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Abstract—Range-weighted neighborhood filters are useful and
popular for their edge-preserving property and simplicity, but
they are originally proposed as intuitive tools. Previous works
needed to connect them to other tools or models for indirect
property reasoning or parameter estimation. In this work, we
introduce a unified empirical Bayesian framework to do both
directly. A neighborhood noise model is proposed to reason and
infer the Yaroslavsky, bilateral, and modified non-local means
filters by joint maximum a posteriori and maximum likelihood
estimation. Then the essential parameter, range variance, can
be estimated via model fitting to the empirical distribution of
an observable chi scale mixture variable. An algorithm based
on expectation-maximization and Quasi-Newton optimization is
devised to perform the model fitting efficiently. Finally, we apply
this framework to the problem of color-image denoising. A
recursive fitting and filtering scheme is proposed to improve the
image quality. Extensive experiments are performed for a variety
of configurations, including different kernel functions, filter types
and support sizes, color channel numbers, and noise types. The
results show that the proposed framework can fit noisy images
well and the range variance can be estimated successfully and
efficiently.

Index Terms—Bilateral filter, non-local means, denoising,
neighborhood filter, empirical Bayesian method, noise model,
image model, parameter estimation.

I. INTRODUCTION

Range-weighted formulation has been widely used to pro-
vide edge-preserved denoising since the introduction of local
neighborhood filtering, especially the Yaroslavsky [1] and
bilateral [2] filters. Many variations were also proposed for
different applications, such as the trilateral filter for high
contrast images [3], the cross bilateral filter for fusing image
pairs [4], and the dual bilateral filter for aggregating stereo
matching costs [5]. The reader is referred to [6] for more
applications. The non-local means (NLM) [7] was further
proposed for a non-local neighborhood and got fruitful patch-
based extensions on the denoising problem.
The intuitive idea behind the neighborhood filters is to assign
weighting coefficients based on similarity and then perform
weighted averaging, e.g. the bilateral filter is given by

ẑl =

∑
i∈Λl

wl,idl,i · yi∑
i∈Λl

wl,idl,i
(1)

where y and ẑ are the observed and filtered signals respec-
tively, and Λl represents the neighborhood of the pixel at
position l. The adaptive weight consists of one range-weighted
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kernel wl,i = Kr(
‖yl−yi‖22

2σ2
r

) and one distance-weighted kernel

dl,i = Kd(
‖l−i‖22

2σ2
d

). The former adapts to pixel similarity
for edge preservation, which is controlled by range variance
σ2
r . And the latter provides a spatial smoothing window. A

conventional choice for the kernel functions Kr(·) and Kd(·)
is the Gaussian kernel which is in form of K(x) = exp(−x).
If the spatial weights are all equal, it will degenerate to the
Yaroslavsky filter. On the other hand, it will evolve to the
NLM if wl,i is defined by patch similarity:

wl,i = Kr

(∑
b∈B ‖ yl+b − yi+b ‖22

2Bσ2
r

)
, B = |B|, (2)

where {yi+b|b ∈ B} forms the patch at position i.
Filtering based on range-weighted similarity is effective but
lacks of theoretical basis. For understanding its mathematical
properties, several previous works studied their connections to
other classical methods, such as mean shift [8], anisotropic dif-
fusion [9], robust estimation [10], [11] and Bayesian approach
[12], and thus found improvements on the neighborhood filters.
However, these connections were unable to provide further
information to infer the range variance σ2

r directly from the
observed data.
In contrast, without reasoning the properties statistical tech-
niques have been adopted to estimate the parameters indirectly
using the basic observation model

y = z + n, (3)

where n is additive Gaussian noise. The χ2 test was used to
choose the parameters for the NLM filter in [13]. The Stein’s
unbiased risk estimate (SURE) [14] can provide unbiased
estimation of the mean squared error (MSE) from noisy and
filtered images. Thus many parameter combinations can be
tested, and the one giving the smallest estimated MSE can
be selected. Though accurate, the complexity is quite high
because each combination needs to filter the image separately.
The contribution of this paper is that we build a unified
empirical Bayesian framework to infer the neighborhood filters
with novel property reasoning and also estimate their range
variance σ2

r through statistical inference. Experimental results
on color-image denoising show that the proposed model fits
noisy images well, estimates σ2

r as accurate as SURE does,
and even works well when SURE fails. The advantage over
SURE is not only computation-wise but also quality-wise
when considering a recursive filtering scheme. Besides adding
more details, this paper extends our conference paper [15] with
formulations for generalized kernel functions and also exper-
iments on hyperspectral denoising, natural image gradients,
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different kernel functions, and different noise types. We also
believe that this framework can be extended to other range-
weighted algorithms for deeper theoretical understanding and
more efficient parameter estimation.
The rest of this paper is organized as follows. After sum-
marizing related works in Section II, we introduce a novel
neighborhood noise model and infer the neighborhood filters
in Section III. For efficiently estimating σ2

r from noisy images,
we present an expectation-maximization-plus (EM+) algorithm
in Section IV to perform the model fitting. In Section V, we
apply our framework to color-image denoising and introduce
the recursive fitting and filtering scheme to improve image
quality. The extensive experimental results are shown in Sec-
tion VI, and the limitations and possible future extensions of
this work are discussed in Section VII. Finally, conclusion
marks are given in Section VIII.

II. RELATED WORK

A. Joint filter and parameter inference

In [16], a wavelet-domain denoising algorithm was devel-
oped with the assumption that the latent image z is in form of
Gaussian scale mixtures (GSM) [17]. The adaptive parameters
can then be statistically inferred from the neighborhood. In
[18], noise estimation and removal can be performed au-
tomatically if detailed camera information is available. Not
surprisingly, these filters are different from the range-weighted
ones. The PLOW filter [19] is equivalent to the NLM filter
plus a residual filter. Although the residual filter is based on
the covariance matrices inferred from geometric clusters, the
range variance was still given in a heuristic way. In this paper,
we target the joint inference for neighborhood filters.

B. Neighborhood filter inference

In [10], the bilateral filter was reasoned as the first iteration
of optimizing robust estimation with a given weight function,
and multiple iterations were proposed to improve the denoising
performance. In [11], the weight function was linked to the
probability density function of Smooth Exponential Family,
which showed that the parameters can be predicted by fitting
the additive noisy model, but not directly from image data. In
[12], the concept in [10] was extended to generalize the neigh-
borhood filters. These Bayesian approaches were only able to
infer the filter structure from the observed neighborhood, but
no specific method was proposed to infer the range variance
directly from the image data.

