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Abstract—Range-weighted neighborhood filters are useful and
popular for their edge-preserving property and simplicity, but
they are originally proposed as intuitive tools. Previous works
needed to connect them to other tools or models for indirect
property reasoning or parameter estimation. In this work, we
introduce a unified empirical Bayesian framework to do both
directly. A neighborhood noise model is proposed to reason and
infer the Yaroslavsky, bilateral, and modified non-local means
filters by joint maximum a posteriori and maximum likelihood
estimation. Then the essential parameter, range variance, can
be estimated via model fitting to the empirical distribution of
an observable chi scale mixture variable. An algorithm based
on expectation-maximization and Quasi-Newton optimization is
devised to perform the model fitting efficiently. Finally, we apply
this framework to the problem of color-image denoising. A
recursive fitting and filtering scheme is proposed to improve the
image quality. Extensive experiments are performed for a variety
of configurations, including different kernel functions, filter types
and support sizes, color channel numbers, and noise types. The
results show that the proposed framework can fit noisy images
well and the range variance can be estimated successfully and
efficiently.

Index Terms—Bilateral filter, non-local means, denoising,
neighborhood filter, empirical Bayesian method, noise model,
image model, parameter estimation.

I. INTRODUCTION

Range-weighted formulation has been widely used to pro-
vide edge-preserved denoising since the introduction of local
neighborhood filtering, especially the Yaroslavsky [I] and
bilateral [2] filters. Many variations were also proposed for
different applications, such as the trilateral filter for high
contrast images [3], the cross bilateral filter for fusing image
pairs [4], and the dual bilateral filter for aggregating stereo
matching costs [5]. The reader is referred to [6] for more
applications. The non-local means (NLM) [7] was further
proposed for a non-local neighborhood and got fruitful patch-
based extensions on the denoising problem.

The intuitive idea behind the neighborhood filters is to assign
weighting coefficients based on similarity and then perform
weighted averaging, e.g. the bilateral filter is given by

D ien, WiidLi - Yi
D ien, Wiidii
where y and Z are the observed and filtered signals respec-

tively, and A; represents the neighborhood of the pixel at
position [. The adaptive weight consists of one range-weighted
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di; = Kd(%). The former adapts to pixel similarity
for edge preserv%ttion, which is controlled by range variance
o2. And the latter provides a spatial smoothing window. A
conventional choice for the kernel functions K,.(-) and Ky(-)
is the Gaussian kernel which is in form of K (z) = exp(—x).
If the spatial weights are all equal, it will degenerate to the
Yaroslavsky filter. On the other hand, it will evolve to the
NLM if w; ; is defined by patch similarity:

) and one distance-weighted kernel
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wl,i:Kr< ),B:B, (2)
where {y;1|b € B} forms the patch at position .

Filtering based on range-weighted similarity is effective but
lacks of theoretical basis. For understanding its mathematical
properties, several previous works studied their connections to
other classical methods, such as mean shift [8], anisotropic dif-
fusion [9], robust estimation [10], [1 1] and Bayesian approach
[12], and thus found improvements on the neighborhood filters.
However, these connections were unable to provide further
information to infer the range variance o2 directly from the
observed data.

In contrast, without reasoning the properties statistical tech-
niques have been adopted to estimate the parameters indirectly
using the basic observation model

y=z+n, 3

where n is additive Gaussian noise. The x? test was used to
choose the parameters for the NLM filter in [13]. The Stein’s
unbiased risk estimate (SURE) [14] can provide unbiased
estimation of the mean squared error (MSE) from noisy and
filtered images. Thus many parameter combinations can be
tested, and the one giving the smallest estimated MSE can
be selected. Though accurate, the complexity is quite high
because each combination needs to filter the image separately.
The contribution of this paper is that we build a unified
empirical Bayesian framework to infer the neighborhood filters
with novel property reasoning and also estimate their range
variance o2 through statistical inference. Experimental results
on color-image denoising show that the proposed model fits
noisy images well, estimates o2 as accurate as SURE does,
and even works well when SURE fails. The advantage over
SURE is not only computation-wise but also quality-wise
when considering a recursive filtering scheme. Besides adding
more details, this paper extends our conference paper [ 5] with
formulations for generalized kernel functions and also exper-
iments on hyperspectral denoising, natural image gradients,



different kernel functions, and different noise types. We also
believe that this framework can be extended to other range-
weighted algorithms for deeper theoretical understanding and
more efficient parameter estimation.

