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Abstract

In this paper, we propose a model-based method to analyze the human walking motion. This system consists of three phases: the
preprocessing phase, the model construction phase, and the motion analysis phase. In the experimental results, we show that our system
not only analyzes the motion characteristics of the human body, but also recognizes the motion type of the input image sequences. Finally, the
synthesized motion sequences are illustrated for verification. The major contributions of this research are: (1) developing a skeleton-based
method to analyze the human motion; (2) using Hidden Markov Model (HMM) and posture patterns to describe the motion type.q 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Human body motion analysis has been an interesting
research for its various applications, such as athletic perfor-
mance evaluation, medical diagnostics, virtual reality, and
human–machine interface. In general, three aspects of
research directions are considered in the analysis of
human body motion: tracking and estimating motion para-
meters, analyzing of the human body structure, and recog-
nizing of motion activities.

To track and estimate the motion parameters, most
approaches focus on the motion estimation of the joints on
the body segments between consecutive frames. The
simplest representation is the Motion Light Display
(MLD) which was originally considered by Johansson [1].
Similar to MLD, researchers put markers on some important
locations of the human figure for motion analysis. The stick
figure [2] that consists of line segments linked by joints can
also be analyzed to provide the key to the motion estimation
and recognition of the whole figure. The motion of the joints
provides the key to the motion estimation and recognition of
the whole figure of human body that are used to analyze the
human motion and compute motion parameters. Campbell
and Bobick [3] adopt the idea of the phase space to recog-
nize the human body motion. They put 14 markers on the
joints of human body, and analyze the data by tracking the
movement of these markers. Webb and Aggarwal [4] started

their study by making the fixed axis assumption: all move-
ments consist of translations and rotations about a fixed-
orientation for a short period of time. The jointed objects
are recovered by analyzing the collection of rigid parts and
unifying the structures. Chang and Huang [5] used a ribbon-
based method to analyze the movement of human walking.
They extract the extremities of the human body and calcu-
late the angle variation on joints.

To recover the body structure, most researchers use
models to fit to the input data for high-level motion inter-
pretation. Akita [6] proposed an image sequence analysis
method to solve three basic problems in human motion
analysis: modeling, correspondence, and occlusion. The
basic goal of his study is to find the outline of human
body and recognize the body parts. Elliptical cylinders are
used as volumetric models by Hogg [7] and Rohr [8] to
model human motion. Each cylinder is described by three
parameters: the length, the major and the minor axes. They
used a three-dimensional (3D)-model to represent the
human body and applied a Kalman filter to estimate the
model parameters. Leung and Yang [9,10] applied a 2D
ribbon model to recognize the poses of a human performing
gymnastic movements. Their system includes two main
processes: (1) extraction of the outline of a moving human
body; and (2) interpretation of the outline and production of
a labeled 2D human body stick figure for each frame. Chung
and Ohnishi [11] proposed new 3D model-based motion
analysis methods based on so-calledcue circles(CCs) and
cue spheres(CSs). Stereo matching for recovering the body
model is carried out by finding pairs of CCs between the pair
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of contour images under considerations: a CS is projected
on the two image planes as its corresponding CCs.

To recognize the motion activities from image sequences,
we need to successfully track the human motion through the
image sequence and analyze the following features for
motion type recognition: the outline of the moving body,
the skeleton of the body, and the variant of the locations of
joints. For human activity recognition, there are two efforts:
template matching approach and state space approach.
Bobick and Davis [12] compared the features extracted
from the given image sequence to the pre-stored patterns
during the recognition process. The disadvantage of
template matching is its sensitivity to the variance of move-
ment duration. To avoid this problem, state space approach
defines each static posture as a state. These states are
connected by certain probabilities. Any motion sequence
is translated into a sequence of states. Yamato et al. [13]
made the mesh features as feature vectors and then applied
Hidden Markov Models (HMMs) to recognize the tennis
motion. Li et al. [15] propose a model-based shape analysis
method to estimate the posture parameters of moving human
bodies in visual surveillance applications.

Two concerns are considered in the human motion analy-
sis: the posture recognition and the estimation of motion
parameters. In this paper, we propose a model-based method
to analyze a real image sequence of a walker and then
synthesize the results. Our system has three advantages:
(1) we do not put any marker on the human body; (2) we
do not use the sophisticated model matching between the 2D
or 3D model and the input images; (3) we exploit the multi-
state model to effectively recognize the posture; and (4) we
generate the motion characteristics of the human body. In
Section 2, we give an overview of our system. In Section 3
and Section 4, we discuss preprocessing phase and the
model construction phase, respectively. The motion analysis

phase is introduced in Section 5. Finally, we illustrate the
experimental results in Section 6 and give the conclusion in
Section 7.

2. System description

Human body motion is an articulated motion and several
body models have been proposed to describe the human
body [14]. A human body consists of several rigid ribbons
connected by the joints and it can be described by a tree
structure shown in Fig. 1. Four branches of the links are
connected to the root node(torso) and the connected joint
are LE(left elbow), RE(right elbow), LS(left shoulder),
RS(right shoulder), LH(left hip), RH(right hip), LK(left
knee), and RK(right knee). The extremities are connected
at these joints and the angle variation of the eight joints can
be used to characterize the human motion in the image
sequence.

In each image frame, human body can be segmented from
the background and reduced to a body skeleton calledbody
signature. Similar to the fact that different handwritten char-
acters have different configurations, each body pose has its
own configuration. According to the similarity of the body
signatures, the human motion sequence can be classified
into several groups of similar postures. Each group is treated
as a model state and a human motion can be described by a
sequence of model states. We useposture graphto depict
the inter-relationships among all the model states which is
defined asPG(ND,LK), whereND is a finite set of nodes and
LK is a set of the directional links between every two nodes.
The directional links are also calledposture links. Each
node may have a posture link pointing to itself or other
nodes. Each node represents one model state and each
link indicates that there is a transition between two model
states.

