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Empirical Bayesian Light-Field Stereo Matching
by Robust Pseudo Random Field Modeling
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Abstract—Light-field stereo matching problems are commonly modeled by Markov Random Fields (MRFs) for statistical inference of
depth maps. Nevertheless, most previous approaches did not adapt to image statistics but instead adopted fixed model parameters.
They explored explicit vision cues, such as depth consistency and occlusion, to provide local adaptability and enhance depth quality.
However, such additional assumptions could end up confining their applicability, e.g. algorithms designed for dense view sampling are
not suitable for sparse one. In this paper, we get back to MRF fundamentals and develop an empirical Bayesian framework—Robust
Pseudo Random Field—to explore intrinsic statistical cues for broad applicability. Based on pseudo-likelihoods with hidden
soft-decision priors, we apply soft expectation-maximization (EM) for good model fitting and perform hard EM for robust depth
estimation. We introduce novel pixel difference models to enable such adaptability and robustness simultaneously. Accordingly, we
devise a stereo matching algorithm to employ this framework on dense, sparse, and even denoised light fields. It can be applied to both
true-color and grey-scale pixels. Experimental results show that it estimates scene-dependent parameters robustly and converges
quickly. In terms of depth accuracy and computation speed, it also outperforms state-of-the-art algorithms constantly.

Index Terms—Stereo matching, light field, Markov Random Field, empirical Bayesian method
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1 INTRODUCTION

L IGHT-FIELD stereo matching is an effective way to infer
depth maps from pictures captured in different view-

points. It is based on two properties: photo-consistency
across views and depth continuity between pixels. They are
often formulated by Markov Random Fields (MRFs) [1], a
statistical graph model, for global optimization: the former
as data energy and the latter as smoothness energy.

However, most previous approaches applied global opti-
mization heuristically, not statistically. For example, the en-
ergy functions were not inferred from statistics but, instead,
devised based on practical experience. They were often
given in robust clipping forms (with constant parameters),
such as truncated linear [2] and negative Gaussian [3],
to preserve correct depth edges. Recent work has further
explored advanced vision cues, such as depth consistency
[4], line segments [2], phase shift [5], occlusion in angular
patches [6], spinning parallelogram operator [7], and con-
strained angular entropy [8] to achieve better depth quality.
But these additional cues also narrow applicable scope
correspondingly. For example, features for dense light fields
( [4], [6], [8]) may not work for sparse ones. Also, image
denoising which is commonly used in low-light conditions
could invalidate textural cues ( [2], [5], [7]). In this paper,
we aim to construct MRFs in a statistical way to infer robust
energy functions for good depth accuracy and estimate
scene-dependent parameters for broad applicability.

MRF parameter estimation via maximum likelihood is
usually intractable because the normalization factor for
unity is hard to calculate. Instead, pseudo-likelihood model-
ing [9] is a classical approximation by exploring local depen-
dence. One global MRF (likelihood) can be separated into
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lots of local neighborhoods (pseudo-likelihood) to collect
statistics and perform distribution fitting. Nevertheless, this
approach has a major issue for stereo matching: empirical
distributions usually do not have robust clipping forms.
Therefore, good distribution fitting will result in non-robust
energy and thus over-smooth depth (Fig. 1f), especially near
object boundaries. On the other hand, keeping robust energy
will lead to inaccurate fitting results.

In this paper, we address this issue by developing a
novel statistical method for both MRF modeling and infer-
ence. There are two major contributions:

1) An empirical Bayesian framework—Robust Pseudo
Random Field (RPRF)—which estimates scene-
dependent parameters accurately and infers edge-
preserved depth robustly;

2) A stereo matching algorithm which incorporates
RPRF and generalizes to light fields of different
configurations.

We model pixel differences by scale mixtures with soft-
decision hidden priors. For parameter estimation, we apply
soft expectation-maximization (EM) by marginalizing out
the hidden priors to achieve good pseudo-likelihood fitting.
For MRF formulation, we employ hard EM by maximizing
energy with respect to the priors to derive robust energy
functions. After introducing such RPRF modeling in Section
3, we present the stereo matching algorithm in Section 4.
Extensive experimental results in Section 5 will show that
this work has good statistical adaptability and produces
great depth maps for not only dense light fields (Fig. 1g with
accurate depth edges) but also sparse, denoised, and even
grey-scale ones (Figs. 1h-1j). The scene-dependent parame-
ters can also be estimated robustly with fast convergence.
Finally, we demonstrate better depth accuracy and faster
computation speed than the state-of-the-art algorithms.
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(a) Center view (b) PSCV [5] (c) OADE [6] (d) SPO [7] (e) CAE [8]

(f) Soft-EM MRF
(g) RPRF (This

work)
(h) RPRF on 3×3

views
(i) RPRF on 3× 3

denoised views
(j) RPRF on five
grey-scale views

Fig. 1. Depth estimation results from different algorithms and view configurations. Disparity values are displayed in grey-scale intensity. To highlight
positive and negative disparity errors, we add corresponding values to red and green channels respectively. (a) A challenging light field StillLife (9×9
views) in HCI dataset [10]. (b)-(g) The depth maps produced with the 9×9 views by (b) phase-shift cost volume (PSCV) [5], (c) occlusion-aware
depth estimation (OADE) [6], (d) spinning parallelogram operator (SPO) [7], (e) constrained angular entropy (CAE) [8], (f) MRF using conventional
soft-EM energy, and (g) the proposed Robust Pseudo Random Field (RPRF) using robust hard-EM energy. (h)-(j) The depth maps produced by
RPRF with more difficult configurations: (h) a more sparse 3×3 light field, (i) a distorted 3×3 light field which is first corrupted by Gaussian noise
(σ = 10) and then denoised by BM3D [11], and (j) a five-view crosshair light field with only one grey-scale channel.

This paper extends our previous work [12] with more
theoretical and technical discussions on RPRF modeling and
stereo matching implementation. In addition, we added ex-
perimental results for discussing model properties, includ-
ing subjective quality, parameter variation, soft-EM energy,
and energy function types, and also for generalizing to
difficult settings, such as five-view light fields and grey-
scale pixels. Also, to our best knowledge, this is the first
work to estimate MRF parameters for a single light field.