The rest of this paper is organized as follows. After sum-
marizing related works in Section II, we introduce a novel
neighborhood noise model and infer the neighborhood filters
in Section I11. For efficiently estimating o2 from noisy images,
we present an expectation-maximization-plus (EM+) algorithm
in Section IV to perform the model fitting. In Section V, we
apply our framework to color-image denoising and introduce
the recursive fitting and filtering scheme to improve image
quality. The extensive experimental results are shown in Sec-
tion VI, and the limitations and possible future extensions of
this work are discussed in Section VII. Finally, conclusion
marks are given in Section VIIL

II. RELATED WORK
A. Joint filter and parameter inference

In [16], a wavelet-domain denoising algorithm was devel-
oped with the assumption that the latent image z is in form of
Gaussian scale mixtures (GSM) [17]. The adaptive parameters
can then be statistically inferred from the neighborhood. In
[18], noise estimation and removal can be performed au-
tomatically if detailed camera information is available. Not
surprisingly, these filters are different from the range-weighted
ones. The PLOW filter [19] is equivalent to the NLM filter
plus a residual filter. Although the residual filter is based on
the covariance matrices inferred from geometric clusters, the
range variance was still given in a heuristic way. In this paper,
we target the joint inference for neighborhood filters.

B. Neighborhood filter inference

In [10], the bilateral filter was reasoned as the first iteration
of optimizing robust estimation with a given weight function,
and multiple iterations were proposed to improve the denoising
performance. In [11], the weight function was linked to the
probability density function of Smooth Exponential Family,
which showed that the parameters can be predicted by fitting
the additive noisy model, but not directly from image data. In
[12], the concept in [10] was extended to generalize the neigh-
borhood filters. These Bayesian approaches were only able to
infer the filter structure from the observed neighborhood, but
no specific method was proposed to infer the range variance
directly from the image data.

C. SURE-based parameter estimation

The SURE-based method gives the state-of-the-art accuracy
for parameter estimation, and it is basically applicable to any
parameter. It needs to estimate the noise variance first, and
one popular method is by median absolute deviation (MAD).
SURE has been applied to the bilateral filter for grey [20]
and multispectral images [21] and also to the NLM filter [22],
[23], [24]. A fast implementation for the bilateral filter was
also proposed in [25], but several passes of filtering were
still required. For the SURE-based method to work well, two

conditions should be met: the independent Gaussian noise
assumption and a weakly differentiable filter kernel on the
noisy image y. In this paper, the model fitting itself is only
able to estimate the range variance. However, we will show its
applicability to two cases in which the SURE-based method
would fail. One is recursive filtering for which the noise is no
longer independent or Gaussian. The other one is for the NLM
filters which use motion estimation to select candidate patches
such that the kernel is dynamic and thus indifferentiable on y.

D. Image denoising

Several types of approaches have been studied, including
local-based [ 1], [2], transform-based [16], [26], nonlocal-based
[7], [19], and sparsity-based (e.g. BM3D [27], NLSM[28] and
WNNM]29]). The last type showed superior image quality
recently, which was based on grouping with patch similarity
and optimization for sparse representation. However, the pa-
rameters were mostly given heuristically. Besides, they were
often proposed and optimized for grey images, and additional
modification was required to support color images. In contrast,
our method can work on multi-channel signals directly.

III. NOISE MODEL AND BAYESIAN INFERENCE

We will first propose a novel noise model and infer the
Yaroslavsky filter directly from it. It reasons the range-
weighted kernel K,.(-) using maximum a posteriori (MAP)
estimation on novel localized soft-edge random variables and
infers the filters using maximum likelihood (ML) estimation.
By modifying the likelihood function to improve the robust-
ness of estimation, we will then infer the bilateral filter and a
modified NLM filter.