After analyzing the input motion image sequence, we
may convert the human motion image sequence to a
model state sequence, which can be further described by
tracing a path in the posture graph called theposture transi-
tion path. Analyzing different motion sequence, we may
generate different posture transition paths for different
postures. The posture transition path contains “stuttered”
model states that can be replaced by one single model
state. The posture transition graph can be simplified as the
posture paththat is used to identify the motion type.

The same posture path may be generated from different
posture transition paths. For instance, both of the posture
transition paths, such as {11122233} and {11111233333},
generate the same posture path {1p2p3p}. The notation “p”
denotes a sequence of the same posture node. Two image
sequences of the same posture with different moving speed
will be described by two different posture transition paths,
however, they can also be depicted by the same posture
path. For a simple posture, the corresponding posture path
may contain only one self-looping node. However, for a
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Fig. 1. The description of body structure.



complex posture, the corresponding posture path will
include many linkages among several different nodes.

This system (Fig. 2) consists of three main processing
phases: preprocessing phase, model construction phase
and motion analysis phase. Preprocessing phase extracts
the human body from the image sequence and generates a
sequence of body signatures for further processes. In the
model construction phase, given a sequence of training
feature vectors, we develop a HMM to model the temporal
variation of body signatures of different human postures. In
the motion analysis phase, we use the HMM to identify the
body signature sequence in terms of a posture transition
path. It can be further simplified as a posture path. Further-

more, the procedure for motion characteristics curves
generation computes the motion parameters and produces
the motion characteristic curves. Finally, the motion para-
meters are used to synthesize the motion sequence for veri-
fication.

3. Preprocessing phase

There are three stages in our preprocessing: (1) body
silhouette extraction through background subtraction; (2)
morphological filtering; and (3) thinning. Here, we assume
that the background is stationary so that we can generate the
background model by computing the model parameters over
a number of static background frames. Here, we apply the
background model proposed by Horprasert et al. [16] which
can be used to cope with the local illumination change
problems, such as shadows and highlights.

Here, we apply their color model to separate the bright-
ness from the chromaticity component. Fig. 3 illustrates the
proposed color model in 3D RGB space. Consider a pixel,i,
in the image; letEi � �ER�i�; EG�i�; EB�i�� represent the
pixel’s expected RGB color in the background model, and
Ii � �IR�i�; IG�i�; IB�i�� denote the pixel’s RGB color value
in a current image that we want to subtract from back-
ground. We decompose the distortion ofIi from Ei into
two components,brightness distortionandcolor distortion.
The brightness distortion (a ) is a scalar value that brings the
observed color close to the expected chromaticity line. It is
obtained by minimizingf�ai� � �Ii 2 aiEi�2: ai represents
the pixel’s strength of brightness with respect to the
expected value. The color distortion is defined as the ortho-
gonal distance between the observed color and the expected
chromaticity line. The color distortion of pixeli is given by
CDi � iIi 2 aiEii:

The background subtraction consists of three procedures:
(1) background modelingthat constructs reference image
representing the background; (2)threshold selectionthat
determines appropriate threshold values; (3)pixel classifi-
cation that classifies the pixels into background group and
moving object group. After background subtraction and
thresholding, we can get binary foreground image, however
the image may be corrupted by negative noise inside the
object and some isolated noise outside the object. The nega-
tive noise makes some small holes inside the object. So, we
need to do the morphology filtering to remove the noise.

There are three steps in the morphology filtering: (1)
Opening operation which deletes isolated noise and smooth
the boundary of shape; (2) Closing operation which fills the
holes and connects close regions; (3) Connected compo-
nents extraction that detects the connected region and select
the largest one. The morphological filtering consists of the
following operations: (a)Dilation. With A and B as sets in
Z2 andF denoting the empty set, thedilation of A by B is
defined asA % B� { xu��B̂�x > A ± f�} : (b) Erosion. For
sets A and B in Z2, the erosionof A by B is defined as
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Fig. 2. The system diagram.

Fig. 3. The difference betweenIi andEi is decomposed into brightness (a i)
and chromaticity (CDi) components.



AQB� { xu�B�x # A} : (c) Opening. The opening of set A by
B is defined asA+B� �AQB� % B: (d) Closing. The closing
of set A by B is defined asAXB� �A % B�QB: Finally, we
use the thinning algorithm to generate the skeleton called
body signature illustrated in Fig. 4.

4. Model construction phase

Here, we develop three procedures: feature selection and
extraction, model state classification, and HMM parameters
generation.

4.1. Feature vector selection and extraction

Body signature is an effective graphical qualitative repre-
sentation for human motion analysis that is converted to a
numeric quantitative description for motion analysis. Each
body signature has it own configuration that can be charac-
terized byfeature vector. To select effective features, we
have three feature selection criteria: (1) features should be
preferably independent of rotation, translation and size; (2)
features should be easily obtained; (3) features should be
chosen so that they do not replicate each other. There are
topological feature vectorandparametric feature vector.

The topological features vector consists of the following
components:

1. Number of end-points(NEP). The end-points of the body
signature are extracted to indicate the visibility of extre-
mities such as head, hands, and feet. In general, there are
three kinds of end-points in the body signatures: head
end-point, hand end-points and ankle end-points. The
possible number of end-points is shown in Table 1.

When a person stands still, the number of end-points is
2 that indicate the minimum number of visible extremi-
ties in the walking sequence. We can always find an end-
point at the top of the body signature.