C. SURE-based parameter estimation

The SURE-based method gives the state-of-the-art accuracy
for parameter estimation, and it is basically applicable to any
parameter. It needs to estimate the noise variance first, and
one popular method is by median absolute deviation (MAD).
SURE has been applied to the bilateral filter for grey [20]
and multispectral images [21] and also to the NLM filter [22],
[23], [24]. A fast implementation for the bilateral filter was
also proposed in [25], but several passes of filtering were
still required. For the SURE-based method to work well, two

conditions should be met: the independent Gaussian noise
assumption and a weakly differentiable filter kernel on the
noisy image y. In this paper, the model fitting itself is only
able to estimate the range variance. However, we will show its
applicability to two cases in which the SURE-based method
would fail. One is recursive filtering for which the noise is no
longer independent or Gaussian. The other one is for the NLM
filters which use motion estimation to select candidate patches
such that the kernel is dynamic and thus indifferentiable on y.

D. Image denoising

Several types of approaches have been studied, including
local-based [1], [2], transform-based [16], [26], nonlocal-based
[7], [19], and sparsity-based (e.g. BM3D [27], NLSM[28] and
WNNM[29]). The last type showed superior image quality
recently, which was based on grouping with patch similarity
and optimization for sparse representation. However, the pa-
rameters were mostly given heuristically. Besides, they were
often proposed and optimized for grey images, and additional
modification was required to support color images. In contrast,
our method can work on multi-channel signals directly.

III. NOISE MODEL AND BAYESIAN INFERENCE

We will first propose a novel noise model and infer the
Yaroslavsky filter directly from it. It reasons the range-
weighted kernel Kr(·) using maximum a posteriori (MAP)
estimation on novel localized soft-edge random variables and
infers the filters using maximum likelihood (ML) estimation.
By modifying the likelihood function to improve the robust-
ness of estimation, we will then infer the bilateral filter and a
modified NLM filter.

A. Neighborhood noise model (NNM)

Consider the weighted averaging formulation in (1). If the
combined weights wl,idl,i are constant, a simple Gaussian
model with scaled variance can do the filter inference. How-
ever, the difficulty of the inference for neighborhood filters lies
in the dependency of the range weight wl,i on the observed
signals y, i.e. yi cannot simultaneously decide the model
parameter and serve as the model realization. In the following,
we solve this problem by modelling wl,i as localized random
variables which can represent local intensity edges using soft
decision.
For a latent k-channel signal zl at position l, we formulate its
neighbors yi∈Λl by GSM:

yi = zl +
nl,i√
wl,i

, (4)

where nl,i are additive white Gaussian noises (AWGN) of
covariance matrix σ2Ik, and wl,l = 1 as the basic observation
model (3). For the neighboring pixels, a smaller realization of
wl,i means a wider distribution for yi, so there is more likely
an edge between positions l and i. Otherwise, smooth texture
will be inferred if the realization is close to one. Note that the
Gaussian assumption of nl,i is a key for the following tractable
formulations and also the formation of the observable variable
in Section IV.
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Fig. 1. Soft-edge prior distribution fw(w) comprised of two functions,
i.e. fw(w) ∝ f1(w)f2(w). The function f1(w) = w−

k
2 highlights the

distribution weight of edges (as w close to ε) which is controlled by ε. On
the other hand, the function f2(w) = eαG(w) determines the distribution
weight of smooth texture (as w close to 1) through parameterizing α.

To infer the range-weighted kernel, wl,i6=l are defined as white
hidden variables of a prior with two parameters ε and α:

fw(w; ε, α) =
1

N(ε, α)
w−

k
2 eαG(w), w ∈ [ε, 1], (5)

where N(ε, α) =
∫ 1

ε
w−

k
2 eαG(w) dw for normalization. The

function G(w) will be shown to be directly linked to the range
kernel function Kr(·) later. Regarding the two parameters, the
α will link the noise variance σ2 to the range variance σ2

r , and
the non-zero ε can guarantee the convergence of the integration
of this prior for k ≥ 3.
To explore the properties of this prior distribution, we can
decompose it into two basic functions, w−

k
2 and eαG(w), as

shown in Fig. 1. Then, for an image with many intensity edges,
we can model it by decreasing ε to have higher distribution
weight on edges (ε−

k
2 ↑). In contrast, for an image with

many flat regions, we can increase α to weight more on
smooth textures (eαG(1) ↑). Therefore, this prior distribution
can describe natural images reasonably by varying ε and α.

B. Inference for Yaroslavsky filter

Given observed data yi, we have the posterior Φl ∝
p(yl; zl)

∏
i∈Λl−{l} p(yi|wl,i; zl)fw(wl,i). By removing con-

stants from − log Φl, we can derive the energy function Ll:

Ll =
g2
l,l

2σ2
+

∑
i∈Λl−{l}

wl,ig
2
l,i

2σ2
− logw

k
2

l,i − log fw(wl,i), (6)

where g2
l,i ,‖ zl − yi ‖22. The estimation for wl,i and zl can

be derived by minimizing Ll:

∂Ll
∂wl,i

= 0 ⇒ wl,i = Kr(
g2
l,i

2σ2
r

), σ2
r = ασ2, (i 6= l) (7)

∂Ll
∂zl

= 0 ⇒ zl =

∑
i∈Λl

wl,i · yi∑
i∈Λl

wl,i
, (8)

where the kernel function w = Kr(x) is related to G(w) by

Kr(x) = (G′)−1(x)⇔ G(w) =

∫
K−1
r (w)dw. (9)

The Yaroslavsky filter is then equivalent to the first-iteration
estimation for solving this fixed-point problem with an initial

TABLE I
EXAMPLES OF RANGE-WEIGHTED KERNEL FUNCTIONS Kr(x =

g2
l,i

2σ2
r
).

G′(w) = K−1
r (w). r(w) = −K′r(K

−1
r (w)).