2 RELATED WORK

Pseudo-likelihood. It assumes that local neighborhoods give
independent observations; therefore, we can estimate pa-
rameters by maximizing the pseudo-likelihood that aggre-
gates all the local observations. This approach has been
widely used to explore such spatial dependency and learn
corresponding MRF parameters from training datasets for
many different applications [13], [14]. The reader is referred
to [1] for further details. In this paper, we estimate parame-
ters from a single light field adaptively.

Single-scene parameter estimation. Previous work for sim-
ilar purposes focused on stereo image pairs and used a
conventional framework: identical likelihood functions for
distribution fitting and MRF inference. Zhang et al. [15]
aimed to build robust energy functions and achieved that
by performing soft EM on linear mixture models. However,
the modeled distributions do not fit the histograms of pixel
difference well. Also, it takes six iterations to converge be-
tween parameters and depth maps. In contrast, Liu et al. [16]
and Su et al. [17] introduced advanced models to fit natural
images, but the inferred depth maps do not have good
accuracy. In this paper, we develop a new framework with
quick convergence in which separate likelihood functions
are used: soft-EM ones for good model fitting and hard-EM
ones for robust energy functions.

Soft and Hard EM. They are conventional approaches for
maximum likelihood estimation with unobserved data and

usually used for different purposes. For example, the EM
algorithm (soft EM) for clustering minimizes likelihood and
the K-means (hard EM) optimizes data distortion [18]. In
[19], Huang proposed a neighborhood noise model (NNM)
to estimate parameters statistically for bilateral filters and
non-local means. The NNM fits heavy-tailed empirical dis-
tributions by soft EM and reasons robust range-weighted
filters by hard EM. In this paper, we apply this approach
to infer RPRFs for robust light-field stereo matching. We
employ a similar model for the data energy with a new ker-
nel function and propose a novel model for the smoothness
energy to include depth labels.

Binocular stereo matching. The data energy collected from
only two views are not reliable, so cost aggregation [20] or
cost-volume filtering [21] is required to enhance robustness.
Also, occlusion issues need to be detected and handled
explicitly [22], such as left-right consistency checking. In
this paper, we deal with light fields which have at least
five crosshair views. Experimental results show that the
data energy is sufficiently robust without cost aggregation
in this case; in addition, our implicit occlusion handling via
the hidden priors is able to provide accurate depth edges
without explicit occlusion detection.

Light-field stereo matching. Light fields possess lots of
depth information, and previous work has explored many
vision cues to retrieve it. Many of them employed specific
features for dense light fields. For example, the depth con-
sistency in epipolar line image (EPI) was utilized in [4].
Also, the abundant information of densely angular sam-
pling is useful to handle occlusion. Kim et al. [23] implicitly
formulated it into reliable data terms with iterative mean
shifts, and Chen et al. [24] used it to construct bilateral
statistics of surface cameras. Wang et al. [6] further explicitly
built occlusion-aware data terms using angular statistics,
and Sheng et al. [25] employed the similarity between local
and angular patches. In addition, Si et al. [26] proposed
a pixel-wise plane model for detail refinement. However,



3

these methods may not adapt well to sparse view sampling.
On the other hand, many approaches focused on physi-

cal or textural cues. In addition to the conventional pixel-
wise photo-consistency, Kolmogorov et al. [27] explicitly
formulated pixel-wise occlusion between views, and Yu et
al. [2] further considered geometry structures of 3D line
segments in light fields. Also, Tao et al. [28] incorporated
the depth-dependent defocus blurs into data terms, and
Johannsen et al. [29] used sparse light-field representation
for correspondence matching. In particular, Zhang et al. [7]
devised a spinning parallelogram operator which measures
histogram distances between the two EPI regions separated
by each depth label. Although great depth quality can be
achieved, these approaches are mainly applicable to clean
images and may fail if the texture is noisy or distorted.

Finally, some research works applied noise-resistant cues
for noisy light fields. For example, Lin et al. [3] utilized color
symmetry in simulated focal stacks. Williem et al. [8] devised
robust data costs using constrained adaptive defocus and
constrained angular entropy to provide invariant capability
over noise and also occlusion, and this work presents the
state-of-the-art quality. However, these methods, as well as
most of the previous work, adopted many heuristic parame-
ters, and this will degrade their generalization capability. In
this paper, we get back to fundamentals in MRF inference
by exploring intrinsic statistical cues for parameter estima-
tion with wide application scope and achieve great depth
quality using simple pixel-difference data costs. In addition,
Heber et al. [30] trained a deep convolutional network on
EPI volumes using a large database. In contrast, this work
estimates MRF parameters for each single light field.

3 RPRF MODELING

For a given light field, we consider the problem of disparity
(inverse depth) estimation for the center view in which each
pixel p has a k-channel color signal zp and an unknown
disparity label lp. The disparity map D = {lp} is derived by
optimizing the global MRF energy

∑
p

∑
v∈V

Ed
pv(lp) + λ

∑
q∈N4(p)

Es
pq(lp, lq)

 . (1)

The view-wise data energy Ed
pv measures photo-consistency

by color difference between zp and the corresponding signal
yvp(lp) in a surrounding view v for the disparity lp. The
edge-wise smoothness energy Es

pq evaluates depth continu-
ity by color-conditioned disparity difference between a pixel
pair p and q in 4-connected neighborhood N4. Finally, the
weight parameter λ determines their ratio of contribution.

We reason and infer the MRF in (1) by constructing
pseudo-likelihoods of pixel differences for each pixel p from
its view-wise and spatial neighborhoods as shown in Fig.
2. In the following, we will introduce the view-wise pixel
difference model for the data energy first and then the novel
spatial model for the smoothness energy. Some important
properties of these models will also be discussed.

3.1 Pixel Difference Model for Data Energy
Let Xd be a random vector for the view-wise color differ-
ence xd , zp − yvp(lp). The empirical distribution of its

Fig. 2. Pseudo-likelihood modeling for RPRFs. For the view-wise neigh-
borhood, color difference xd is modeled by a scale mixture with a
soft-occlusion hidden variable wvp. For the spatial neighborhood, color
difference xs and disparity difference h are formulated by two separate
scale mixtures with an identical hidden soft-edge upq .
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Fig. 3. Distributions of the soft-occlusion variable w and color difference
xd. G(w) is of Reciprocal type and σd = 1.