2. Number of T-junctions(NT). In the body signature, T-
junctions are found at the intersection of the arms and
trunk, the legs and trunk, or two legs. We search the T-
junctions by using a template matching (i.e. sixteen 3× 3
templates) operation on the body signature. If the distri-
bution of the masked points matches the pre-defined T-
junction template, the location on the central position of
the sliding window is recognized as a T-junction. In the
upper part of body signature, T-junction is formed by the
intersection of the skeletons of the arms and the torso.
There are three different kinds of T-junctions in the lower
portion. The number arrayNT is composed of two
components; the number of T-junctions in the upper
body and the number of T-junctions in the lower body,
i.e. NUT and NLT. Tables 2 and 3 illustrate the possible
number of the T-junction in the upper body and lower
body, respectively.

3. Number of the body signature loops(NL). Analyzing
body signatures, we may find one or two closed loops.
However, when a person stands still or strides, we find no
loop in the body signature. There are two kinds of body
signature loops: (1)arm loop: it is formed by arm and
torso, and it is located on the upper part of the body
signature; (2)leg loop: it is formed by two intersecting
legs, and it is located on the lower part of the body
signature. Fig. 4 illustrates five examples of body signa-
ture loops. To analyze the structure of the body signature,
we develop abody signature loop searching algorithmto
find the body signature loops and then determine the
number and the location of loops. Table 4 shows the
possible number of body signature loops.
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Fig. 4. The body signatures.

Table 1
The description ofNEP(f)

Number NEP(f) Description

Head Arm Leg

2 1 0 1 Head and one leg are visible
3 1 1 1 Head, one leg and one arm are

visible
1 0 2 Head and two legs are visible

4 1 1 2 Head, two legs and one arm
are visible

1 2 1 Head, one leg and two arms
are visible

5 1 2 2 Head, two legs and two arms
are visible

Table 2
The description ofNUT(f)

Number Description

0 Body stands still
1 One arm is visible
2 Two arms are visible
3 Two arms are visible and

one forms a body signature
loop

Table 3
The description ofNLT(f)

Number Description

0 Body stand still
1 Two legs are separable
2 Two legs form a body

signature loop



The parametric feature vector consists of the following
components:

1. Relative distance(rRF) and angle(uRF) of ankle end-
points. These features can be identified when the two
legs are segmented. The distance between two ankle
end-points is normalized by dividing the height of
human body. The relative distance and angle are defined
as

rRF � 1
H iLF 2 EFi2

uRF � arctan��ylead_f 2 ylag_f�=�xlead_f 2 xlag_f��

(
�2�

whereLF � �xlag_f ; ylag_f� and EF � �xlead_f; ylead_f� are
the coordinates of two leg end-points,H is the height of
the skeleton of human body, andi·i2 denotes the Eucli-
dean norm.

2. Relative distance(rRA) and relative angle(uRA) of hand
end-points. If the number of hand end-points is two, then
we may find the relative distance and the angle of the two
hand end-points. Similar to Eq. (2), parametersrRA and
uRA are defined as

rRA � 1
H iLA 2 EAi2

uRA � arctan��ylead_a2 ylag_a�=�xlead_a2 xlag_a��

(
�3�

whereLA � �xlag_a; ylag_a� andEA � �xlead_a; ylead_a� are
the coordinates of two hand end-points,H is the height of
the skeleton of human body.

3. Respective distance(rA) and angle(uA) of hand end-
points. Since sometimes we cannot find two end points
on the body signature, in addition to the relative features
rRA and uRA, we define the respective distancerA and
angleuA as

rA � 1
H iA 2 Ci2

uA � arctan��ya 2 yc�=�xa 2 xc��

(
�4�

whereA � �xa; ya� is the coordinates of the hand end-
points (either leading point or lagging point or both)
andC � �xc; yc� is the coordinate of the head end-point.

4. Distance (rT) and angle(uT) of leg T-junction. If the
number of leg T-junction is one, then we may find the
relative distancerT and the angleuT of leg T-junction as

rT � 1
H iT 2 Ci2

uT � arctan��yT 2 yc�=�xT 2 xc��

(
�5�

whereT � �xT; yT� is the coordinate of the leg T-junction
and C � �xc; yc� is the coordinate of the end-point of
human head, andH is the height of the skeleton of
human body.

5. Bias (B). If the T-junction and two ankle end-points are
found, then we may identify the bias,B, by calculating
the central point of the triangle enclosed by the head
point and two ankle end-points.B represents whether
the walker is stretching out his leading leg or folding
his two legs.

B�
2v1 when the legs are folding:

1v2 when the legs are stretching:

(

where 2 1 # v1; v2 # 1:

6. Basis area�Vb�: If the T-junction and two ankle end-
points are visible, we may calculate basis area,Vb: It is
the normalized triangle area formed by T-junction(T) and
two leg end-points which is defined as

Vb � 1
2H2 uVTE × VTLu � 1

2H2

�������������������������������
uVTEu2uVTLu2 2 �VTE·VTL�2

q
�6�

whereE andL denote the leading ankle end-point and the
lagging ankle end-point, respectively,VTE

��!
is the vector

from T-junction to the leading ankle end-point, andVTL
��!

is
the vector from T-junction to the lagging ankle end-
point.

7. Area�VL� of the body signature loops.The area of a body
signature loop is obtained by counting the pixels inside
the loop.VL and the topological featureNL are related.

The parametric feature vector hasvariable lengthsince not
every component is visible. The existence of the parameter
feature component is determined by topological feature
component. For instance, if the number of end-point is
2�NEP� 2� then only one leg is visible, therefore, the rela-
tive distance and relative angle of hand end-points features
are not identifiable. And if the number of T-junction is one
�NLT � 1�; then the distance and angle of leg T-junction can
be obtained.