A. Neighborhood noise model (NNM)

Consider the weighted averaging formulation in (1). If the
combined weights w; ;d;; are constant, a simple Gaussian
model with scaled variance can do the filter inference. How-
ever, the difficulty of the inference for neighborhood filters lies
in the dependency of the range weight w; ; on the observed
signals y, i.e. y; cannot simultaneously decide the model
parameter and serve as the model realization. In the following,
we solve this problem by modelling w; ; as localized random
variables which can represent local intensity edges using soft
decision.

For a latent k-channel signal z; at position [, we formulate its
neighbors y;cp, by GSM:

n
yi=2z+——, “4)

where n;; are additive white Gaussian noises (AWGN) of
covariance matrix 021, and wy,; = 1 as the basic observation
model (3). For the neighboring pixels, a smaller realization of
wy,; means a wider distribution for y;, so there is more likely
an edge between positions [ and . Otherwise, smooth texture
will be inferred if the realization is close to one. Note that the
Gaussian assumption of n; ; is a key for the following tractable
formulations and also the formation of the observable variable
in Section IV.
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Fig. 1. Soft-edge prior distribution fy,(w) comprised of two functions,
k

ie. fw(w) o< fi(w)f2(w). The function fi(w) = w™ 2 highlights the

distribution weight of edges (as w close to €) which is controlled by e. On

the other hand, the function f2(w) = G (W) determines the distribution

weight of smooth texture (as w close to 1) through parameterizing .

To infer the range-weighted kernel, w; ;»; are defined as white
hidden variables of a prior with two parameters € and «:

fw(wye,0) = ——w Ze , wE [e,1], 5)

N(e, )

where N (e, o) = fel w=%e*CW) duy for normalization. The
function G(w) will be shown to be directly linked to the range
kernel function K.(-) later. Regarding the two parameters, the
o will link the noise variance o2 to the range variance af, and
the non-zero € can guarantee the convergence of the integration
of this prior for k > 3.
To explore the properties of this prior distribution, we can
decompose it into two basic functions, w~3 and @G (W) ag
shown in Fig. 1. Then, for an image with many intensity edges,
we can model it by decreasing € to have higher distribution
weight on edges (6_§ ). In contrast, for an image with
many flat regions, we can increase o to weight more on
smooth textures (e*“(1) 1). Therefore, this prior distribution
can describe natural images reasonably by varying € and a.

B. Inference for Yaroslavsky filter

Given observed data y,;, we have the posterior ®; o

p(yi;z) [ien, -y P(yilwi; 20) fw(wi;). By removing con-
stants from — log ®;, we can derive the energy function L;:
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where g7, 2| z, — y; ||3. The estimation for w;; and z; can
be derived by minimizing L;:
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where the kernel function w = K,.(x) is related to G(w) by
Ko(z) = ()" (2) & Glw) = /K;l(w)dw. ©)

The Yaroslavsky filter is then equivalent to the first-iteration
estimation for solving this fixed-point problem with an initial

TABLE I
92,
EXAMPLES OF RANGE-WEIGHTED KERNEL FUNCTIONS K, (z = 52%).

' (w) = K7 (w). r(w) = —KL(K: " (w)).

Kernel Type K, (z) G(w) r(w)
Gaussian e * w(1 — log w) w
1
Laplacian e2 w(log? w — 2logw + 2) J’m
GGD4 6_1‘2 w+/— log w+% V= log w) 2w+/— log w
Epanechnikov (1 —2)1(,<1) w(l— %wl) ]l{w>10}
Biweight (1 fx)Q]l{zgl} w(l— %w?) 2w§
Triweight (1 — 96)3]1{zg1} w(l — %uﬁ) 3ws

GGD: Generalized Gaussian Distribution

condition zl(o) = y;. For a given kernel function K, (x), we
can now have its soft-edge prior f,,(w) via the corresponding
G(w) by (9), and vice versa. Table I lists some examples for
the kernel function, and G(w) is chosen such that G(0) = 0
without loss of generality.
The NNM estimation (7) and (8) can be further interpreted
into two sequential steps respectively:
1) Independent MAP estimation for each w; ; by maximiz-
ing p(y;:|wi,i; z1) fuw(w;,;) with a fixed zg;
2) ML estimagion for z; by optigmizing the likelihood
L.(z)) = 317’; + ZiEAL—{l} % with fixed wy ;.
By modifying the likelihood function in the second step for
considering proximity and patch similarity, the bilateral and

NLM filters are derived respectively in the following.