L2-norm is usually heavy-tailed as shown in Fig. 4a, i.e. de-
cays much slower than Gaussian distribution (a downward
parabola in log-scale), and we employ a model similar to the
NNM for good model fitting. We introduce a scale random
variable W to model occlusions using soft decisions and
formulate Xd in a Gaussian scale mixture (GSM):

Xd|W = w ∼ N
(
0,
σ2
d

w
Ik

)
, (2)

fW (w) =
1

Nd
w−

k
2 eαdG(w), w ∈ [εd, 1], (3)

where σd is a scale parameter for Xd, αd and εd are shape
parameters for W , and Nd is the normalization factor for
unity. Note that the σd here represents only distribution
scaling, not for the noise intensity in the NNM.

A smaller w will result in a more flat distribution for
xd and thus implies occlusion more likely happens; on the
other hand, a larger w will lean to non-occlusion. Therefore,
its distribution directly affects the one of xd. These distri-
butions are controlled by the prior function G(w) through
parameters εd and αd as shown in Fig. 3. The εd dictates the
occlusion probability (on small w) and thus the distribution
tail thickness of xd. In contrast, the αd sets the non-occlusion
ratio (on large w) and determines the distribution peak
height of xd. By varying εd and αd, we can fit heavy-tailed
f‖Xd‖(‖xd‖) in different shapes.

3.1.1 Parameter Estimation by Soft EM
Given an estimated disparity map D̃ = {l̃p}, we can
use the corresponding signals from surrounding views
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{yvp(l̃p)} to update the parameter set for data energy,
θd = (σd, αd, εd)

T . Consider a sufficient statistic td , ‖xd‖2
which follows a chi scale mixture (CSM) distribution. By
marginalizing out the hidden W from the joint distribution
fTd,W , we can have its soft-EM energy:

Esoft
Td

(td;θd) = − log

∫ 1

εd

fTd,W (td, w;θd)dw. (4)

Note that it is a non-analytic function and requires numeri-
cal integrals for evaluation.

The updated θ̂d can be derived by model fitting to
empirical observations t̃d = ‖zp − yvp(l̃p)‖2 through global
energy optimization:

θ̂d = argmin
θd

∑
t̃d

Esoft
Td

(t̃d;θd). (5)

However, the summation over all t̃d is computation-
intensive due to the massive numerical integrals. Instead,
we apply a histogram-based expectation as in [31] to accel-
erate the fitting process:

θ̂d = argmin
θd

Et̃d

[
Esoft
Td

(t̃d;θd)
]
, (6)

which is also equivalent to minimizing the cross entropy
H(t̃d, td) between the empirical t̃d and its modeled td
in CSM. Then the parameter set θd can be estimated by
iterative updates for solving (6) until converged.

3.1.2 Robust Data Energy by Hard EM
Define an energy function E(x) as the convex conjugate of
the prior G(w):

E(x) , min
w

(wx−G(w)) , x ≥ 0. (7)

Then we can construct the hard-EM energy for color differ-
ence Xd, given a parameter set θd, by maximizing the joint
distribution fXd,W with respect to the hidden W (select the
best guess of w):

Ehard
Xd

(xd) = − log max
w

fXd,W (xd, w) (8)

= αdE

( ‖xd‖22
2αdσ2

d

)
+ C, (9)

where C is a constant offset and will be discarded because
only the energy difference matters for MRF inference. There-
fore, we have the view-wise data energy in (1) as

Ed
pv(lp) = Ehard

Xd
(zp − yvp(lp)). (10)

3.2 Pixel Difference Model for Smoothness Energy
Let H be a random variable for the spatial disparity dif-
ference h , |lp − lq|, Xs be a random vector for the
corresponding color difference xs , zp − zq , and U be a
soft-edge hidden random variable. To fit the heavy-tailed
distribution of H , we propose a scale mixture for fH using
generalized Gaussian distributions for fH|U . Along with a
GSM for Xs, we construct the following joint model:

fH|U (h|u) =
2

γ( 1β + 1)δ
u

1
β e−u(

h
δ )
β

, (11)

Xs|U = u ∼ N
(
0,
σ2
s

u
Ik

)
, (12)

fU (u) =
1

Ns
u−(

k
2+

1
β )eαsG(u), u ∈ [εs, 1], (13)

where δ and β are the scale and shape parameters for H ,
and the β is fixed to 1.5 in this paper. The σs, αs, εs and Ns

serve the same purposes as the σd, αd, εd and Nd separately.
The disparity difference H shares the same soft-edge

prior U with the color difference Xs for inferring color-
conditioned MRF. Also, the additional factor u−

1
β in fU (u),

compared to fW (w), is devised to cancel out the u
1
β in

fH|U (h|u) for the joint distribution fXs,H,U . As a result, the
hard-EM smoothness energy can have a simple form similar
to the case of the data energy (9).

3.2.1 Parameter Estimation by Soft EM
Consider the parameter set θs = (δ, σs, αs, εs)

T . We update
it using the empirical t̃s for a sufficient statistic ts , ‖xs‖2
and also the empirical disparity difference h̃ from a given
disparity map D̃. However, using their soft-EM joint energy,
which marginalizes out U for fTs,H,U , will induce a compu-
tation issue: it needs to evaluate the non-analytic energy for
every pair of t̃s and h̃. Instead, we derive the updated θ̂s by
using their marginal energy to speed up the process:

θ̂s = argmin
θs

(
Et̃s

[
Esoft
Ts

(t̃s;θs)
]
+ ηEh̃

[
Esoft
H (h̃;θs)

])
,

(14)

where η controls the cross entropy ratio for model fitting.

3.2.2 Robust Smoothness Energy by Hard EM
Similarly to (8)-(9), we maximize the joint distribution
fXs,H,U with respect to the hidden U and have the hard-
EM energy for pixel differences xs and h as follows:

Ehard
Xs,H(xs, h) = αsE

(
‖xs‖22
2αsσ2

s

+
hβ

αsδβ

)
. (15)

At last, we have the edge-wise smoothness energy in (1):

Es
pq(lp, lq) = Ehard

Xs,H(zp − zq, |lp − lq|), (16)

which constitutes a conditional random field.