Kernel Type Kr(x) G(w) r(w)
Gaussian e−x w(1− logw) w

Laplacian e−x
1
2 w(log2 w − 2 logw + 2) w

−2 logw

GGD4 e−x
2

w
√
− logw+

√
π erfc(

√
− logw)

2
2w
√
− logw

Epanechnikov (1− x)1{x≤1} w(1− 1
2
w) 1{w>0}

Biweight (1− x)21{x≤1} w(1− 2
3
w

1
2 ) 2w

1
2

Triweight (1− x)31{x≤1} w(1− 3
4
w

1
3 ) 3w

2
3

GGD: Generalized Gaussian Distribution

condition z
(0)
l = yl. For a given kernel function Kr(x), we

can now have its soft-edge prior fw(w) via the corresponding
G(w) by (9), and vice versa. Table I lists some examples for
the kernel function, and G(w) is chosen such that G(0) = 0
without loss of generality.
The NNM estimation (7) and (8) can be further interpreted
into two sequential steps respectively:

1) Independent MAP estimation for each wl,i by maximiz-
ing p(yi|wl,i; zl)fw(wl,i) with a fixed zl;

2) ML estimation for zl by optimizing the likelihood
Lz(zl) =

g2
l,l

2σ2 +
∑
i∈Λl−{l}

wl,ig
2
l,i

2σ2 with fixed wl,i.
By modifying the likelihood function in the second step for
considering proximity and patch similarity, the bilateral and
NLM filters are derived respectively in the following.

C. Extension for bilateral filter

To consider proximity in a nonparametric way using the
distance-weighted kernel dl,i, the locally weighted maximum
likelihood (LWML) [30] can be applied to the likelihood Lz
to have the pseudo likelihood function

L̃z(zl) = dl,l ·
g2
l,l

2σ2
+

∑
i∈Λl−{l}

dl,i ·
wl,ig

2
l,i

2σ2
. (10)

Then the LWML estimation by ∂L̃z
∂zl

= 0 gives the same
formulation as the bilateral filter in (1).

D. Extension for NLM filter

For a latent pixel zl+b in a latent patch (b ∈ B), the
corresponding NNM with its neighborhood Λl+b is as defined
by (4). The first-iteration MAP estimation for each soft-edge
variable then gives

wl+b,i+b = Kr(
‖ yl+b − yi+b ‖22

2σ2
r

), i ∈ Λl. (11)

Let the column vectors of the latent patch and the observed
patches be Zl and Yi∈Λl . They are formed by cascading zl+b
and yi+b respectively in a predefined order Υ for b ∈ B. Then
the partial likelihood from Yi can be formulated by

L(Zl; Yi) = G(Zl; Yi,Σl,i), (12)

where G(·;µ,Σ) is a multivariate Gaussian function, and
the diagonal entries of Σl,i are formed by cascading
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diag( σ2

wl+b,i+b
Ik) in the predefined order Υ. The entries outside

of the diagonal have no effect on the following derivation.
For NLM filtering, one observed patch Yi has only one
summation weight Wl,i. Thus we use a patch-based likelihood
function to approximate (12), which is devised as

L̃(Zl; Yi) = G(Zl; Yi,
σ2

Wl,i
IkB). (13)

Since these two likelihood functions both behave like proba-
bility density functions (pdf), we choose Wl,i by minimizing
the Kullback-Leibler divergence (KLD) between them:

DNLM , DKL(L ‖ L̃) = −
∫
L log

L̃
L
dZl, (14)

∂DNLM
∂Wl,i

= −
∫
L
(
kB

2

1

Wl,i
− ‖ Zl −Yi ‖22

2σ2

)
dZl

= −

(
kB

2

1

Wl,i
− 1

2

∑
b∈B

k

wl+b,i+b

)
= 0, (15)

⇒Wl,i =

(∑
b∈B

w−1
l+b,i+b/B

)−1

. (16)

Then the ML estimation for the combined patch-based likeli-
hood functions

∑
i∈Λl
L̃(Zl; Yi) becomes

Zl =

∑
i∈Λl

Wl,i ·Yi∑
i∈Λl

Wl,i
, (17)

which suggests a modified NLM (MNLM) filter with the
coefficients Wl,i in (16). Note that Wl,i is the harmonic
average of wl+b,i+b, while the conventional NLM with the
Gaussian kernel uses the geometric average as implied in (2).

IV. MODEL FITTING AND PARAMETER ESTIMATION

In the following, we will first introduce how to build a robust
observation model in chi scale mixtures and then how we fit
the model using an EM+ algorithm.

A. Observable chi scale mixtures (CSM)

Let sl,i ,‖ yl−yi ‖2. Due to the AWGN assumption of nl,i
in (4), sl,i is independent of zl and with the CSM formulation:

sl,i = σ

√
wl,i + 1

wl,i
ul,i, ul,i ∼ χk, (18)

where ul,i has a chi distribution with k degrees of freedom.
For simplicity, we use s = sl,i and w = wl,i in the following.
The marginal pdf of s can be derived by

fs(s;σ, ε, α) =

∫ 1

ε

fs,w(s, w;σ, ε, α) dw, (19)

fs,w =
1

T (ε, α)

sk−1σ−k

(w + 1)
k
2

e−
w
w+1

s2

2σ2 eαG(w), (20)

where fs,w is the joint pdf of s and w, and T (ε, α) =

2
k
2−1Γ(k/2)N(ε, α) for normalization.

Fig. 2 shows how the soft-edge prior fw(w) and the CSM
pdf fs(s) behave with different α and ε. fw(w) represents
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Fig. 2. Distributions of the soft-edge w and the observable chi scale mixtures
s with different values for α and ε (Gaussian kernel Kr(·) and k = 3).

how likely intensity edges appear, i.e. higher density for small
w for more edges. For smaller α or ε, fw(w) tilts more to
the left and fs(s) has a longer tail such that more edges are
expected. For larger α or ε, fw(w) concentrates more on the
right, and fs(s) gets closer to a chi distribution. Thus we can
model noisy images by varying α and ε to fit different image
properties and varying σ for different noise intensity.
Another advantage to define s in l2-norm is its robustness.
When the components of yi are not independent in the
observed color space, e.g. RGB, we may apply an orthogo-
nal transform to diagonalize their covariance matrix Σy for
decorrelation. However, since the l2-norm is invariant to the
orthogonal transform, we can calculate s (and w) in the
observed color space without performing the decorrelation.
Thus the model fitting (and the filtering) can be applied on
the observed yi directly without loss of optimality.