C. Extension for bilateral filter

To consider proximity in a nonparametric way using the
distance-weighted kernel d; ;, the locally weighted maximum
likelihood (LWML) [30] can be applied to the likelihood L,
to have the pseudo likelihood function
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Then the LWML estimation by %—% = 0 gives the same
formulation as the bilateral filter in (1).

D. Extension for NLM filter

For a latent pixel z;4, in a latent patch (b € B), the
corresponding NNM with its neighborhood A;; is as defined
by (4). The first-iteration MAP estimation for each soft-edge
variable then gives

| ¥ito — yito 13, .
T)7 1€ Al.

Let the column vectors of the latent patch and the observed
patches be Z; and Y;cp,. They are formed by cascading z;,
and y; 4 respectively in a predefined order Y for b € B. Then
the partial likelihood from Y; can be formulated by

L(Z1;Y;)=G(Z;;Y, %),

Y

Witbitd = K (

12)

where G(;u,X) is a multivariate Gaussian function, and
the diagonal entries of X,;; are formed by cascading



diag(-2— 1) in the predefined order Y. The entries outside
of the d1agonal have no effect on the following derivation.
For NLM filtering, one observed patch Y, has only one
summation weight W, ;. Thus we use a patch-based likelihood
function to approximate (12), which is devised as

2

g
G(Z;; Y, —
(Z Wi

)

L(Z1;Y;) = Iip). (13)
Since these two likelihood functions both behave like proba-
bility density functions (pdf), we choose W; ; by minimizing
the Kullback-Leibler divergence (KLD) between them:

Dnim 2 Drr(L | £) /Elog dz;, (14
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Then the ML estimation for the combined patch-based likeli-

hood functions ;. L(Z;;Y;) becomes
ien Wi - Y5
7, - Zien i X (a7
ZieAl Wi

which suggests a modified NLM (MNLM) filter with the
coefficients W;; in (16). Note that W;; is the harmonic
average of wjyy ;14, While the conventional NLM with the
Gaussian kernel uses the geometric average as implied in (2).

IV. MODEL FITTING AND PARAMETER ESTIMATION

In the following, we will first introduce how to build a robust
observation model in chi scale mixtures and then how we fit
the model using an EM+ algorithm.

A. Observable chi scale mixtures (CSM)

Let s, £|| y1—Yi ||2- Due to the AWGN assumption of n; ;
in (4), s1,; is independent of z; and with the CSM formulation:

wy,; + 1

51 =0 Ugs, Ui ~ Xk (18)

wy 4
where v;; has a chi distribution with £ degrees of freedom.
For simplicity, we use s = s;; and w = w;; in the following.
The marginal pdf of s can be derived by

1

fs(s;a,e,a)z/ fsw(s,w;0,€ a) dw, (19)
k-1 _—Fk

fow= s T @ EEeG) ()

T(e,a) (w+1)3
where f,,, is the joint pdf of s and w, and T'(e, ) =
23 711(k/2)N (e, ) for normalization.

Fig. 2 shows how the soft-edge prior f,,(w) and the CSM
pdf fs(s) behave with different o and €. f,,(w) represents
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Fig. 2. Distributions of the soft-edge w and the observable chi scale mixtures
s with different values for o and e (Gaussian kernel K-(-) and k = 3).

how likely intensity edges appear, i.e. higher density for small
w for more edges. For smaller « or ¢, f,(w) tilts more to
the left and f,(s) has a longer tail such that more edges are
expected. For larger « or €, f,,(w) concentrates more on the
right, and f5(s) gets closer to a chi distribution. Thus we can
model noisy images by varying « and e to fit different image
properties and varying o for different noise intensity.
Another advantage to define s in [?-norm is its robustness.
When the components of y; are not independent in the
observed color space, e.g. RGB, we may apply an orthogo-
nal transform to diagonalize their covariance matrix X, for
decorrelation. However, since the [?-norm is invariant to the
orthogonal transform, we can calculate s (and w) in the
observed color space without performing the decorrelation.
Thus the model fitting (and the filtering) can be applied on
the observed y; directly without loss of optimality.