4.2. The classifiers

Based on the variable length feature vectors, we develop
two classifiers. The first classifier, thetopological classifier,
categorizes the body signature into certain topological
group; whereas the second classifier, theparametric classi-
fier, determines to which symbol each body signature may
be assigned. If the topological features extracted from the
body signature are not complete, then the corresponding
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Table 4
The description ofNL(f)

Number NL(f) Description

Upper body Lower body

0 0 0 Human stands still or strides
1 1 0 One arm loop

0 1 One leg loop
2 1 1 One arm loop and one leg loop



image frame will not be treated as a key frame and it will not
be processed further. Theparametric classifierdetermines
to which symbol the body signature belongs by investigat-
ing the corresponding parametric feature vector. Each para-
metric feature vectorfp×1 will be assigned to a symbolvm

which is determined by

Q�f � � vm if d�f ; vm� # d�f ; vi� �7�
where d�f ; v� � �� f1 2 v1�m121…� fp 2 vp�mp21�Tw�� f1 2
v1�…� fp 2 vp��; m ± i; 1 # i # M; w is ap × p diagonal
matrix whose elements depict the weight of feature, andmj

is the power of thejth feature difference. The classification
process is shown in Fig. 5.

4.3. Posture graph generation

The posture graph describes the relation among the model
states and themodel state sequence(MSS). Each posture
node will register the relationship with its related posture
nodes by using the following three tags: (1)T-tag registers
the number of the motion type to which the posture node

belongs. The number of the T-tags may be more than one
since a posture node may describe several motion types; (2)
Pre-tag registers the connective model states which are
prior to it in the MSS; (3)Pos-tagregisters the connective
model states which are posterior to it in the MSS. After
obtaining the model states of the training sequences, we
use thegraph growing algorithmto generate the posture
graph (see Appendix).

4.4. The constraints on joint angle

To analyze the human motion, we find the angles of the
eight important joints located on the shoulders, elbows,
hips, and knees, respectively, and then we measure the
angles associated with these joints. The human body motion
can be analyzed by: (a) the speed of the human body motion,
v� f 0�t�; wheref(t) is the position of the human body; (b)
the angular velocity, (u 0(t)); and (c) the angular acceleration
(u 00(t)) of the joint angle, whereu(t) is the joint angle.
Because each individual has his own posture and velocity,
the motion characteristics provides an effective description
of human motion.

Different walkers performing the same posture may
generate similar body signatures. We classify the body
signatures into leading arm/leg skeletons and lagging arm/
leg skeletons. These joint angle parameters are: (1) arm joint
angles (Au lead, Af lead, Au lag, Af lag); and (2) leg joint angles
(Lu lead, Lf lead, Lu lag, Lf lag). The reference line of the human
body is defined as the downward vertical line. The primary
angleu is the angle between the upper extremity skeleton
and the reference line, and the second anglef is the angle
between the upper extremity skeleton and the lower extre-
mity skeleton. Fig. 6 illustrates these joint angles. Based on
the observation of the human motion of ordinary people, we
have angular constraints on the hips and knees as:�21 #
Aulead # p; 21 # Aflead # p�; �2p # Aulog # 11; 21 #
Aflag # p�; �21 # Lulead # p; 2p # Lflag # 11�; and
�2p # Lulag # 11; 2p # Lflag # 11�; where 1 is a
small disturbance.

4.5. HMMs parameters generation

Hidden Markov Model [20,21] has been successfully
applied in speech recognition. Recently, it has been applied
in image processing and computer vision such as handwrit-
ten character recognition and human body motion analysis.
Hu et al. [17] developed a handwriting recognition method
by using the 1st and the 2nd HMMs. Yamato [13] and Stoll
[15] applied HMMs to recognize the human action in time-
sequential images, and Starner [18] exploited the HMM
technique for American Sign Language recognition. Based
on HMM, Samaria [19] developed a method to identify the
face expression. Here, we apply the HMMs to analyze the
human motion. In the training stage, the first-order HMMs
are used to determine the transitions among the model
states. The advantage of using HMMs is that the models
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Fig. 5. The two-stage classifier.

Fig. 6. The graphical demonstration of the joint angles.



can be exploited to investigate the time varying sequences
of observations.

A HMM is a double stochastic process; one is not obser-
vable or hidden, and the other is observable. The output
symbols of the observable process are considered and
used to uncover the hidden stochastic process by a succes-
sion of computation. The HMM is defined by (S,P , A, B, V)
where (1)N is a number of model states of the posture
graph; (2)M a number of observation symbols; (3)T a
number of time units; (4)S� { Si u1 # i # N} : the set of
model states in the posture graph; if the state isk at timet, it
is denoted asqt � Sk whereqt denotes the state at timet; (5)
V � { vi u1 # i # M} : the set of observation symbols; (6)
A� { aij u1 # i; j # N} : the state transition probability
distribution, where aij � P�qj at n 1 1uqi at n�; (7) B�
{ bj�k�u1 # j # N and 1# k # M} : the observation symbol
probability distribution, wherebj�k� � P�vk at tuqt � Sj�; (8)
P � {p i u1 # i # N} : the initial state probability distribu-
tion, wherepi � P�q1 � Si�:

In our system, the number of observation symbols is the
same as the number of the model states, i.e.N � M: Initial
state probability, state transition probability, and observed
symbol probability are required for the implementation of
HMMs. Here, we introduce the training process to generate
these three probability distributionsP , A, and B.

1. Initial state probability. In HMMs, each model state has
its own initial probability,P � {p i u1 # i # N} ; where
the initial state probabilitypi is computed by observing
the probability that the motion starts from statei.
Normally, we assume that the walking sequence starts
from a certain state. However, if the input sequence is
a segment of one complete walking sequence, the initial
state can be any one of the model states. Here, we choose
the average model as our initial state probability model, i.e.