B. EM+ algorithm for CSM fitting
Given an observed data set S , its empirical distribution is

defined by P (s ∈ S). Then we estimate the corresponding
pdf fs(s) by iteratively updating the model parameters based
on P (s). Assume in the previous iteration the estimated
parameters are σ, α, and ε. Our EM+ algorithm updates them
to σ̃, α̃, and ε̃ through the following three steps: EM update,
KLD update, and Quasi-Newton (QN) update.

1) EM update: (σ, α, ε) ⇒ (σ̂, α̂, ε): For simplicity, we
will ignore the σ, α, and ε in fs,w and fs if the parameters
in the previous iteration are used. The expected value of the
log likelihood function can be derived as Q(σ̂, α̂|σ, α) =∑
j P (sj)q(sj , σ̂, α̂|σ, α) where

q(s, σ̂, α̂|σ, α) =

∫ 1

ε

p(w|s)LEM (σ̂, α̂, ε;w, s) dw, (21)

p(w|s) = fs,w/fs, LEM = log fs,w(s, w; σ̂, ε, α̂). (22)

Set ∂Q
∂σ̂ = ∂Q

∂α̂ = 0 to have the EM update for σ̂ and α̂:

σ̂2 =
1

k

∑
j

P (sj) ·
∫ 1

ε
fs,w(sj , w)s2

j
w
w+1 dw

fs(sj)
, (23)

H(α̂, ε) =
∑
j

P (sj) ·
∫ 1

ε
fs,w(sj , w)G(w) dw

fs(sj)
, (24)
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where H(α̂, ε) , Ew;α̂,ε[G(w)] and it is an increasing func-
tion with respect to α̂ because ∂H/∂α̂ = Varw;α̂,ε[G(w)] =
0. Thus the corresponding α̂ can be found quickly using a
bisection search on H(α̂, ε).

2) KLD update: (σ̂, α̂, ε) ⇒ (σ̂, α̂, ε̂): The EM algorithm
is unable to update ε because the support of w for p(w|s)
and LEM in (21) should be the same. Instead, we update
it by optimizing the approximate KLD D ,

∑
j −P (sj) ·

log
fs(sj ;σ̂,ε,α̂)

P (sj)
. With ∂D

∂ε = 0, a fixed-point representation of
the optimal ε can be derived. And we use the first-iteration
result with an initial condition ε̂(0) = ε as our updating
formulation:(

ε̂+ 1

ε̂

) k
2

=
∑
j

P (sj) ·
sk−1
j σ̂−ke−

ε
ε+1

s2j

2σ̂2

2
k
2−1Γ(k2 )fs(sj ; σ̂, ε, α̂)

. (25)

3) QN update: (σ̂, α̂, ε̂) ⇒ (σ̃, α̃, ε̃): The update formula-
tions in (23), (24), and (25), require numerical evaluations for
lots of integrals, which prolongs the execution time for one
iteration. Also, the update step sizes are usually small near
the optimizing point, which increases the number of iterations.
Thus the above updates usually take a long time to converge
as shown by the blue dotted line in Fig. 3.
We adopt the QN method, QN1 in [31], to accelerate the fitting
process. Let θ = (σ, α, ε)T , θ̂ = (σ̂, α̂, ε̂)T , θ̃ = (σ̃, α̃, ε̃)T ,
and F(θ) = θ̂(θ) − θ. The QN1 method solves F(θ) = 0
by maintaining a matrix A which approximates the inverse
Jacobian matrix J−1

F and is updated using the Broyden’s
update method (A← A +4A):

4A =
(4θ −A4F)4θTA

4θTA4F
, (26)

where 4θ = θ − θpre, 4F = F(θ) − F(θpre), and θpre is
the estimation in the earlier iteration before θ. Then the QN
update is derived by θ̃ = θ + δ where

δ = −A · F(θ). (27)

However, in practice the QN update could be unstable when A
has a high condition number. Some heuristic, e.g. reinitializing
A, is required in this situation. But as shown in Fig. 3, the
reinitialization (red dashed line) may not work well. Instead,
we choose to confine θ̃ in a reasonably large range Ψ for its
quick convergence (black solid line in Fig. 3). When θ̃ is out
of Ψ, we will directly set δ to F(θ) as the original EM/KLD
update and may further scale down its value to make θ̃ inside
Ψ if necessary. With this QN acceleration, the fitting can be
converged in fewer than fifteen iterations in most cases.

C. Discriminative capability of KLD

The fitting quality relies on the discriminative capability of
KLD between different parameters. Fig. 4 shows the KLD
discrimination of fs(s) for k = 3 when α has a small change
4α = 0.5 and when ε increases by 4ε = 0.005. It is
clear that the discriminative capability declines as α or ε
increases. For sufficiently large α or ε, fs(s) is very similar
to a chi distribution and KLD becomes insensitive to the
parameters, which usually happens when the noise intensity

Fig. 3. KLD convergence for CSM fitting methods (Baboon, σn = 20,
bilateral 9×9 filter, Gaussian kernel Kr(·)). The blue dotted line stands for
EM/KLD update without QN, the red dashed line for EM+ update with QN
reinitialization when the condition number of A > 40, and the black solid
line for EM+ update with the parameter range Ψ given in Section V-A.
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Fig. 4. KLD discrimination (Gaussian kernel Kr(·) and k = 3) on (a) α
and (b) ε, where D4α(α, ε) , DKL(fs(s;σ, ε, α) ‖ fs(s;σ, ε, α+4α))
and D4ε(α, ε) , DKL(fs(s;σ, ε, α) ‖ fs(s;σ, ε +4ε, α)). Note that σ
affects only the scaling and has no effect on D4α and D4ε.

is high. Therefore, some upper bounds for α and ε may be
chosen without compromising KLD.

V. APPLICATION IN IMAGE DENOISING

For the inferred filters, each observed neighborhood can be
viewed as a realization of the NNM. Thus the CSM model
fitting can provide parameter estimation. In the following, we
will apply this approach to color-image denoising.

