observable symbol sequence O = (0;,0,,...07) and the
HMM parameter set A in order to maximize P(g!O, A). Since

P(q, O|A)

P(ql0.)) = PON)

(10)
Maximizing P(qlO,A) is equivalent to maximizing
P(g, Ol)) using the Viterbi algorithm.

(3) Parameter estimation using the baum-welch method.
We can use a set of training observable symbol sequences to
adjust the model parameters in order to build a signal model
that can be used to identify or recognize other sequences of
observable symbols. There is, however, no efficient way to
optimize the model parameter set that globally maximizes
the probability of the symbol sequence. Therefore, the
Baum-Welch method [29] is used to choose the maximum
likelihood model parameter set A = (1, A, B) such that its
likelihood function P(OI\) is locally maximized using an
iterative procedure.
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Table 1
The error rate of the gesture recognition system using only FD

Gesture 01 02 03 04 05 06 07 08 09
Error (%) 6 1 2 12 15 6 12 10 19

10 11 12 13 14 15 16 17 18 19 20

12 17 1 0 11 3 23 25 0 0

5. Experimental results

In the experiments, the subject, who uses a single hand to
make hand gesture, is standing before any stationary
background with normal lighting. The proposed real-time
tracking system can track and identify the moving objects in
front of a stationary background. We may allow some small
objects moving in the background which will not be
extracted and mistreated as a moving hand. We have tested
twenty different hand gestures selected from TSL. Each
hand gesture consists of a sequence of image frames
capturing a single hand moving in different directions with
constant or time-varying hand shape.

Each hand gesture is performed 3 times by 20 different
individuals. There are 60 different image sequences
captured for each hand gesture. There are twenty different
gestures, and 1200 image sequences are used for training.
The size of each gray-level image frame is 256 X 256, its
frame rate is 30 frames/sec, and each gesture-making takes
about one second. The input image sequence is divided into
three different time intervals: in the first (begin) period, the
sign language speaker remains silent (no gesture), then in
the second (action) period, the speaker starts making one
simple hand gesture, and finally, in the last (end) period, the
speaker remains silent again.

In the experiments, six gestures have constant hand
shape, whereas fourteen gestures have time-varying hand
shape. They may have similar or different moving
trajectories. The simply single hand gestures can be
completed in less than one second. The host computer was
equipped with a Pentium IV 1.2 GHz CPU and 128 MB
main memory. In the experiments, the hand tracking and the
handshape extraction are operating in real-time. The
following feature extraction processes includes FD and
motion analysis may finish in less than one second. Totally,
the recognition system about one second from image
sequence capturing to gesture recognizing. In the training
stage, for each gesture, we have asked 20 different
individuals to make the gestures three times, and for each
gesture, we have 60 different training image sequences to
generate the corresponding HMM.

Each input image sequence is pre-processed by hand
region extraction process for contour information and
coding. 1200 image sequences are used in training phase,
and 1200 image sequences are used in testing phase. Our
system consists of two methods: (1) using only contour
information and (2) using combined contour information
and motion information. The extracted information is
converted to vector sequences and then quantized into

symbol sequences for both of the training and recognition
processes.

The same gesture made by different individuals may
looks different because of different hand-shapes and
gesture speed. To design a robust recognition system, the
training data are selected to cover all possible hand-shapes
for each individual. Before using HMMs for training or
recognition process, any vector sequence is preprocessed
by VQ to an observable symbol sequence O. The
codebooks are created based on their corresponding
training data. The codebook size M, which is power of 2,
is chosen by experiments. We have tried different code-
book sizes, and find that M = 64 is the best choose because
the recognition rate does not have any significant
improvement for M > 64. Based on these training symbol
sequences, we can effectively generate the 1st-order 4-state
HMM for modeling the gesture. We have tested our system
by using three different state number HMMs (3-state, 4-
state and 5-state), and we found that the 4-state HMM has
proved to generate the best performance.

(1) Fourier descriptor (FD) only. Totally 1200 image
sequences are collected for 20 different gestures, thus each
kind of gesture with 60 sequences in average, in training
phase and other 1200 sequences are collected for test as
shown in Table 1. The recognition rate of using training
data for testing is 97%, and the recognition rate of using
testing data is 90.5% (see Table 2). The error rates of
recognizing gesture 9, 12, 17 and 18 are among the
highest. This is because the extracted hand shape may be
not precise and the hand-shapes of these gestures are
similar to one another. Thus, we may combine the FD and
motion vector as the feature vector for a better
performance.