P �
(
p i

������wherepi � 1
N

1 # i # N

)
�8�

2. Observation symbol probability. In the HMM training
process, with the feature vectors in the training sequence,
we develop a classifier to categorize the training feature
vectors into observation groups. For each observation
group, there is arepresentative vectorthat is the centroid
of the training feature vectors assigned to that designated
group. For each input body signature, which may be
assigned to statel, we select the best five observations by
comparing the corresponding feature vector with a set of
representative vectors. The probabilities of observations
are determined by the similarity weighting between the
feature vector (A l) and the representative vector (Bj) is
defined as

Wl;j �
X5
i�1

Dp�Al ;Bi�=Dp�Al ;Bj�; j � 1; 2;…;5 �9�

wherej indicates the specific one of the five selected obser-
vations for each input frame, the numeratorS iD

p�A l ;Bi� is
the normalization factor, andDp is the Euclidean distance
measure. A smaller distanceDp(Al, Bj) will generate a
larger weightWij. For anobserved bodysignature sequence,
we find that in any time instance, it may be assigned to
several possible states with different state probabilities
p(Sk). With the state initial probabilitypi and the state tran-
sition probabilityaij, we can calculate thep�qj � Sk�: For
each body signature, we may have different observations
with different observation probabilities (i.e.p(vj)). In this
training phase, given as many body signatures as possible,
we calculate thep(Sk) andp(vj). For each stateSk, we may
calculatep(Skuvj) by using Eq. (9) to generateWlj and accu-
mulatingWlj for observationvj as

p�Skuvj� �

X
NT

Wk; j

X
NT

XN
l�1

Wl; j

�10�

where theN is the number of states and theNT is the number
of training image frames. To obtainp�vj uqt � Sk�; we can
use the following relationship: p�vj uSk� �
p�Skuvj�p�vj�=p�Sk�:

3. State transition probability. Since the motion speed and
frame rate of the same type of motion may not be the
same, different posture paths may be generated for
the same type of motion. To simplify the training
process, we use the following transition probability
model:

aij �

aii whenj � i:

1! 0 whenj ± i; andSj is not connected toSi:

1
Mi
�1 2 aii 2 ni1� whenj ± i; andSj connected toSi :

8>>>><>>>>:
�11�

where Mi and ni represent the counts of the model
states connected and disconnected to model statei.
The intra-state transition probabilityaii is defined as:

aii � 1
Ui

XUi

k�1

Rk �12�

where Ui is the number of sequences containing
model statei in the training set andRk � NIk=NSk

(NIk is the count of the transition of statei in the
sequencek and NSk is the count of the total transition
of sequencek).

5. Motion analysis phase

In the motion analysis phase, we investigate the motion
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sequence and describe the motion by using the pre-trained
models generated in the model construction phase. The
motion analysis phase contains two major analyses:global
posture analysisandlocal posture analysis. Fig. 7 describes
the relation between the two analyses.

5.1. Global posture analysis

The global posture analysis finds the inter-posture-node
transition in the posture graph. Posture path tracking process
determines the transition from one posture node to another.
Different posture paths depict different types of human
motion.

5.1.1. Generation of the posture transition path

For each input image sequence, we use the two-stage
classifier to generate a set of possible symbol observation
sequences that are mapped to different posture transition
paths in the posture graph. First, we define a posterior

probability as

gi�i� � P�qt � iuO;l� � P�O;qt � iul�
P�Oul�

� P�O;qt � iul�XN
i�1

P�O;qt � iul�
�13�

whereg t(i) is the probability of being in statei at time t,
given the observation sequenceO, and the modell �
�A;B;P�: The individually most likely stateqp

t at time t
can be determined by usingg t(i) in Eq. (13), that is

qp
t � arg min

1#i#N
�gi�i��; 1 # t # T �14�

To solve the state determination problem more efficiently
and correctly, we apply the Viterbi algorithm [20,21] to
determine the optimal model state sequence. The Viterbi
algorithm is implemented based on dynamic programming
methods, which is an effective approach to solve the transi-
tion of single state sequence.

I.-C. Chang, C.-L. Huang / Image and Vision Computing 18 (2000) 1067–10831074

Fig. 7. The model state transitions and posture analysis.

Table 5
Arm posture patterns

Categories # of visible arm skeletons # of long segments # of long bent segments # of short segments # of arm loops

1 2 2 0 0 0
2 2 0 2 0 0
3 2 0 0 2 0
4 2 1 0 1 0
5 2 0 1 0 1
6 2 0 0 1 1
7 1 0 0 1 0
8 1 0 1 0 0
9 1 1 0 0 0
10 0 0 0 0 0



5.1.2. Motion type recognition

The output of Viterbi algorithm is the posture transition
path, for example, the posture transition path may be {3 3 3
3 3 3 4 4 4 5 5 5 5 5 9 9 9 9 9 9}, which can be converted to
the posture path {3p4p5p9p}. To recognize the motion type
of the posture path, we use the following steps:

1. Prepare a motion type array MTA�i� i � 1;…;MTC;

where MTC is the number of different motion types.
2. For the optimal posture transition path, we check the T-

tag of each posture node in the path. If the T-tag of the
posture node isi, then we accumulate the counts of
MTA[i], e.g. MTA[PN(k).T–tag[m]]. (The definition of
PN(k) is mentioned in Appendix.)

3. The motion type is determined by arg max1#i#MTC

�MTA�i��:

Two different posture transition paths may be mapped to the
same posture path.For example, twostate sequences {111222
3333444} and {12222222234} are simplifiedas the same
posture path {1p2p3p4p}. These two motion sequences indicate
the same motion type but different motion speed. In global
motion analysis, we can identify the motion type of the

sequence, but not the detail motion information. The detail
information of the motion can be obtained by using the local
posture analysis.