A. Parameter estimation

Before model fitting, we need to derive the empirical
distribution P (s). For the Yaroslavsky filter, we have a fixed
neighborhood Λl for each pixel, and P (s) can be simply
obtained by accumulating the histogram of all sl,i. For the
bilateral filter, we construct its P (s) by accumulating the
histogram with the spatial weight dl,i to consider proximity.
For example, the frequency of s = 2 will be increased by
dl,i for an event sl,i = 2. For the MNLM filter, we consider
a dynamic neighborhood Λl which may depend on patch
similarity sorting or hard thresholding for better performance.
In this case, we need to do the computation to derive Λl and
then accumulate the histogram of sl+b,i+b.
Given P (s), we perform the CSM fitting using the EM+ algo-
rithm and select the final result based on the KLD calculated
for P (s) and the estimated distribution P̃ (s;θ(m)) in each
iteration. Besides, we also devise an ε-bounded estimation to
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handle the KLD insensitivity issue. It is activated when ε is
close to a given upper bound εbd. Since the sensitivity of KLD
becomes small when ε is near εbd, we can directly compare
KLD through ε = εbd using a bisection search on α. For each
α, the σ-update (23) which converges very quickly is used
to find the best corresponding σ and KLD. This parameter
estimation procedure is summarized in Algorithm 1.

Algorithm 1 CSM Parameter Estimation
Input: Empirical distribution P (s); ε-bound εbd
Output: Estimated θ = (σ, α, ε)T and σ2

r

1: Initialize θ(0) = θini, F(θ(0)) = 0, A = −I, m = 1
2: repeat . EM+ algorithm
3: QN update: θ(m) ← θ(m−1) + δ
4: EM/KLD update: θ̂(θ(m)), F(θ(m)) = θ̂ − θ(m)

5: Broyden’s update: A← A +4A
6: KLD: D(m) = DKL(P (s) ‖ P̃ (s;θ(m)))
7: m← m+ 1
8: until (KLD or σ2

r converges) or (m > M )
9: Get θ = θ(m′) where m′ = arg minmD(m)

10: if |ε− εbd| < 4ε then . ε-bounded estimation
11: ε← εbd
12: (α, σ) ← ε-bound estimated (αbd, σbd)
13: end if
14: Get the estimated σ2

r ← ασ2

The default algorithm parameters in this paper are as follows:
maximum fitting iteration M = 15, initial CSM parameter
θini = ( smd√

2(k−1)
, k, 10−3) where smd is the mode of P (s), ε-

bound criteria 4ε = 10−3, and parameter range Ψ = {θ|σ ∈
[10−5,∞), α ∈ [k, 5k], ε ∈ [10−5, εbd]}. The convergence
condition is that the KLD is smaller than 10−5 or σ2

r changes
by less than 0.1%. Note that Ψ is used to avoid unstable QN
updates and is defined sufficiently large such that only seldom
final results touch the boundaries. The only exception is the
εbd which can be used to activate the ε-bounded estimation.

B. Recursive local filter

It is shown that the conventional Yaroslavsky/bilateral filter
is equivalent to the first-iteration MAP/ML estimation. Simply
applying more iterations with the same σ2

r indeed reduces
the energy function (6) but does not help for increasing
PSNR. Instead, because the image noise becomes smaller after
filtering, we propose a more reasonable alternative: apply the
model fitting and filtering recursively. Each iteration estimates
the NNM parameters for the current noisy image ŷ(n) and
performs filtering on it with the estimated range variance
σ̂

2(n)
r . This process is terminated when the filter iteration

exceeds Nflt times or the estimated noise intensity σ̂(n) is
smaller than a threshold σcl which represents a clean image.

C. Recursive MNLM filter

The proposed recursive MNLM filter has three differences
from the recursive local one. First, the basic processing unit
becomes a patch, instead of a pixel, and a flag bag decides
how to aggregate these patches into one image. If bag = 1,

each image pixel at position l will be derived by averaging
all its corresponding values in neighboring estimated patches
X̂l+b, b ∈ B. Otherwise, no aggregation will be performed.
Second, the neighborhood for each patch is constructed dy-
namically based on some given constraints. Third, a DCT-
Wiener filter is introduced to increase the performance, which
is activated by a flag bdct.
The DCT-Wiener filter serves similarly as the residual filter in
PLOW [19]. We use the DCT, denoted as T (·), to approximate
the decorrelation matrix and then apply element-wise Wiener
filtering to update the patch X̂l

X̂l ← T −1(Wwie ◦ T (X̂l)), (28)

where the element of the shrinkage matrix Wwie is

(Wwie)i′j′k′ =
σ̂2
X,i′j′k′

σ̂2
X,i′j′k′ + σ̂2

l

, (29)

and the signal variance is estimated from neighbors by
σ̂2
X,i′j′k′ = Ei∈Λl [(T (Ŷ

(n)
i ))2

i′j′k′ ] − σ̂2(n) and the noise
variance by σ̂2

l = σ̂2(n)∑
i∈Λl

Wl,i
due to weighted averaging. The

recursive MNLM filter is summarized in Algorithm 2.

Algorithm 2 Recursive MNLM Filter
Input: Noisy image y; ε-bound εbd; DCT-Wiener flag bdct;

Aggregation flag bag
Output: Denoised image ẑ

1: Initialize ŷ(1) = y, ẑ = y, n = 1
2: repeat
3: Get empirical P (s) of ŷ(n) by constructing each Λl
4: Get σ̂(n)

r , σ̂(n) using parameter estimation
5: if (σ̂(n) ≥ σcl) then
6: for each patch Yl in ŷ(n) do

7: Get the estimation X̂l =
∑
i∈Λl

Wl,i·Ŷ(n)
i∑

i∈Λl
Wl,i

8: Perform DCT-Weiner filtering with bdct
9: end for

10: Aggregate X̂l to form ẑ(n) with bag
11: ŷ(n+1) ← ẑ(n), ẑ← ẑ(n)

12: end if
13: n← n+ 1
14: until (m > Nflt) or (σ̂(n) < σcl)

VI. EXPERIMENTS ON MODEL FITTING AND FILTERING

Extensive experiments will be given for showing the ro-
bustness and applicability of the proposed framework. There
are four major configuration groups: filter type/support size,
kernel function Kr(·), color channel number, and noise type.
For clarity, we use a default combination as the backbone and
mostly change one group at a time. The default configuration
is: bilateral 9 × 9 filter, Gaussian kernel (GK), true-color
images (k = 3), and AWGN. Twelve standard color images
of different properties are used in this default case with five
noise intensity values of σn. The details of all experimental
results can be found and browsed online1.