B. EM+ algorithm for CSM fitting

Given an observed data set S, its empirical distribution is
defined by P(s € S). Then we estimate the corresponding
pdf fs(s) by iteratively updating the model parameters based
on P(s). Assume in the previous iteration the estimated
parameters are o, «, and e. Our EM+ algorithm updates them
to &, &, and € through the following three steps: EM update,
KLD update, and Quasi-Newton (QN) update.

1) EM update: (o,c,¢€) = (5,4,¢): For simplicity, we
will ignore the o, «, and € in f,,, and f, if the parameters
in the previous iteration are used. The expected value of the
log likelihood function can be derived as Q(6,d4lo, ) =
> P(s5)a(sj, 6, a0, ) where

1
q(s,&,&|a,a):/ p(w|s)LErp (6, &, 6w, s)dw, (21)

( | ) fs,w/fsv Lem :1ngs,w(37w§&76»d)- (22)
Set Q = gg = 0 to have the EM update for & and &:
1
1 [0 Fow(sj,w)s? 2= dw
52 = =Y P(sy) - T Jetl 0 (23)
1
. . Ssw(sj, w)G(w) dw
€)=ZP(S])~f (J )G (w) : (24)
- fs(s5)



where H(&,¢€) £ E,.4.[G(w)] and it is an increasing func-
tion with respect to & because 0H/9& = Var,.s [G(w)] =
0. Thus the corresponding & can be found quickly using a
bisection search on H(d, €).

2) KLD update: (6,é,¢) = (6,a,€): The EM algorithm
is unable to update e because the support of w for p(w|s)
and Lgys in (21) should be the same. Instead, we update
it by optimizing the approximate KLD D = ;—P(s5) -
log % With %—? = 0, a fixed-point representation of
the optimﬁl € can be derived. And we use the first-iteration

result with an initial condition é® = € as our updating
formulation:
2
. k k—1s—k — ooy 52
€+ 1\ 2 s" o e etl262
< é ) :ZP(SJ)' ok < - (25)
€ j 22 F(g)fS(Sj;O',E,Oé)

3) ON update: (6,a,¢€) = (G,a,€): The update formula-

tions in (23), (24), and (25), require numerical evaluations for
lots of integrals, which prolongs the execution time for one
iteration. Also, the update step sizes are usually small near
the optimizing point, which increases the number of iterations.
Thus the above updates usually take a long time to converge
as shown by the blue dotted line in Fig. 3.
We adopt the QN method, QN1 in [31], to accel~erate the fitting
process. Let 8 = (0,a,¢)T, 0 = (6,4,8)T, 0 = (5,a,¢)7,
and F(0) = 6(8) — 6. The QN1 method solves F(6) = 0
by maintaining a matrix A which approximates the inverse
Jacobian matrix JEl and is updated using the Broyden’s
update method (A < A + AA):

(MG — AAF)AOT A
AOTANAF

where AQ = 0 — Opye, AF = F(0) — F(0),¢), and 6, is
the estimation in the earlier iteration before 6. Then the QN

update is derived by 8 = 6 + § where
d=—-A-F(0).

27)

However, in practice the QN update could be unstable when A
has a high condition number. Some heuristic, e.g. reinitializing
A, is required in this situation. But as shown in Fig. 3, the
reinitialization (red dashed line) may not work well. Instead,
we choose to confine @ in a reasonably large range W for its
quick convergence (black solid line in Fig. 3). When 6 is out
of ¥, we will directly set § to F(0) as the original EM/KLD
update and may further scale down its value to make 0 inside
W if necessary. With this QN acceleration, the fitting can be
converged in fewer than fifteen iterations in most cases.