3.3 Properties of Pixel Difference Models
3.3.1 On Core Functions
Given the definition of E(x) in (7), the best guessed hidden
ŵ , argminw(wx−G(w)) for an observed x should satisfy

x−G′(ŵ) = 0⇒ ŵ = K(x), (17)

where the kernel function K(x) is defined by

K(x) , (G′)
−1

(x). (18)

Then it can be shown using integration by parts (in Ap-
pendix A) that K(x) is the derivative of E(x). Therefore,
the three core functions are directly connected by

E′ = K = (G′)
−1
, (19)

which is also a property of convex conjugates. Table 1 shows
two examples, Reciprocal and Gaussian, for a robust energy
functionE(x). Note that in these modelsE(x) andG(w) can
be offset by any constant without affecting their properties,
i.e. only the derivatives E′(x) and G′(w) really matter.

Three interesting results of the above formulations can
give us useful properties for robust MRF inference and
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TABLE 1
Core functions for robust hard-EM energy.

Type Energy
E(x)

Kernel
K(x)

Hidden Prior
G(w)

Reciprocal − 1
x+1

1
(x+1)2 2

√
w − w

Gaussian −e−x e−x w(1− logw)

model fitting. First, the range of K(x) is equal to that of
w, i.e. K(x) ∈ (0, 1]. Thus E(x) is an increasing function,
which meets our expectation for a proper energy function.
Second, K(x) is invertible and thus strictly monotonic. In
this paper, we make a further but reasonable assumption:
K(x) is strictly decreasing with K(0) = 1 and K(∞) = 0.
Then we have a robust form for E(x) because its derivative
will approach to zero when x → ∞. Finally, as the inverse
function of K(x), G′(w) ranges between [0,∞) and is also
strictly decreasing. Therefore, G(w) has the same good
properties as that in the NNM [19] for fitting heavy-tailed
distributions.

3.3.2 On Selection of Energy Function E(x)

The proposed models can fit light fields of different charac-
teristics and track their heavy tails well as shown in Figs. 4a-
4b. The Reciprocal type in Table 1 can provide better fitting
accuracy than the conventional Gaussian one, especially for
spatial difference ‖xs‖2. Therefore, we adopt it for the stereo
matching algorithm in this paper. Detailed comparisons
including depth quality will be given in Section 5.1.1.

In addition, Figs. 4c-4d show the corresponding energy
functions. The soft-EM ones are close to the empirical ones
due to the model fitting; however, they induce bad depth
edges as shown in Fig. 1f. In contrast, the hard-EM ones
have similar values for small color difference but saturate
quickly as robust metrics for large difference. As a result,
the depth edges can be well preserved as Fig. 1g shows.
More comparisons will be presented in Section 5.1.2.

4 IMPLEMENTATION FOR STEREO MATCHING

We designed an empirical Bayesian stereo matching al-
gorithm using the proposed RPRF. In the following, we
will introduce implementation details for RPRF parameter
estimation and MRF inference, hyper-parameters, and the
algorithm itself, respectively.

4.1 Efficient RPRF Implementation
4.1.1 Parameter Estimation for RPRF
Given a disparity map, we estimate the parameters θd and
θs for data and smoothness energy from the corresponding
view-wise and spatial pixel differences. For the θd, we
applied the EM+ fitting method designed for NNM in [19]
to our soft-EM update formulation (6). Small changes were
made for the model difference. For the θs updated by (14),
we modified the fitting method to include the disparity
difference with its additional parameter δ and statistics h̃.
Further details are given in Appendix B. In addition, for
accelerating the fitting processing, we applied the equal-
frequency merging technique in [31] with 20 bins for the
pixel differences.

4.1.2 Belief Propagation for MRF Inference
After deciding the parameters, we use belief propagation
(BP) [32] to implement MRF inference on (1) iteratively for
solving the disparity map. We adopted the BP-M approach
in [33] for its efficient message propagation. We stop the BP-
M if the global energy is not decreased by more than 1%,
and around four iterations on average are performed in our
experiments.

4.1.3 Energy Approximation for MRF Inference
To further accelerate message propagation, we use the
linear-time algorithm in [32]. To achieve this, we approx-
imated (15) for the Reciprocal smoothness energy using a
truncated linear function that has the least squared error:

Ehard
Xs,H ' αs min

(
0.3726

δα
1
β
s b

1
β+1

h,
1

b

)
+ const, (20)

where b = 1+
‖xs‖22
2αsσ2

s
which can be calculated in advance for

each pixel pair p and q before running BP-M.

4.2 Hyper-Parameter Setting
There are two hyper-parameters which cannot be explained
and estimated by RPRF. One is the energy ratio λ for global
MRF inference in (1). The other one is the cross entropy
ratio η for parameter estimation of smoothness energy in
(14). In the following, we will introduce our heuristics for
their settings.

4.2.1 On Adaptive Selection of Energy Ratio λ
Configuration adaptability. Although the parameters αd and
αs can statistically determine the dynamic ranges of the
data and smoothness energy, we further use λ to weight
importance between them for different configurations. For
example, denoised light fields rely on smoothness energy
more than clean ones, so we assign larger values to λ for
them. Also, we set the values proportional to the numbers
of surrounding views, |V|. But they are lower truncated be-
cause the data energy using few views becomes unreliable.

Scene adaptability. We also found that λ should adapt to
different scenes. For example, there are two typical perfor-
mance trends for λ as shown in Fig. 5: one needs a small λ,
as StillLife, to minimize depth errors, and the other prefers a
large λ, as Medieval. We found that the cross entropyH(h̃, h)
between the empirical and modeled disparity differences is
a good indicator for them. A small reduction ofH(h̃, h) for λ
from zero to a large value means the data energy outweighs
the smoothness one, so a weak λ is preferred. On the con-
trary, a significant reduction encourages a strong λ. Based
on this observation, we use the entropy reduction ratio to
adaptively assign λweak and λstrong. Table 2 summarizes our
adaptive selection schemes of λ for true-color cases. In grey-
scale cases, the value is further halved to accommodate their
stronger smoothness energy.