5.2. Local posture analysis

The local posture analysis is developed to solve the
problem of the intra-posture-node transition in the posture
node. Based on the individual configuration of each model
state, we may compute the angle variation of each joint of
the body signature. By analyzing the body signatures in the
training sequences, we have different posture patterns,
which are categorized as arm posture patterns and leg
posture patterns. They are illustrated in Tables 5 and 6.
Different posture patterns indicate different motion charac-
teristics that are to be analyzed.

The last item of the arm posture pattern (see Table 5)
indicates that transition frame occurs (i.e. Section 5.2.2).
The invisible portion of the joint angles of the upper arm
can be easily interpolated by analyzing the angles of the pre-
and post-frames. The second item of the leg posture patterns
indicates that (1) the leg skeleton is bent between the hip
point and T-junction, or (2) the leg skeleton is straight
between the hip point and T-junction. The third item of
the leg posture patterns indicates that the two legs intersect
each other and form a leg loops. If the human body stands
still (refer to the last item of leg posture pattern), we may
assume thatLulead � Lflead � Lulag � Lflag � 0: Using
the models and the corresponding posture patterns, we
may develop a Joint Angle Parameters Computation
(JAPC) to calculate the angle parameters. Fig. 8 illustrates
the structure of JAPC that consists of a two-layer structure;
the first layer is model state layer and the second is posture
pattern layer.
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Table 6
Leg posture patterns

Categories # of visible
leg skeletons

# of long
segments

# of short
segments

# of leg
loops

1 2 2 0 0
2 2 0 2 0
3 2 0 0 1
4 1 1 0 0

Fig. 8. The structure of JAPCS.



5.2.1. Calculation of the quantitative characteristics of
posture patterns

There are some constraints associated with the meaning-
ful body postures. To analyze the human walking more
accurately, Lee and Chen [2] proposed fairly five general
rules of the walking model: (1)Both of the two arms cannot
be in front of or behind the torso simultaneously. The same
restriction also holds for the two legs. (2) The arm and the
leg which are on the same side of the body cannot swing
forward or backward at the same time. (3) When both the
shoulder joint and the elbow joint of either arm swing, they
must swing in a cooperative manner. The same rule holds
for the hip joint and the knee joint of either leg. (4) The
trajectory plane on which the arm or leg swings is generally
parallel to the moving direction. (5) At any time instant of
walking, there is at most one knee having a flexion angle.
Moreover, when there is such a flexion in one leg, the other
leg stands nearly vertically on the ground.

Rule 5 is a stringent constraint, in general, it can be
applied for an ordinary walking human motion. However,
this rule does not fit when people are running or stalking
because both legs may have flexion angle. Here, we modify
rule 5 asAt the time instance when body signature has leg
loop, the secondary angle of one leg is zero. Beside the
above rules, there are three assumptions associated with
the body signatures.

Assumption1: The body signature has spurious skeletons
in the neighborhood of the T-junctions.
Assumption2: The head point of the body signature is
assumed to the location of the shoulder.
Assumption3: The location of the hip is about half of the
body height 0.5H and derivations � 0:05H:

Having analyzed all the body signatures of the training
sequences, we make the above assumptions of the upper part
of the body signature (upper extremities) and lower part of
the body signature (lower extremities). These general
assumptions are applied for the body signatures of walkers,
they can also be used to compute the similar body postures
generated by other motion. To compute the quantitative
characteristics of each arm/leg posture pattern, we develop
a set of procedures calledoperation elements(OEs). With
the above rules, the assumptions and the set of OEs, we can
compute the motion characteristics for all the posture
patterns. The OEs are introduced in the following:

OE 1: Estimate the hip point(H). The vertical location of
the hip point is one half of the height of the human body
from the head point.
OE 2: Estimate the elbow point(W) relative to the head
point. The vertical location of W is 0.24 of the height of
the human body from the head point.
OE 3: Estimate the knee point(K) relative to the hip point.
The vertical location of K is 0.5 of the height of the
human body from the hip point.

OE 4: Locate the knee point on the single long leg skele-
ton. Given T-junction (T) and ankle end-point (E), OE4
traces the curve linking with T and E by searching the
location which has the largest distance withTE:
OE 5: Locate the knee point on the compound skeleton.
Given the hip point(H), the leg T-junction(T), the leading
end-point(E1), and the lagging end-point(E2), OE5 finds
the knee point(K), the important points of the leading/
lagging leg skeleton.
OE 6: Locate the elbow point and end-point in an arm
loop. Given the relative area of an arm loop(V ), the top
T-junction(T1) and the lowest T-junction(T2) on the arm
loop, OE6 finds the elbow point(W) and the arm end-
point(E).
OE 7: Locate the elbow point on single long arm skeleton.
Given T-junction(T) and hand end-point(E), OE7 traces
the curve linking with T and E by searching the location
which has the largest distance withTE:
OE 8: Locate the hip point. Given leg T-junction (T),
OE8 checks if the location of the leg T-junction is within
the neighborhood of central position of the height; if
yes, then the leg T-junction is the hip point; else call
OE 3.
OE 9: Locate the knee point in a leg loop. Given the
hip point (H), the T-junctions(T1 and T2), the lead-
ing end-point(E1), and the lagging end-point(E2),
OE9 finds the knee point. Note that E2 may not
exist.
OE 10: Find the primary and the secondary angles
of a straight leg skeleton. Given hip point(H) and
leg end-point(E), OE10 finds the primary and the
secondary angles.
OE 11: Find the primary and secondary parameters
of leg skeleton. Given the hip point(H), the knee
point(K), the leg end-point(E), and the baselinekB;
OE11 finds the primary and the secondary angle
parameters of leg skeleton.
OE 12: Find the primary and the secondary para-
meters of arm skeleton. Given the head point(C), the
elbow point (W), the end-point (E), and the baseline
kB; OE12 finds the primary and the secondary angle
parameters of arm skeleton.