1http://www.ee.nthu.edu.tw/chaotsung/nnm

http://www.ee.nthu.edu.tw/chaotsung/nnm
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A. Test configuration setting

Six configurations for filter type/support size are tested:
1) YF-5×5: Yaroslavsky filter, Λ: 5×5, εbd = 0.1/1.0;
2) YF-9×9: Yaroslavsky filter, Λ: 9×9, εbd = 0.1/1.0;
3) BF-9×9: Bilateral filter, Λ: 9×9, εbd = 0.1/1.0;
4) BF-13×13: Bilateral filter, Λ: 13×13, εbd = 0.1/1.0;
5) MNLM-Simple: MNLM filter, εbd = 0.1, bdct = 0

(DCT-Wiener off), bag = 0 (no aggregation);
6) MNLM-DCT: MNLM filter, εbd = 1.0 (ε-bound off),

bdct = 1 (DCT-Wiener on), bag = 1 (one-pixel grid).
Two settings of εbd are tested for local filters. The basic
εbd = 1.0 simply follows the definition in (5). In contrast,
the empirical εbd = 0.1 will use the ε-bounded estimation
for large ε. The distance-weighted kernel Kd(·) of bilateral
filters is Gaussian, and the σd is set to the radius of Λ, e.g.
σd = 4 for Λ = 9× 9. The patch size for the MNLM filter is
9×9. For constructing MNLM neighborhood, we apply motion
estimation in a 31× 31 search window around position l and
choose the best ten candidates as Λl. For filter termination,
the maximum iteration number Nflt is set to 3 and σ2

cl set to
10.
To obtain the best σ2

r and the SURE estimation for comparison,
we perform a σ2

r scan (30 values) for each test condition. The
SURE-based method uses the noise variance σ2

MAD estimated
by MAD as done in [19] and is denoted as MAD+SURE. The
SURE formulation for generalized range-weighted kernels is
derived in Appendix A.

B. Yaroslavsky/Bilateral filter (GK, k = 3, AWGN)

Fig. 5 shows typical examples of the test results. The CSM
model can fit the long-tailed empirical distributions well no
matter when the noise is small or large. It also successfully
predicts that α should become larger as the noise intensity
σn increases, while the conventional heuristics usually apply
a fixed value.
Table II lists the result of the default test configuration in
detail. MAD+SURE fails in two cases. One is for small σn
(e.g. σn=5, 1st iteration) due to the inaccuracy of σ2

MAD. The
other one is for the iterations after the first one (e.g. σn=50,
2nd iteration) because the noise is not Gaussian any more. In
contrast, the CSM estimation performs well in terms of both
PSNR and σ2

r accuracy in these two cases. It means that the
edge information can be well captured by the CSM model even
when the noise is small or becomes non-Gaussian. This useful
property also enables the proposed recursive scheme. Besides,
in other cases the CSM estimation shows similar performance
compared to the MAD+SURE. An interesting property can
also be found. The CSM estimation usually underestimates
the noise variance σ2, which means it may mistake noises
for edges. In contrast, the MAD+SURE tends to overestimate
because the MAD may mistake edges for noises.
The execution time is also shown in Table II, which is
evaluated by running MATLAB (R2010b version) on a 3.4
GHz Intel Core i7 CPU (single-thread) with 8 MB cache. The
proposed method runs much faster than the MAD+SURE since
it does not require a σ2

r scan. Each iteration of it consists of
three steps: getting P (s), CSM fitting, and filtering. The first

and third steps take time proportionally to the image resolution
and filter support size (7.9 s and 6.5 s on average respectively).
In contrast, the fitting time depends on the EM+ iteration
numbers and whether the ε-bounded estimation is turned on.
For larger noises, the fitting tends to be insensitive to KLD, and
thus more time is required, e.g. 9.6 s on average for σn = 50
(1st iteration) while only 3.5 s for σn = 5. The percentage
of the fitting time will be smaller for larger images. Note that
MAD+SURE not only fails to predict in the recursive iterations
but also requires significantly higher computation complexity
due to the σ2

r scan.
The test results of Yaroslavsky and bilateral filters are sum-
marized in Table III. The MATLAB code of the proposed
recursive fitting and filtering for these tests is available online1.
For εbd = 0.1, the CSM estimation performs comparably to
the SURE in the first iteration for large σn and outperforms
for small σn. Moreover, the proposed recursive fitting and
filtering can increase PSNR by up to 1.2 dB. As for εbd = 1.0,
its first-iteration results are not as good as εbd = 0.1 for its
less accurate σ2

r estimation and higher KLD (due to KLD
insensitivity). However, the recursive filtering can recover its
quality drop and even make it slightly better than εbd = 0.1
with a little more iterations. Therefore, the basic εbd = 1.0
gives slightly better quality when using recursive filtering, but
the empirical εbd = 0.1 may be preferred when only one or
fewer iterations are allowed. In the following, the εbd = 0.1
will be used, except for the performance-oriented MNLM-
DCT. It can also be found that the choice of σ2

r affects the
performance much more sensitively than that of Λ and dl,i,
which justifies the need of a good σ2

r estimator.

C. MNLM filter (GK, k = 3, AWGN)

The test results are summarized in Table IV. The MNLM-
Simple is directly inferred from the patch-based NNM vari-
ation, and the CSM estimation can track the σ2

r well for
different σn and in different iterations. The recursive MNLM-
Simple filter can increase PSNR by up to 3.9 dB. On the other
hand, the MNLM-DCT can provide better PSNR due to the
use of DCT-Wiener filtering, and it also terminates earlier.
Though less accurate, the CSM fitting still provides good
estimation of σ2

r for it. Note that the MAD+SURE cannot be
applied here because the neighborhood is dynamically derived.
For comparing the conventional NLM and MNLM, we also
tested NLM in form of (2) using a σ2

r scan. Its best PSNR
differs by less than 1% compared to MNLM-Simple, which
indicates NLM and MNLM have similar performance.
Two state-of-the-art denoising algorithms, CPLOW [19] and
CBM3D [27] (”C” stands for the versions for color images),
are also tested for comparison. The MAD-derived noise vari-
ance σ2

MAD is used for them, and all other parameters are
set as default in the software provided by their authors2,3.
The CBM3D performs best due to the processing in sparse
representation and the good heuristic parameters. Our MNLM-
DCT outperforms the CPLOW which is the state-of-the-
art non-local filter, though sharing a similar flow. Besides

2BM3D: http://www.cs.tut.fi/∼foi/GCF-BM3D/BM3D.zip
3PLOW: https://users.soe.ucsc.edu/∼priyam/PLOW/

http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D.zip
https://users.soe.ucsc.edu/~priyam/PLOW/
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Fig. 5. BF-9×9 (εbd = 0.1, GK, k = 3, AWGN) for Lena with σn = 5, 20, and 50. The top row shows the model fitting of empirical distributions. The
bottom row presents the filtered results, where the best σ2

r is marked by a circle, CSM estimation by a cross, and MAD+SURE by a triangle.