Entropy threshold. Finally, we need to decide the entropy
threshold. As shown in Fig. 5, the weak scenario, e.g. Stil-
lLife, will have large penalties on depth error if assigned
a strong λ. On the contrary, the strong scenario is more
tolerant to a weak λ. Therefore, we prefer a higher entropy
threshold to avoid misjudgement for weak scenarios. In this
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(a) Model fitting of
td = ‖xd‖2

(b) Model fitting of
ts = ‖xs‖2

(c) Data energy vs.
‖xd‖2

(d) Smoothness energy
vs. ‖xs‖2 (h = 0)

Fig. 4. Modeling fitting and robust energy. The top row is for the light field StillLife and the bottom for Medieval. Ground-truth disparity maps are
used to generate empirical distributions. (a)-(b) Distribution fitting results using the Reciprocal and Gaussian types for (a) view-wise color difference
‖xd‖2 and (b) spatial difference ‖xs‖2 with their Kullback-Leibler divergence (KLD) values shown at the corners. (c)-(d) Corresponding energy
functions of the Reciprocal type for (c) data energy and (d) smoothness energy. Note that the energy values are adjusted with constant offsets such
that they are all aligned at the origin for comparison.

TABLE 2
Adaptive selection of λ (true-color, k=3).

Configuration λweak λstrong

Clean max(|V|/8, 2) max(3|V|/2, 12)
Denoised max(|V|/4, 3) max(3|V|/2, 24)
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Fig. 5. Depth estimation quality vs. λ. Depth error is represented by
mean squared error (MSE) in disparity. Cross entropy measures the
distance between the distributions of the empirical disparity difference
h̃ and the modeled h. Their values are both normalized with respect to
the case of λ = 0 for comparison.

paper, this threshold r is set to 50% for true-color cases (k=3)
and 75% for grey-scale ones (k=1).

4.2.2 On Selection of Cross Entropy Ratio η
When estimating parameters for smoothness energy, the η
weighs the importance of the cross entropy H(h̃, h) over
that of H(t̃s, ts). In true-color cases, we simply set η = 1.0
for balanced weighting, and the fitting results are reliable.
Note that the three-degree CSM ts has a distribution peak,
as shown in Fig. 4b, which helps to discriminate between
distributions. In contrast, the one-degree CSM ts in grey-
scale cases has no such peak, and the cross entropy of ts
becomes less discriminative. Fig. 6 shows such examples to
demonstrate that we need to weigh more on H(t̃s, ts), i.e.
use a smaller η, for accurate model fitting. For example, even
if the KLD is as small as 0.0253 for Buddha2 (η = 1.0), its
estimated parameters can be significantly different to those
for KLD = 0.0124 (η = 0.1). As a result, we set η = 0.1 for
fitting robustness in grey-scale cases.
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Fig. 6. Model fitting in grey-scale cases (k = 1) over η. Fitting results
of spatial difference ts = ‖xs‖2 are shown for two light fields, Buddha2
and Mona, along with their KLD values and the corresponding bandwidth
(BW) parameters αsσ2

s . KLD , H(t̃s, ts)−H(t̃s).

4.3 Stereo Matching Algorithm
Based on the above mentioned details, we devise an empir-
ical Bayesian algorithm as summarized in Algorithm 1. At
first, we initialize a disparity map Dini using MRF inference
with default parameters: λini = 300, θini

d = (
√
2/3, 6, 0.1),

and θini
s = (0.05,

√
8/3, 9, 0.1). Then we update parame-

ters and estimate depth iteratively. In each iteration, we
use λstrong to infer the disparity map first. If the cross
entropy H(h̃, h) is reduced by less than the threshold ratio
r compared to the case of λ = 0, we will switch to the
weak scenario and use λweak for inference instead. Also,
we found depth convergence is fast and, therefore, set the
default iteration number M to one.

5 EXPERIMENTS

We perform extensive experiments on four datasets for
objective evaluation: HCI Blender [10], Berkeley [6], and HCI-
UK Training [34] are synthetic; HCI Gantry [10] contains
real pictures. They are all dense light fields of 9×9 views,
and we subsample their viewpoints to produce sparse 5×5,
3×3, and five-view crosshair test cases. We also generate
denoised light fields by adding Gaussian noise and then
performing BM3D [11]. For grey-scale experiments, we av-
erage RGB channels to obtain single-channel pixel intensity
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Algorithm 1 Empirical Bayesian Stereo Matching
Input: Center view {zp}, surrounding views {yvp(·)}
Output: Disparity map D̃

Initialization: θd = θini
d , θs = θini

s

Data energy: get {Ed
pv(lp;θd)}

MRF inference: D̃ = Dini ← BP-M(λini,θs)
for m = 1 to M do . Iterative parameter-depth update

Parameter estimation: update (θd,θs) from D̃
Data energy: get {Ed

pv(lp;θd)}
MRF inference: D̃ ← BP-M(λstrong,θs)
if 4H(h̃, h) < r then

MRF inference: D̃ ← BP-M(λweak,θs)
end if

end for

TABLE 3
Fitting accuracy and depth error of different energy types. Average

numbers for HCI Blender dataset are reported.

(k = 1). For comparing objective quality across view types,
we calculate mean squared errors (MSE) in disparity all
with respect to the baselines of 9×9 light fields. The values
are then multiplied by 100 to keep significant figures and
denoted by DMSE.

We will also show results for real-scene light fields which
are captured by Lytro ILLUM and provided by [23] for
demonstrating generalization capability. The Lytro light-
field RAW data from EPFL dataset [35] and our own pictures
are processed using Lytro Power Tools Beta1. Our software
is available online2.

5.1 Energy Function

5.1.1 Reciprocal vs. Gaussian Energy

For comparing the Reciprocal and Gaussian types of E(x),
we use ground-truth disparity maps (ideal case) to estimate
parameters for each of them and then perform MRF infer-
ence accordingly. Table 3 demonstrates the relationship be-
tween fitting accuracy in Kullback-Leibler divergence (KLD)
and depth error in DMSE, i.e. smaller KLD results in smaller
DMSE. Since the Reciprocal E(x) shows clear advantages,
we adopt it in the following experiments. In addition, the
smoothness energy, which depends on the statistic ts, is
more sensitive to different types of E(x) than the data
energy. Therefore, the DMSE gap becomes larger for sparser
view sampling because the smoothness term becomes more
important in the global MRF energy.