C. Discriminative capability of KLD

The fitting quality relies on the discriminative capability of
KLD between different parameters. Fig. 4 shows the KLD
discrimination of f,(s) for k = 3 when « has a small change
Aa = 0.5 and when € increases by Ae = 0.005. It is
clear that the discriminative capability declines as « or ¢
increases. For sufficiently large « or €, fs(s) is very similar
to a chi distribution and KLD becomes insensitive to the
parameters, which usually happens when the noise intensity

------ EM/KLD update
- — = EM/KLD/QN update (reinitialization)

—— EM/KLD/QN update (range confinement)

0.1 4

KLD

0.01 -

0.001

Iteration Number, m

Fig. 3. KLD convergence for CSM fitting methods (Baboon, o, = 20,
bilateral 9x9 filter, Gaussian kernel K (-)). The blue dotted line stands for
EM/KLD update without QN, the red dashed line for EM+ update with QN
reinitialization when the condition number of A > 40, and the black solid
line for EM+ update with the parameter range W given in Section V-A.
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(b) log1g Daec=0.005

(a) 10g10 Dara=05
Fig. 4. KLD discrimination (Gaussian kernel K(-) and k = 3) on (a) «
and (b) €, where Daq(a,€) 2 Dir(fs(s;0,6,a) || fs(s;0,6,a + Aa))
and Dac(a,€) 2 Dir(fs(s;0,6,a) || fs(s;0,€ + Ae,a)). Note that o
affects only the scaling and has no effect on Da, and Dae.

is high. Therefore, some upper bounds for o and ¢ may be
chosen without compromising KLD.

V. APPLICATION IN IMAGE DENOISING

For the inferred filters, each observed neighborhood can be
viewed as a realization of the NNM. Thus the CSM model
fitting can provide parameter estimation. In the following, we
will apply this approach to color-image denoising.

A. Parameter estimation

Before model fitting, we need to derive the empirical
distribution P(s). For the Yaroslavsky filter, we have a fixed
neighborhood A; for each pixel, and P(s) can be simply
obtained by accumulating the histogram of all s; ;. For the
bilateral filter, we construct its P(s) by accumulating the
histogram with the spatial weight d; ; to consider proximity.
For example, the frequency of s = 2 will be increased by
d; ; for an event s;; = 2. For the MNLM filter, we consider
a dynamic neighborhood A; which may depend on patch
similarity sorting or hard thresholding for better performance.
In this case, we need to do the computation to derive A; and
then accumulate the histogram of s;44 j4p.

Given P(s), we perform the CSM fitting using the EM+ algo-
rithm and select the final result based on the KLD calculated
for P(s) and the estimated distribution P(s; ™)) in each
iteration. Besides, we also devise an e-bounded estimation to



handle the KLD insensitivity issue. It is activated when e is
close to a given upper bound €,4. Since the sensitivity of KLD
becomes small when ¢ is near €4, we can directly compare
KLD through € = €4 using a bisection search on «. For each
«, the o-update (23) which converges very quickly is used
to find the best corresponding ¢ and KLD. This parameter
estimation procedure is summarized in Algorithm 1.

Algorithm 1 CSM Parameter Estimation
Input: Empirical distribution P(s); e-bound €pq
Output: Estimated 6 = (0, a,¢)” and o2

1: Initialize 8°) = 0,,;, F(0V) =0, A= -1, m=1

2: repeat > EM+ algorithm
3 QN update: 8 + 9~V 1 §

4; EM/KLD update: 8(6™), F(6™)
5: Broyden’s update: A + A + AA
6
7
8
9

=6 -6

KLD: D(™) = Dy (P(s) || P(s;0™))
: m<+—m+1
: until (KLD or 0‘ converges) or (m > M)

. Get @ = 0™ where m’ = = argmin,, D"

10: if |€ — €pq| < Ac then > e-bounded estimation
11: € < €pd

12: (a, 0) + e-bound estimated (apg, Opq)

13: end if

14: Get the estimated 02 + ao?

The default algorithm parameters in this paper are as follows:
maximum fitting iteration M = 15, initial CSM parameter
0 = (\/% k,1073) where s,,,4 is the mode of P(s), e-

bound criteria /e = 1073, and parameter range ¥ = {00 €
[1075,00), € [k,5k],e € [107° €pq)}. The convergence
condition is that the KLD is smaller than 10~° or o2 changes
by less than 0.1%. Note that ¥ is used to avoid unstable QN
updates and is defined sufficiently large such that only seldom
final results touch the boundaries. The only exception is the
€pg Which can be used to activate the e-bounded estimation.