TABLE II
DETAILED RESULT FOR BF-9×9 (εbd = 0.1, GK, k = 3, AWGN).

∗ The PSNR and σ2
r in the columns under ”Best” are derived by the σ2

r scan;
† 4PSNR is calculated by subtracting the best PSNR from the PSNR of CSM fitting or MAD+SURE;
‡ 4σ2

r is presented in form of relative percentage, i.e. (σ2
r − σ

2
r,best)/σ

2
r,best.
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TABLE III
SUMMARY FOR YAROSLAVSKY/BILATERAL FILTERS (εbd = 0.1/1.0, GK,

k = 3, AWGN). THE NUMBERS REPRESENT THE CORRESPONDING
AVERAGES FOR THE TWELVE TEST IMAGES. THE RESULTS OF

εbd = 0.1/1.0 DIFFER ONLY FOR σn = 40/50.

4PSNR here is calculated by subtracting PSNR from the best first-iteration PSNR;
|4σ2

r | here is presented in form of relative percentage of absolute difference;
m̄ stands for the average number of iterations.

the CSM parameter optimization, one other reason is that
the CPLOW processes color channels separately while we
consider all channels jointly.
The visual comparison of CPLOW, CBM3D and MNLM-
DCT is shown in Fig. 6. The CPLOW has obvious color-
misalignment artifacts, while the CBM3D gives the best
quality for its processing in the sparse 3-D transform. The
MNLM-DCT has DCT-basis artifacts which result from the
usage of non-sparse 2-D transform. Except this issue, it can
deliver the same level of details as the CBM3D.

D. Range-weighted kernel (BF-9×9, k = 3, AWGN)

The kernel functions for Kr(·) in Table I are tested and
summarized in Table V. For the GGD4, Epanechnikov, Bi-
weight and Triweight kernels, the upper bound of α in the
fitting parameter range Ψ is set to 20k for accommodating
larger range variance. The performance of these kernels is
very similar to the Gaussian one, and their estimated range
variances are also highly correlated as shown in Fig. 7. An
alternative way to estimate the corresponding σ2

r ratios is
by minimizing the L2 distance to the Gaussian kernel. The
optimized ratios in this manner for the GGD4, Epanechnikov,
Biweight and Triweight kernels are 1.08, 1.87, 2.83 and 3.81
respectively, which differs from the linear coefficients in Fig.
7 by less than 0.3. This not only shows the adaptability of
CSM fitting but also suggests that those kernels can be used
interchangeably for denoising under the proposed framework.

TABLE V
SUMMARY FOR GENERALIZED KERNELS (BF-9×9, k = 3, AWGN).

4PSNR, |4σ2
r | and m̄ have the same definitions as those in Table III;

4PSNRGK is calculated by subtracting PSNR from the PSNR of the Gaussian kernel.

Fig. 7. Correlation of estimated σ2
r between Gaussian and other kernels. The

Laplacian kernel is not shown for its lower R2 value 0.9836.

In contrast, the Laplacian kernel has worse PSNR and higher
KLD, which indicates it is not suitable for bilateral filtering.

E. Hyperspectral image (BF-9×9, GK, AWGN)

We use the hyperspectral HYDICE4 image for testing more
color channels. The test results for up to nine channels across
the available spectrum are shown in Table VI. One notable
effect as k increases is that the fitting KLD goes up either,
and this is especially obvious for low-noise cases or the
iterations after the first one. It reflects the fact that there is
still inconsistency which cannot be modelled well by NNM

4https://engineering.purdue.edu/∼biehl/MultiSpec/hyperspectral.html

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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Noisy (σn = 50) CPLOW (28.8 dB) CBM3D (29.9 dB) MNLM-DCT (29.4 dB)

Noisy (σn = 50) CPLOW (22.0 dB) CBM3D (22.9 dB) MNLM-DCT (22.6 dB)

Fig. 6. Visual comparison for the denoising results of CPLOW, CBM3D and MNLM-DCT in the case of large AWGN intensity σn = 50. The whole images
and cropped regions for Lena (top two rows) and Baboon (bottom two rows) are shown.

among the latent signals in different channels. To exclude the
fitting results with high KLD, we exit the recursive processing
when the KLD is higher than 0.3. Compared to using only
RGB channels (k = 3), the denoising performance using more
channels is better for high-noise cases (σn ≥ 10) due to having
more information of intensity texture, and the range variance
is also well tracked. However, the performance for the low-
noise case (σn = 5) becomes worse because of the channel
inconsistency and thus the over-estimated range variance.

F. Noise type (BF-9×9, GK, k = 3)

The assumption of Gaussian noise in the NNM (4) is for the
tractable formulations. However, we have also shown that the
CSM fitting still works well for the iterations after the first one,
i.e. when the noise is no more Gaussian. In the following, we
further apply other noise models to the twelve standard color
images to evaluate the effectiveness of our framework when
the model is not matched. The results are summarized in Table
VII.
For the uniform noise models, the CSM fitting performs sim-
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TABLE IV
SUMMARY OF TEST RESULTS FOR MNLM FILTERS. THE RESULTS OF CPLOW AND CBM3D ARE GIVEN FOR REFERENCE.

4PSNR1 and 4PSNR2 are calculated by subtracting PSNR from the first-iteration and the second-iteration best PSNR respectively;
|4σ2

r |1 and |4σ2
r |2 present relative percentages of absolute difference for the first and second iterations respectively.

TABLE VI
SUMMARY FOR HYPERSPECTRAL HYDICE (BF-9×9, GK, AWGN).