1. https://www.lytro.com/imaging/power-tools
2. http://www.ee.nthu.edu.tw/chaotsung/rprf

(a)

(b) (c)

(d) (e)

Fig. 7. Hard-EM vs. Soft-EM data energy. (a) Two selected pixels A and
B from the tablecloth of StillLife, and their spatial and depth patches.
They are both occluded by the wooden ball in left views, and pixel B is
further occluded by the berry in right views. (b) Angular patches (9×9)
and view-wise data energy for pixel A. The energy is normalized and
displayed using MATLAB jet map, i.e. warmer colors represent higher
energy. For the hard-EM case, the soft-occlusion variable ŵ is exactly
the square of negative energy according to (17) and Table 1, i.e. warmer
colors represent smaller ŵ (more likely occlusion). The incorrect depth
is where soft-EM data energy has its minimum value. (c) Normalized
data energy vs. disparity for pixel A. The correct depth is indicated by
the vertical red line. (d) and (e), similarly to (b) and (c), for pixel B.

5.1.2 Hard-EM vs. Soft-EM Energy

Fig. 7 demonstrates the robustness of the hard-EM data
energy for occlusion handling. The soft-EM data energy
is prone to be biased by occluders, e.g. wooden ball, and
thus not robust to handle occlusion. In contrast, the hard-
EM one will be saturated for them and estimate depth
based on small pixel differences. Note that the saturated
energy results from small soft-occlusion ŵ, which therefore
verifies the effectiveness of the proposed soft prior. We
also compare with the advanced data costs of occlusion-
aware depth estimation (OADE) [6] and constrained angular
entropy (CAE) [8]. The data energy curves in Figs. 7c and 7e
show that the hard-EM data energy is comparable to CAE
and outperforms OADE in these challenging cases.

Similarly, the robustness of the hard-EM smoothness
energy is exemplified by Fig. 8. High hard-EM energy, or
equivalently small soft-edge û, is mainly assigned near
intensity edges (object boundaries in this example), and the
rest regions have low energy inside to have smooth depth.
In contrast, the soft-EM energy often misassigns low energy
to intensity edges. This causes foreground depth to spread
into background pixels and thus moves the depth edges
(high energy) wrongly inside background regions.

In Table 4, we compare depth errors for using hard-
EM and soft-EM energy, and Algorithm 1 is applied in
each case. The DMSE gap is more obvious for sparser
light fields, so we list the results of 3×3 test cases. Hard-

https://www.lytro.com/imaging/power-tools
http://www.ee.nthu.edu.tw/chaotsung/rprf
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(a) (b)

Fig. 8. Hard-EM vs. Soft-EM smoothness energy. The edge-wise energy
from right and bottom pixels in the final-round BP is shown for the spatial
patches of (a) pixel A and (b) pixel B in Fig. 7.

TABLE 4
Depth errors in DMSE for hard-EM and soft-EM energy.

EM energy outperforms soft-EM one in both clean and
denoised conditions. Fig. 9 shows subjective comparisons.
Through implicit and statistical occlusion handling, hard-
EM energy can preserve better object boundaries and resist
more denoising artifacts. This also confirms the robustness
brought by hard-EM energy for MRF inference.

5.2 Parameter Estimation
5.2.1 Robustness to Initial Conditions
Different initial parameters lead to different initialized dis-
parity maps Dini. For example, a large value of λini prefers
the smoothness energy and gives an over-smoothDini. Note
that an ideal Dini is the ground-truth depth itself. However,
in this work different Dini can generate similar MRF param-
eters as shown in Fig. 10. Such robustness can be explained
by the corresponding empirical distributions in Fig. 11. The
empirical statistics differ mainly in distribution tails but
behave similarly for small pixel difference; therefore, the
inferred hard-EM energy functions are also similar. Note
that the difference in tails mainly causes the variation of
εd and εs, but these two parameters do not affect hard-EM
energy. As a result, robust parameter estimation is achieved
by including these two shape parameters for distribution
adaptation, and robust depth inference is accomplished by
removing them for energy saturation.

5.2.2 Quick Convergence
The robustness to initialized disparity maps also results in
the quick convergence of parameter-depth update iterations.
Fig. 12 shows the accuracy of the parameters estimated by
the default initial condition compared to the ideal one. All
MRF parameters can be well estimated and converged in
one iteration except δ. But such inaccuracy of δ only affects
depth quality slightly, e.g. the second iteration improves
the DMSE by only 0.2% on average. Therefore, we set the
default iteration number M to one.

Center view Hard-EM Soft-EM

Fig. 9. Depth estimation using hard-EM and soft-EM energy. Top: Clean
Papillon 3×3. Bottom: Denoised Buddha2 3×3 (σ = 20). The reader is
encouraged to zoom in the paper for comparing details.

Ground truth Data preferred Smoothness Default

0 200
10

−5

10
0

View-wise difference t̃d

0 40
10

−6

10
0

Disparity difference h̃

Fig. 11. Empirical distributions. They are collected using the initialized
disparity maps in Fig. 10. Note that the distributions of t̃s are not related
to disparity maps and are all the same.

5.2.3 Parameter Variation

Consider the two essential bandwidth parameters for MRF
inference: αdσ2

d (data) and αsσ2
s (smoothness). Their values

vary a lot across different light fields as shown in Fig. 13.
For example, their value ranges are [2.2, 8.2] and [10.0, 63.5],
respectively, for the clean HCI Blender dataset. Note that for
sparser light fields each scene has similar parameters. For
denoised light fields (σ=10), the data bandwidth becomes
4.7x larger on average and the smoothness one is 0.4x
smaller. This reflects the fact that pixel differences across
views become larger and those between denoised pixel
edges turn smaller. All these variations are well captured
by this work.