5.2.2. Switching process
Walking motion is a cyclic motion, so the leading or

lagging leg skeleton in each body signature does not always
indicate the appearance of the same leg. For example, the
appearance of the same leg in the image sequence may
change its appearance from the leading leg skeleton to the
lagging leg skeleton and vice versa. For example, the fore-
part of the curve of angle parameteru leading may belong
to the right leg angle and then changes to the left leg
angle.

To analyze the walking motion, we need to find out the
frame in which the left/right leg changes its appearance. The
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specific frame is called theswitching frame. The motion
characteristics curves of the leading skeleton or lagging
skeleton have to be switched for every half cycle to make
a complete cycle of the motion parameter characteristics
curve of the left/right extremity. We find the switching
frame by observing the variation of the angleu .

Assume the characteristics curves of the leading and
lagging skeletons are denoted asu leading( fn) and u lagging

( fn) where 1# fn # N; N is the total frame number of
the input sequence. The switching framens is deter-
mined by

ns � arg min
fn

iuleading� fn�2 ulagging� fn�i: �19�

In general, the values ofu leading( fn) and u lagging( fn) are
close to zero at the switching framens.
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Fig. 9. Six postures.



1. Assemble the characteristics curve for the left skele-
ton as

uleft� fn�u1#fn#ns
� uleading� fn�u1#fn#ns

uleft� fn�uns,fn#N

� ulagging� fn�uns,fn#N (20)

2. Assemble the characteristics curve for the right skele-
ton as

uright� fn�u1#fn#ns
� ulagging� fn�u1#fn#ns

uright� fn�uns,fn#N

� uleading� fn�uns,fn#N (21)

However, not every input sequence will form a
complete cycle, the switching process will not be used
if the walking motion is bounded in a half cycle.

Since not every input frame is selected as a key frame, the
characteristics curve generated from analyzing the key
frames consists of several discontinuous curves. The
unknown joint angles of the non-selected frames are located
in the gaps between two discontinuous sections of the same
characteristics curve. Since the motion of human walking is
smooth, we uselinear interpolation to predict the angle
values of the joint of the moving extremities in the non-
key frames. If there are consecutive non-key frames, we
can estimate the joint angle of these frames by using
the joint angle values of the adjacent pre- and post-key
frames.

6. Experiments and discussion

In our experiments, the model dressed in black tight
clothes performs different motion types, such as running,
normal-walking, goose-walking I, goose-walking II, stalk-
walking, stroll-walking (see Fig. 9). The most significant
information of human motion is the movement of the
lower extremities, i.e. the thigh and the calf. These walking
sequences cover most of the human walking motions. We
use a CCD camera with 256× 256 resolution to capture the
image sequence (with 30 frame/s). The input walking
sequences are firstly converted to the body signatures

sequences. Then, the system extracts the feature vectors of
each body signature and generates the system parameters. In
the training process, we classified the training sequences
into 39 model states. Since the initial model state of the
test sequences is not biased, each model state is assigned
an equal initial probability. For visual verification, we use
the software POSER(by Fractal Design Corporation) to
simulate the experimental results.

The input walking sequence of the first experiment is
shown in Fig. 10 and the corresponding body signatures
are displayed in Fig. 11. The input image sequence has 21
image frames. After extracting the body signature of each
image frame, the feature vector associated with each signa-
ture can be used to determine the state sequence. The length
of the sequence is 21. The posture transition sequence (PTP)
and the posture path (PP) are shown in Table 7. Since the
posture transition path is {4p5p6p}, the path indicates a
normal posture. We use three individual motion character-
istics generation procedures to analyze the body signatures
of the three model states. The motion characteristics curves
of the motion sequence are shown in Fig. 12. In the above
figures, ‘p’ denotes the angle value calculated from the
image frame and the curves linking between ‘p’s are
approximated by the method of “cubic interpolation”. In
Fig. 12, we find that the leading leg stretched to the largest
angle and then returned to fold. The model bent his knee but
toward and unbend when he folded his leading and lagging
legs (see Fig. 12(b)). From these figures, we find that the
entire motion is in the front interval of the complete walking
cycle. We also know that the lagging leg does not bend since
the angle is 0 in the walking sequence (see Fig. 12(d)). The
synthesized results are illustrated in Fig. 13.

In the second experiment, we use a walking sequence that
contains 28 image frames. Fig. 14 illustrates three image
frames of the walking sequence and their corresponding
body signatures are shown in Fig. 15. The posture transition
path and the posture path of the input image sequence are
displayed in Table 8. After the posture tracking process, the
posture transition path is {16p7p17p18p19p16p7p17p}. Based
on the posture path table, we can identify the image
sequence as a subsection of the stalk walking. In order to
get more detail description of the walking, we compute the
joint angle. The angle maps describe the detail information
about the movement of the lower extremities of the walker.
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Fig. 10. The image frames of the walking sequence 1.



Fig. 16(a)–(d) shows the joint angles of the leading and
lagging legs. We find that the angle values on hip vary
above zero in Fig. 16(a) and below zero in Fig. 16(c). In
Section 5.2.2, we discussed that there exist the switching
frames when both the angles approach to zero. After using
Eq. (19), we find that there are two switching frames (ns) in
the sequence, and they are the 8th frame and the 27th frame.
We use Eqs. (20) and (21) to process Fig. 16(a)–(d). Fig.
16(e)–(h) show the results of which one leg is assigned to be
the first legand the other isthe second leg. From Fig. 16(e),
we know that the first leg is lifting up at about 408 in the
beginning of the sequence and then lowering down to be a
lagging leg. On the other hand, the second leg is the lagging
leg in the beginning and lifts up to about 548, and then
lowers downward (see Fig. 16(f)). The first leg straightens
itself in almost all the image sequence, but we can observe
that it begins to bend from the 24th frame (see Fig. 16(g)),
however, the second leg begins to straighten out from this
frame (see Fig. 16(h)). We synthesize the experimental
results of the motion sequence illustrated in Fig. 17.