(2) FD and motion vector. We add motion information
to the feature vector for our HMM modeling. We find that
the recognition rate of using training data for testing is
98.5% and the recognition rate of using testing data rises
to 93.5%. This method gains 3% improvement of the
recognition rate using the testing data. The reason is that
adding the motion vector improves the recognition rate for

Table 2
The recognition rate of one-hand gesture

Two Methods Training data (%)

(1200 sequences)

Testing data (%)
(1200 sequences)

FD only 97 90.5
FD and motion 98.5 935
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Observation Symbol Sequence
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(b) The maximum likelihoods generated by 20 HMMs
Fig. 21. The experimental results of recognizing the 1st gesture from a sequence of frames.
Table 3
The error rate of the gesture recognition system using FD and motion vector
Gesture 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20
Error (%) 7 1 0 11 12 5 4 7 11 6 5 11 3 0 10 4 13 15 0 3

the 9th, 12th, 17th and 18th gestures in our vocabulary.
However, for some gestures, there may be a slightly
performance decrement due to the different experimental
environments.

Fig. 21 shows the results of the gesture recognition of the
1st gesture in our vocabulary. Fig. 21(a) shows the sequence
of observation symbols which is input to the hmm.
Fig. 20(b) shows the output of the maximum likelihood of
each HMM applied to the testing sequence. there are totally
20 HMMS in the recognition system of which first HMM
generate the largest maximum likelihood. In our exper-
iments, we have tested 20 different gestures from different
signers, some gestures are not precise, and the recognition
rate drops to 85% (see Table 3). We find that our
recognition system is size and rotation insensitive, for
small objects and for large objects, it can still effectively
identify the correct gesture. We also find that when the
symbol sequence has an error at frame 30 (symbol 35 is
obtained instead of symbol 21), and the score of the HMM
modeling gesture 10 is very close to the score of the HMM
modeling gesture 13. Our system can still recognize the
gesture correctly. However, if in the beginning, the system
makes many error observations and generates wrong
symbols, then the HMM models will not justify the correct
recognition. Another reason for error recognition is that we
don’t have enough training data to make a good estimate of
the HMM model parameters.

6. Conclusions

We have developed a method to recognize the unknown
input gestures by using HMMs. Since the variation of
the hand gestures is usually large, the transition between
states is necessary in each gesture for an effective hand
tracking. We apply this system to recognize the single
gesture. In the experiments, we assume stationary back-
ground so that our system will have smaller search region
for tracking. With a larger training set and context
modeling, lower error rates are expected and generalization
to user independent gesture recognition system should be
developable. Once we add a new gesture into the system, we
only need to re-train another HMM for the new gesture,
since the relationships between new model and the original
models are independent.

References

[1] V.I. Pavlovic, R. Sharma, T.S. Huang, Visual interpretation of hand
gestures for human-computer interaction, A Review, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 19 (7) (1997)
677-695.

[2] T. Baudel, M. Baudouin-Lafon, Charade: remote control of objects
using free-hand gestures, Comm. ACM 36 (7) (1993) 28-35.

[3] D.J. Sturman, D. Zeltzer, A survey of glove-based input, IEEE
Computer Graphics and Applications 14 (1994) 30-39.



758 F.-S. Chen et al. / Image and Vision Computing 21 (2003) 745-758

[4] T. Takahashi, F. Kishino, A hand gesture recognition method and its
application, Systems and Computers in Japan 23 (3) (1992) 38—48.

[5] A.F. Bobick, A.D. Wilson, A state-based technique for the

summarization and recognition of gesture, Proceedings fifth inter-

national conference on computer vision (1995) 382—-388.

C.L. Huang, W.Y. Huang, Sign language recognition using model-

based tracking and a 3D Hopfield neural network, Machine Vision and

Applications 10 (1998) 292-307.

J. Davis, M. Shah, Visual gesture recognition, IEE Proceedings -

Vision Image Signal Process 141 (2) (1994).

Darrell, T., Pentland, A., Recognition of space-time gestures using a

distributed representation, MIT Media Laboratory Perceptual Com-

puting Group Technical Report. 1992 No197.