5.3 Depth Estimation

We compare our results (RPRF) with the globally consistent
depth labeling (GCDL) [4], line-assisted graph cut (LAGC)
[2], phase-shift cost volume (PSCV) [5], OADE, spinning
parallelogram operator (SPO) [7], and CAE. We use the
codes provided by the authors. We set the disparity step
between labels to dyadic rationals, i.e. 2−n, and around
64 disparity labels are searched for each light field. We
apply the same settings to GCDL, LAGC, and PSCV, but
double the numbers of labels for OADE and CAE to achieve
comparable accuracy.
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Initial condition Ground-truth depth Data energy preferred Smoothness preferred Default in this work
(λ;σd, αd; δ, σs, αs) (0.5; 0.6, 25.0; 0.05 ,1.4, 4.0) (600.0; 0.7, 4.0; 0.05 ,2.0, 10.0) (300.0; 0.8, 6.0; 0.05 ,1.6, 9.0)

Initialized disparity
map Dini

DMSE=2.47 DMSE=19.69 DMSE=4.76
Updated parameters
(λ;σd, αd; δ, σs, αs) (2.0; 1.1, 4.6; 0.02 ,1.9, 7.0) (2.0; 1.2, 5.0; 0.04 ,1.8, 7.2) (2.0; 1.3, 4.6; 0.05 ,2.1, 7.6) (2.0; 1.3, 4.9; 0.05 ,2.1, 7.6)

[εd; εs] [0.00118; 0.00246] [0.00107; 0.00203] [0.00103; 0.00206] [0.00118; 0.00207]

Updated disparity
map D̃ (m=1)

DMSE=1.21 DMSE=1.21 DMSE=1.21 DMSE=1.22

Fig. 10. Robust update for parameters and depth. Four initial disparity maps Dini for the 3×3 case of StillLife are used for comparison. One uses
ground-truth depth (ideal). The others are initialized by different parameter sets: one is noisy by weighting data energy more (λ=0.5), one is over-
smooth by weighting smoothness term more (λ=600), and the last one is moderate using the default setting (λ=300). The updated parameters for
MRF energy are all similar in one iteration, and the accordingly estimated disparity maps show little difference.

 

 

σ
d

α
d

σ
s

α
s

δ

 0% 25% 50%
0.2

0.9

1

Parameter Difference

C
D

F

First iteration (m=1)

 0% 25% 50%
0.2

0.9

1

Parameter Difference

C
D

F

Second iteration (m=2)

Fig. 12. Parameter estimation accuracy. Accuracy is measured by rel-
ative absolute difference, and cumulative distribution functions (CDFs)
are derived from all test cases for HCI Blender dataset.

Clean Denoised (σ = 10)

Fig. 13. Variation of bandwidth parameters for HCI Blender 9×9 dataset.
Left: clean light fields. Right: denoised ones.

5.3.1 Dense and Sparse Light Fields
Table 5 details the depth estimation errors for dense 9×9 test
cases, and our work has better performance. Fig. 14 further
compares the results from dense to sparse light fields. The
GCDL and OADE fail in the sparse cases since they are
designed for dense ones; on the contrary, the LAGC is better

TABLE 5
Depth errors in DMSE for dense 9×9 light fields.

for sparse light fields because the line textures outweigh
additional views. The SPO and CAE have quality drops for
some sparse cases. In contrast, our work, as well as PSCV,
has constant quality over these view types. This also points
out that sparse views can generate great depth maps as
dense ones do if robust energy from clean images is used.
Figs. 15 and 16 show examples for subjective evaluation.

5.3.2 Denoised Light Fields
For noisy light fields, RPRF can produce comparable depth
quality compared to CAE which is explicitly devised as a
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HCI Blender HCI Gantry Berkeley HCI-UK Training

Fig. 14. Depth estimation error vs. Light-field view type. The average errors are represented in DMSE (log scale).

Ground truth PSCV OADE SPO CAE RPRF

9×9

3×3

Fig. 15. Estimated depth maps for LivingRoom. This work, as well as the state-of-the-art SPO and CAE, infers good depth edges in both 9×9 and
3×3 test cases, especially around the chair arm and the lamps. OADE fails in the 3×3 case, and PSCV produces over-smooth depth.

Ground truth PSCV OADE SPO CAE RPRF

9×9

3×3

Fig. 16. Estimated depth maps for Horses. In particular, CAE fails for the high-frequency texts in the 3×3 case due to insufficient view sampling.

noise-aware data cost. In these cases, RPRF can still capture
the statistics successfully; in particular, the σd and σs resem-
ble the noise intensity well. Furthermore, applying RPRF
to denoised light fields can produce much better depth
maps as shown in Table 6. The results regarding denoising
conditions are summarized in Fig. 17. In these cases, fewer
views will decrease depth quality owing to the less reliable
data energy. However, as shown in Fig. 18, the depth edges
and gradients can still be preserved by our work.

5.3.3 Real Scenes
Fig. 19 shows results for light fields captured by Lytro IL-
LUM. Using only 3×3 views, our work constantly produces
similarly good depth maps compared to Lytro software
which uses raw light fields. Other algorithms also perform
well but occasionally cause obvious artifacts. We also show
the results for the dense 3-D light fields of [23] in Fig. 20.

These results also demonstrate that our stereo matching
algorithm has good generalization capability to real scenes.

5.3.4 Execution Time
We implement parameter estimation in MATLAB and the
other parts in C++. For HCI Blender dataset, the param-
eter estimation and BP-M take about 7 and 10 seconds
respectively for one light field on average. The remain-
ing computation is mostly contributed by computing data
energy, and its complexity is proportional to the number
of surrounding views |V|. The run times for HCI Blender
dataset are summarized in Table 7. Our work runs much
faster for its simple but efficient MRF formulation.

5.3.5 Crosshair View Sampling and Grey-Scale Pixels
Regarding efficient implementation for stereo matching, we
may consider a lightweight camera-array system with only
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HCI Blender 9×9 HCI Blender 5×5 HCI Blender 3×3

Fig. 17. Depth estimation error vs. Denoising conditions. The cases with too large DMSE are omitted for clarity.

Ground truth OADE CAE RPRF

Clean

Clean
center
view

Denoised
(σ = 10)

Denoised
(σ = 20)

Denoised
(σ = 20)

Fig. 18. Estimated depth maps for Mona with 5×5 views. This work preserves good depth edges for the case σ = 10 as well as CAE. When the
noise intensity is increased to 20, this work still keeps depth gradients, e.g. near the ball and table, while others produce over-smooth depth.

TABLE 6
Depth errors in DMSE for noisy and denoised light fields.