Fig. 18 shows the image sequence of the third experiment
and the corresponding body signatures are displayed in Fig.
19. The testing image sequence contains 30 image frames.
Table 9 shows the posture transition path and the posture
path of the sequence. The arm and leg motion characteristics
curves are generated. The motion characteristics curves of
the arm posture part are illustrated in Fig. 20(a)–(d). In Fig.
20(a), we find that the leading arm swings to the maximum
angle at frame 21 and then swings backward. In the mean-
while, we also find that the lagging arm swings to the mini-
mum angle at the same frame. Moreover, the angle variance
of the elbow of the lagging arm is smaller than that of the
leading arm. Fig. 20(e)–(h) show the motion characteristics

curves of the leg posture part. In Fig. 20(h), we note that the
knee of the lagging leg is straight at almost all the image
frames. Fig. 21 shows the synthesized result of the
experiment.

7. Conclusions

In the paper, we propose a multi-state based approach to
analyze the human walking sequences. We incorporate the
concept of the HMM into our model state system to deter-
mine the posture transition path, which can be used to recog-
nize the posture of the walker. Furthermore, we analyze the
body signature of different postures to classify the posture
patterns of the arms and legs. The proposed system not only
recognizes the posture of the input sequence, but also
provides the motion characteristics curves to describe the
walking sequence. Besides, the motion analysis system can

I.-C. Chang, C.-L. Huang / Image and Vision Computing 18 (2000) 1067–1083 1079

Fig. 11. The corresponding body signatures.

Table 7
Posture transition path (PTP) and posture path (PP) of the walking sequence
1

Time 1 2 3 4 5 6 7 8 9 10 11
PTP 4 4 4 4 5 5 5 5 5 5 5
PP 4p 5p

Time 12 13 14 15 16 17 18 19 20 21
PTP 5 5 5 5 6 6 6 6 6 6
PP 5p(cont.) 6p

Table 8
The posture transition path and posture path of the walking sequence 2

Time 1 2 3 4 5 6 7 8 9 10 11
PTP 16 16 16 16 16 16 7 7 17 17 18
PP 16p 7p 17p 18p

Time 12 13 14 15 16 17 18 19 20 21 22
PTP 18 19 19 19 19 16 16 16 16 16 16
PP 18p 19p 16p

Time 23 24 25 26 27 28
PTP 7 7 7 7 17 17
PP 7p 17p

Table 9
The posture transition path and posture path of the walking sequence 3

Time 1 2 3 4 5 6 7 8 9 10 11
PTP 21 22 22 22 22 22 23 23 23 23 23
PP 21p 22p 23p

Time 12 13 14 15 16 17 18 19 20 21 22
PTP 23 24 24 24 24 24 24 24 24 25 25
PP 23p 24p 25p

Time 23 24 25 26 27 28 29 30
PTP 25 25 25 26 26 26 26 27
PP 25p 26p 27p



be expanded to other different motion types, e.g. ballet
dancer, athlete, etc.

Appendix

A.1. Graph growing algorithm

Step. 1 Collecting all the MSSs of the training set.
MSS(i)[j] stores the model state of the jth element of
the ith MSS and MT(i) is the motion type of the
MSS(i).

Step. 2 Posture graph initialization
Denotation PN(k) is the kth posture node of the posture
graph and there are three tags associated with posture
node: T-tag, Pre-tag and Pos-tag.
We choose one MSS as the initial basement of the
posture graph, e.g. MSS�i�i � 1;…;Ri :

PN(1)← MSS(i)[1]; //Root node assignment
PN(1).T-tag[1]← MT(i);
PN(1).Pre-tag[1]← NULL;
For k, j� 2 to Ri

PN(k)← MSS(i)[j];

I.-C. Chang, C.-L. Huang / Image and Vision Computing 18 (2000) 1067–10831080

Fig. 12. The motion characteristics curves of: (a) the leading leg on hip; (b) the leading leg on knee; (c) the lagging leg on hip; and (d) the lagging leg on knee.

Fig. 13. The synthesized results of experiment 1.

Fig. 15. The corresponding body signatures.

Fig. 14. The image frames of the walking sequence 2.
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Fig. 16. The joint angle characteristics curve of: (a) leading leg on hip; (b) leading leg on knee; (c) lagging leg on hip; (d) lagging leg on knee; (e) hipof the first
leg; (f) hip of the second leg; (g) knee of the first leg; and (h) knee of the second leg.

Fig. 17. The synthesized result of experiment 2.

Fig. 19. The corresponding body signatures.

Fig. 18. The image frames of the walking sequence 3.



PN(k).T-tag[1]← MT(i);
PN(k).Pre-tag[1]← MSS(i)[j–1];
PN(k2 1).Pos-tag[1]← MSS(i)[j];

End
Step. 3 Insert new posture node

If a MSS(m) of new motion type is input to the posture
graph, the insertion algorithm is stated as followed.
Though the motion type is new, the model state may
have already existed in the posture graph. The insertion
algorithm will be operated in two conditions: (1) the
current model MSS(m)[n] is a new posture node state,
and (2) the current model state MSS(m)[n] is an old
posture node.
(1) MSS(m)[n] is a new posture node

PN(k)← MSS(m)[n];
PN(k).T-tag[1]← MT(m);
PN(k).Pre-tag[1]← MSS(m)[n–1];
PN(PN(k).Pre-tag[1]).Pos-tag[0]← MSS(m)[n];

(2) MSS(m)[n] is an old posture node
PN(k).T-tag [P1 1] ← MT(m); //P is the count of
the motion types to which the posture node belongs.
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