B. Recursive local filter

It is shown that the conventional Yaroslavsky/bilateral filter
is equivalent to the first-iteration MAP/ML estimation Simply
applying more iterations with the same o2 indeed reduces
the energy function (6) but does not help for increasing
PSNR. Instead, because the image noise becomes smaller after
filtering, we propose a more reasonable alternative: apply the
model fitting and filtering recursively. Each iteration estimates
the NNM parameters for the current noisy image ¥ and
performs filtering on it with the estimated range variance
Er,%("). This process is terminated when the filter iteration
exceeds Ny, times or the estimated noise intensity & s
smaller than a threshold o.; which represents a clean image.

C. Recursive MNLM filter

The proposed recursive MNLM filter has three differences
from the recursive local one. First, the basic processing unit
becomes a patch, instead of a pixel, and a flag b,, decides
how to aggregate these patches into one image. If b, = 1,

each image pixel at position [ will be derived by averaging
all its corresponding values in neighboring estimated patches
Xl+b,b € B. Otherwise, no aggregation will be performed.
Second, the neighborhood for each patch is constructed dy-
namically based on some given constraints. Third, a DCT-
Wiener filter is introduced to increase the performance, which
is activated by a flag bg.¢.

The DCT-Wiener filter serves similarly as the residual filter in
PLOW [19]. We use the DCT, denoted as 7 (), to approximate
the decorrelation matrix and then apply element-wise Wiener
filtering to update the patch X,

X; T (Waie 0 T(X))), (28)
where the element of the shrinkage matrix W ;. is
~2
g il k!
(Wwie)i/j/k/ = = X'k (29)

2 =27
Ox,irje t 0]

and the signal variance is estimated from neighbors by

OA'g(ZJ/k/ = EleAl[(T(YEn)))Q/ "k/] — 52 and the noise

variance by o’l = EL due to weighted averaging. The
€A

recursive MNLM filter is summarized in Algorithm 2.

Algorithm 2 Recursive MNLM Filter
Input: Noisy image y; e-bound €p5; DCT-Wiener flag bg.;
Aggregation flag b,
Output: Denoised image z
1: Initialize y) =y, 2=y, n=1
2: repeat
3 Get empirical P(s) of (™) by constructing each A;
4: Get &,(.n), &) using parameter estimation
5
6

if (6(") > o,,) then
for each patch Y; in y(™) do

Wy
7: Get the estimation X; = Zlgl i
i€ VWL
Perform DCT-Weiner filtering with bg.;
: end for
10: Aggregate X; to form z(™ with bag
1: vt 5 g 3
12: end if
13: n<n+1

14: until (m > Nyy;) or (6" < 0y)

VI. EXPERIMENTS ON MODEL FITTING AND FILTERING

Extensive experiments will be given for showing the ro-
bustness and applicability of the proposed framework. There
are four major configuration groups: filter type/support size,
kernel function K, (), color channel number, and noise type.
For clarity, we use a default combination as the backbone and
mostly change one group at a time. The default configuration
is: bilateral 9 x 9 filter, Gaussian kernel (GK), true-color
images (k = 3), and AWGN. Twelve standard color images
of different properties are used in this default case with five
noise intensity values of o,. The details of all experimental
results can be found and browsed online!.

Uhttp://www.ee.nthu.edu.tw/chaotsung/nnm
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A. Test configuration setting

Six configurations for filter type/support size are tested:

1) YF-5x5: Yaroslavsky filter, A: 5x35, g = 0.1/1.0;

2) YF-9x9: Yaroslavsky filter, A: 9%x9, e,q = 0.1/1.0;

3) BF-9x9: Bilateral filter, A: 9%x9, €,q = 0.1/1.0;

4) BF-13x13: Bilateral filter, A: 13x13, g = 0.1/1.0;

5) MNLM-Simple: MNLM filter, ¢, = 0.1, bgetr = 0

(DCT-Wiener off), b,y = 0 (no aggregation);
6) MNLM-DCT: MNLM filter, €, = 1.0 (e-bound off),
bgct = 1 (DCT-Wiener on), b,y = 1 (one-pixel grid).