TABLE 7
Average run time in seconds per light field. GCDL ran on GeForce GT

630 hosted by a 3.5 GHz CPU. Others ran on a 3.4 GHz CPU.

five crosshair views. Also, we may use grey-scale intensity,
instead of three-channel RGB, for faster computation and
smaller memory footprint. Therefore, we apply our algo-
rithm to these particular cases to evaluate quality trade-offs
and also generalization capability. The results are summa-
rized on the left of Table 8. The case of true-color 3×3

TABLE 8
Depth errors in DMSE for special settings. The left part is for crosshair
views and grey-scale pixels, and five-view crosshair view sampling is

denoted by ”5+”; the right part is for only using data energy.

light fields is used as the baseline for comparison. It is
interesting to find that the quality drops of true-color five
crosshair views and grey-scale 3×3 light fields are similarly
small. These two cases have comparable depth quality to
the baseline as shown in Fig. 21. This demonstrates that this
work can provide lightweight implementation for light-field
stereo matching while maintaining high-accuracy depth.
However, if five crosshair views and grey-scale pixels are
applied together, the quality sometimes drops significantly;
therefore, it has a quality-complexity trade-off in this case.
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Center view Lytro (Raw) PSCV (3×3) CAE (3×3) RPRF (3×3) CAE (9×9) RPRF (9×9)

Fig. 19. Estimated depth maps for Lytro pictures. The four light fields on the top are from EPFL dataset [35], and the last three captured by us.

5.3.6 Data Energy Only

To compare the simple but statistically-optimized data en-
ergy in this work with advanced ones, we also perform
depth estimation using only data terms. The results are
summarized on the right of Table 8, and CAE gives the best
quality. Note that our data energy provides similarly good
depth edges near object boundaries. The quality difference
mainly comes from textureless regions as shown in Fig. 22.
CAE is more reliable in such areas while our data energy
and OADE are noise-prone there. In conclusion, MRF opti-
mization is required in our framework.

5.3.7 HCI-UK Test and Stratified Datasets

In [34], the authors also provide a dense synthetic HCI-UK
Test dataset without giving ground-truth depth maps. The
depth errors are only available via their 4D Light Field
Benchmark3 website. For comparison, we list the depth
errors from the website in Table 9. For this dataset, CAE
outperforms others for its superior data terms. In contrast,
RPRF generates slightly over-smooth depth maps; in par-
ticular, for the light field Herbs its MRF energy cannot
discriminate the leaves well due to their similar colors.

In addition, [34] also devises a non-photorealistic Strat-
ified dataset with artificial noises for stress testing, and the
results are also listed in Table 9. RPRF fails for the light field
Dots because its spatially-varying and high-intensity noises
are far beyond our assumption for the spatial neighborhood.
In summary, these two datasets prefer delicate data terms,

TABLE 9
Depth errors3 in DMSE for HCI-UK Test and Stratified datasets (9×9).

and RPRF sometimes cannot serve well because it highly
relies on the accuracy of MRF modeling.

6 DISCUSSION AND LIMITATION

Robust Model Fitting and Depth Inference. In this paper, we
achieve robust parameter and depth estimation using lim-
ited information in a single light field. In retrospect, the
original problem is divided into two smaller ones: 1) how
to formulate good MRF energy given ground-truth depth
and 2) how to estimate those MRF parameters as if we
have the ground-truth depth. Th key of the solution is to
separate model parameters into two parts: θMRF for MRF
inference and θtail only for fitting distribution tails. The
latter sub-problem is addressed by θtail which explains the
difference in distribution tails between the depth map we
have and the ground truth. Then the former one is solved
by modeling hard-EM energy without θtail. This processing
flow is summarized in Fig. 23. In this work, θtail is {εd, εs}

3. http://hci-lightfield.iwr.uni-heidelberg.de

http://hci-lightfield.iwr.uni-heidelberg.de
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True-color, 3×3 True-color, Five-view

Grey-scale, 3×3 Grey-scale, Five-view

Fig. 21. Estimated depth maps for Mona using five-view crosshair sam-
pling and/or grey-scale pixels.

OADE CAE RPRF

Fig. 22. Estimated depth maps using only data energy.

and θMRF covers the rest parameters. The above discussion
is not limited to the simple pixel difference adopted in this
work; therefore, we believe this framework can be extended
to more sophisticated vision cues to further improve depth
quality if they can be formulated by GSM.

Occlusion Handling. Instead of explicit handling as [6], we
show that great depth quality can be achieved by implicit
modeling with the soft-decision priors W and U . A value
toward zero represents more likely occlusion or an edge.
In this case, hard EM will saturate energy functions, which
equivalently separates the occlusion or edge in a soft way.
In contrast, soft-EM energy will consider all possible values
of W and U (by integrating over them) and lack of such
discrimination. Therefore, the fact that hard-EM energy
is better than soft-EM one also confirms the necessity of
occlusion formulation. In addition, a possible extension of
this work is further enforcing inter-view depth consistency
by adding other pixel difference models.

Scene Statistics. One limitation of the proposed frame-
work is that we use one single model to explain a whole
light field. Consider a scene that has two regions of different
statistics, e.g. tablecloth and fruits in StillLife. In this case,
our model will capture mixed statistics, and the result could
be sub-optimal. In this viewpoint, a possible extension of
this work is to segment a scene into different regions and
then learn parameters separately.

Hyper-Parameter λ. It cannot be explained by RPRF and
thus requires heuristic estimation. We found that depth
quality is not sensitive to its small variation, so we applied
an entropy-based heuristic for coarse-level adaptability. A
possible extension is to devise a more delicate heuristic to

Fig. 23. Processing flow for robust model fitting and depth inference.

improve accuracy; however, overfitting should be avoided.

7 CONCLUSION

In this paper, we propose an empirical Bayesian
framework—RPRF—to provide statistical adaptability and
good depth quality for light-field stereo matching. Two
scale mixtures with soft-decision priors are introduced to
model the data and smoothness energy. We estimate scene-
dependent parameters by pseudo-likelihood fitting via soft
EM and infer depth maps using robust MRF energy via hard
EM. Accordingly, we build a stereo matching algorithm with
efficient implementation. The effectiveness is demonstrated
by experimental results on dense, sparse, denoised, and
grey-scale light fields. Our work can estimate parameters
robustly in one iteration. It outperforms state-of-the-art
algorithms in terms of depth accuracy and computation
speed. We also believe that this framework can be extended
in many possible ways to achieve better depth quality.
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