For each case, the first k channels are selected from this set (in wavelength, nm):
{459(blue), 504(green), 759(red), 401, 953, 1175, 1768, 2200, 2473}.

ilarly well compared to the corresponding cases of Gaussian
noises in Table V, while the MAD+SURE becomes worse for
both PSNR and the accuracy of σ2

r . For the Poisson noise,
the performance of the two methods is similar on average.
Regarding the salt and pepper noise, which the bilateral filter
is not good at, the CSM fitting happens to suggest small range
variances because it treats the sparkles as intensity edges. In
contrast, the MAD+SURE still suggests higher range variances
and leads to more blurry images. The above experiments
demonstrate the robustness of the proposed framework across
different noise models.

TABLE VII
SUMMARY FOR DIFFERENT NOISE TYPES (BF-9×9, GK, k = 3).

U5/U20/U50: Uniform noise with standard deviation 5/20/50;
POS: Poisson noise with the pixel value as the number of photons;

SNP: Salt and pepper noise with 1% density.

G. Natural image gradient (GK, k = 3)

Given the definition of the observable s with the simplest
four-connected neighborhood, the NNM is then equivalent to
a model for image gradients. For noisy images, the CSM can
fit as well as YF-5×5 and YF-9×9 do. A more interesting
question is how the CSM fitting performs for natural images
since image noise is inevitable during picture capturing. We
summarize the fitting results for the test color images in Table
VIII and show the best and worst cases in Fig. 8. Generally
speaking, the main bodies, where P (s) ≥ 10−4, can be fit
well, but the tails of the CSM drop faster than the heavy tails
of the empirical distributions. Therefore, if the deviation of the
tails is acceptable, the proposed framework can be applied to
modelling natural images and also inferring novel algorithms
which use gradients as important cues.

VII. DISCUSSION

A. Robustness of CSM fitting over SURE

The robustness of CSM fitting over SURE mainly comes
from its independent MAP framework for each range weight
wl,i. It estimates the range variance based on a simple as-
sumption, range kernel Kr(x) is invertible, and decouples
itself from the following ML estimation for the adaptive filter
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TABLE VIII
SUMMARY FOR CSM FITTING TO COLOR-IMAGE GRADIENTS

(FOUR-CONNECTED NEIGHBORHOOD, GK, k = 3).
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(best case)
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Fig. 8. CSM fitting results for natural image gradients.

kernel. Therefore, it works well even when the neighborhood
is dynamically allocated for the non-local filters. On the
other hand, the SURE-based method explicitly relies on the
weakly differentiable filter kernel assumption to derive an
accurate risk estimation, so it fails in this case. Similarly, the
SURE accuracy also counts on the independent Gaussian noise
assumption, and thus it does not work for the filtered images
in which the noise is neither independent nor Gaussian. In
contrast, the MAP estimation for the CSM fitting is accurate
as long as the fitting is good with a small KLD value.

B. Limitations of this framework

The effectiveness of the proposed framework depends on if
the empirical distribution P (s) can be explained well by the
CSM model. And we use KLD as the numerical assessment
for this explanatory capability. The denoising experiments
in Section VI work well thanks to their small KLD values.
However, this framework may fail if KLD is large, i.e. CSM
cannot fit P (s) well. For example, this may happen when a

very large neighborhood size |Λ| is used for local or non-
local filters. Therefore, examining the KLD value is necessary
before applying this framework to a specific problem.

C. Possible future extensions

Range-weighted formulation is a very useful and widely
adopted tool in many computer vision and signal processing
problems, but mostly applied in an intuitional way. This
paper presents how to systematically solve this formulation
for the denoising problem in an empirical Bayesian way. We
believe that this approach can be extended to many other
algorithms using similar range-weighted formulation, such as
cross bilateral filter [4] and stereo matching (especially for
[5] and more recently [32], [33]). Besides, we show that the
NNM can capture the statistics of the image gradient in Section
VI-G. Thus, this framework can also be extended to construct
image prior and estimate its parameters for regularization
of image restoration problems, e.g. for those using sparse
representation.

VIII. CONCLUSION

In this paper, we propose and study a unified empirical
Bayesian framework which can both infer the neighborhood
filters and estimate the range variance. With the neighbor-
hood noise model, we show that the Yaroslavsky, bilateral,
and MNLM filters can be derived by joint MAP and ML
optimization. We also present an EM+ algorithm for parameter
estimation via fitting the observable CSM. The extensive ex-
perimental results on image denoising show the effectiveness
and robustness for a variety of application scenarios. The noisy
images can be fit well and the range variance can be tracked as
accurate as the multi-pass SURE-based method. Moreover, the
CSM fitting also works for filtered images, and this enables a
recursive filtering scheme and improves PSNR.
Instead of heuristic tuning for the essential range variance,
the proposed framework can be used to build efficient filters
automatically for different constraints, e.g. different filter
types/supports, patch sizes, and color channel numbers. It can
also be expected that it will be applied to other range-weighted
algorithms by formulating the corresponding likelihood func-
tions or modelling the image gradients. Therefore, we believe
that it will help many computer vision and signal processing
problems be solved in an empirical Bayesian way, instead of
an intuitive way.

APPENDIX A
SURE FOR GENERALIZED KERNEL Kr(x)

By extending the analytical expressions of [22] for the local
filter and k-channel signals in (1), we have

SURE =
1

kI

∑
l∈I

‖ yl − ẑl ‖22 −σ2 +
2σ2

kI

∑
l∈I,c∈K

∂ẑl,c
∂yl,c

,

(30)

∂ẑl,c
∂yl,c

=
1

Wl

(
dl,l +

∑
i∈Λl

dl,i
∂wl,i
∂yl,c

(yi,c − ẑl,c)

)
,

(31)
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where I represents the pixel array, I = |I|, K = {1, 2, .., k},
and Wl =

∑
i∈Λl

wl,idl,i. Given wl,i = Kr(x =
‖yl−yi‖22

2σ2
r

)

and r(w) , −K ′r(K−1
r (w)), we can have

∂wl,i
∂yl,c

= K ′r(x)
yl,c − yi,c

σ2
r

= r(wl,i)
yi,c − yl,c

σ2
r

. (32)

Then combining the above equations gives the SURE formu-
lation for generalized kernels:

SURE =
1

kI

∑
l∈I

‖ yl − ẑl ‖22 −dl,l · σ2

+
2σ2

I

∑
l∈I

1

Wl

(
pl
kσ2

r

+ 1

)
, (33)

where pl ,
∑
i∈Λl,c∈K dl,ir(wl,i)(yi,c− yl,c)(yi,c− ẑl,c). The

cases of r(w) used in this paper can be found in Table I.
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