T. Starner, A. Pentland, Visual recognition of american sign language

using hidden Markov models, Proceedings of International. Workshop

on Automatic Face- and Gesture-Recognition, Zurich, Switzerland,

1995

[10] L.W. Campbell, D.A. Becker, A. Azarbayejani, A.F. Bobick, A.
Plentland, Invariant features for 3-D gesture recognition, Proceedings
IEEE Second International Workshop on Automatic Face and Gesture
Recognition, 1996.

[11] J. Schlenzig, E. Hunter, R. Jain, Recursive identification of gesture
inputers using hidden Markov models, Proceedings Second Annual
Conference On Applications. Of Computer Vision (1994)
187-194.

[12] R.H. Liang, M. Ouhyoung, a real-time continuous gesture recognition
system for sign language, Proceedings IEEE Second International
Conference on Automatic Face and Gesture Recognition, 1998, pp.
558-565.

[13] Y. Cui, J.J. Weng, Hand sign recognition from intensity image
sequences with complex backgrounds, Proceedings IEEE Second
International Conference on Automatic Face and Gesture Recog-
nition, 1996.

[14] A. Ohknishi, A. Nishikawa, Curvature-based segmentation and
recognition of hand gestures, Proceedings Annual Conference On
Robotics Society of Japan, 1997, p. 401-407.

[15] S. Nagaya, S. Seki, R. Oka, A theoretical consideration of pattern
space trajectory for gesture spotting recognition, Proceedings IEEE
Second International Workshop on Automatic Face and Gesture
Recognition, 1996.

[6

—

[7

—

[8

[t}

[9

—

[16] T. Heap, D. Hogg, Towards 3D hand tracking using a deformable
model, Proceedings IEEE Second International Conference on
Automatic Face and Gesture Recognition, 1996.

[17] S.C. Zhu, A.L. Yuille, FORMS: a flexible object recognition and
modelling system, Proceedings Fifth International Conference on
Computer Vision (1995) 465-472.

[18] R. Lockton, A.W. Fitzgibbon, Real-time gesture recognition using
deterministic boosting, Proceedings of British Machine Vision
Conference (2002).

[19] E. Persoon, K.S. Fu, Shape discrimination using fourier descriptor,
IEEE Transactions SMC 7 (3) (1977) 170-179.

[20] D. Shridhar, A. Badreldin, High-Accuracy character recognition
algorithm using fourier and topology descriptors, Pattern Recognition
17 (1984) 515-524.

[21] B. Horn, B.G. Shunck, Determining optical flow, Artificial Intellie-
gence 17 (1981) 185-203.

[22] A.Kundu, Y. He, P. Bahl, Recognition of handwritten word: first and
second order hidden Markov model based approach, Pattern
Recognition 22 (3) (1989) 283-297.

[23] J. Yamato, J. Ohya, K. Ishii, Recognizing human action in time-
sequential images using hidden Markov models, Proceedings IEEE
Conference on Computer Vision and Pattern Recognition (1992)
379-385.

[24] J. Schlenzig, E. Hunter, R. Jain, Recursive identification of gesture
inputs using hidden Markov models, Proceedings Second Annual
Conference on Applications of Computer Vision (1994) 187-194.

[25] Y. Linde, A. Buzo, R. Gray, An algorithm for vector quantizer design,
IEEE Transaction on Communications COM-28 (1) (1980) 84-95.

[26] L.R. Rabiner, S.E. Levinson, M.M. Sondhi, On the application of
vector quantization and hidden Markov models to speaker-indepen-
dent, Isolated Word Recognition, Bell System Technology Journal 62
(4) (1983) 1075-1105.

[27] N. Otsu, A thresholding selection method from gray-level histogram,
IEEE Transactions System Man Cybernet 9 (1) (1979) 62-66.

[28] G.D. Forney, The viterbi algorithm, Proceedings of the IEEE 48
(1973) 268-278.

[29] L.R. Rabiner, A tutorial on hidden Markov models and selected
applications in speech recognition, Proceedings of The IEEE 77 (2)
(1989) 257-285.



	Hand gesture recognition using a real-time tracking method and hidden Markov models
	Introduction
	Hand tracking and handshape extraction
	Feature extraction
	Robustness and low complexity
	Illustrations and discussion

	Feature selection for object description
	Fourier descriptor
	Motion analysis

	Gesture recognition using HMMs
	Vector quantization for symbol generation
	Hidden Markov models

	Experimental results
	Conclusions
	References