Two settings of €,q are tested for local filters. The basic
€pgd = 1.0 simply follows the definition in (5). In contrast,
the empirical €, = 0.1 will use the e-bounded estimation
for large . The distance-weighted kernel Kjy(-) of bilateral
filters is Gaussian, and the o4 is set to the radius of A, e.g.
oq =4 for A =9 x 9. The patch size for the MNLM filter is
9x9. For constructing MNLM neighborhood, we apply motion
estimation in a 31 x 31 search window around position ! and
choose the best ten candidates as A;. For filter termination,
the maximum iteration number Ny, is set to 3 and crfl set to
10.
To obtain the best 03 and the SURE estimation for comparison,
we perform a o2 scan (30 values) for each test condition. The
SURE-based method uses the noise variance 0%, 4, estimated
by MAD as done in [19] and is denoted as MAD+SURE. The
SURE formulation for generalized range-weighted kernels is
derived in Appendix A.

B. Yaroslavsky/Bilateral filter (GK, k = 3, AWGN)

Fig. 5 shows typical examples of the test results. The CSM
model can fit the long-tailed empirical distributions well no
matter when the noise is small or large. It also successfully
predicts that o should become larger as the noise intensity
oy, increases, while the conventional heuristics usually apply
a fixed value.

Table II lists the result of the default test configuration in
detail. MAD+SURE fails in two cases. One is for small o,
(e.g. 0,=5, Ist iteration) due to the inaccuracy of 0%, 4. The
other one is for the iterations after the first one (e.g. 0,,=50,
2nd iteration) because the noise is not Gaussian any more. In
contrast, the CSM estimation performs well in terms of both
PSNR and o2 accuracy in these two cases. It means that the
edge information can be well captured by the CSM model even
when the noise is small or becomes non-Gaussian. This useful
property also enables the proposed recursive scheme. Besides,
in other cases the CSM estimation shows similar performance
compared to the MAD+SURE. An interesting property can
also be found. The CSM estimation usually underestimates
the noise variance o2, which means it may mistake noises
for edges. In contrast, the MAD+SURE tends to overestimate
because the MAD may mistake edges for noises.

The execution time is also shown in Table II, which is
evaluated by running MATLAB (R2010b version) on a 3.4
GHz Intel Core i7 CPU (single-thread) with 8 MB cache. The
proposed method runs much faster than the MAD+SURE since
it does not require a o2 scan. Each iteration of it consists of

r

three steps: getting P(s), CSM fitting, and filtering. The first

and third steps take time proportionally to the image resolution
and filter support size (7.9 s and 6.5 s on average respectively).
In contrast, the fitting time depends on the EM+ iteration
numbers and whether the e-bounded estimation is turned on.
For larger noises, the fitting tends to be insensitive to KLLD, and
thus more time is required, e.g. 9.6 s on average for o,, = 50
(1st iteration) while only 3.5 s for o,, = 5. The percentage
of the fitting time will be smaller for larger images. Note that
MAD+SURE not only fails to predict in the recursive iterations
but also requires significantly higher computation complexity
due to the o2 scan.

The test results of Yaroslavsky and bilateral filters are sum-
marized in Table III. The MATLAB code of the proposed
recursive fitting and filtering for these tests is available online!.
For €, = 0.1, the CSM estimation performs comparably to
the SURE in the first iteration for large o, and outperforms
for small o,. Moreover, the proposed recursive fitting and
filtering can increase PSNR by up to 1.2 dB. As for ¢ = 1.0,
its first-iteration results are not as good as €pq = 0.1 for its
less accurate o2 estimation and higher KLD (due to KLD
insensitivity). However, the recursive filtering can recover its
quality drop and even make it slightly better than €, = 0.1
with a little more iterations. Therefore, the basic €,g = 1.0
gives slightly better quality when using recursive filtering, but
the empirical €4 = 0.1 may be preferred when only one or
fewer iterations are allowed. In the following, the ;g = 0.1
will be used, except for the performance-oriented MNLM-
DCT. It can also be found that the choice of o2 affects the
performance much more sensitively than that of A and d; ;,
which justifies the need of a good o2 estimator.

C. MNLM filter (GK, k = 3, AWGN)

The test results are summarized in Table IV. The MNLM-
Simple is directly inferred from the patch-based NNM vari-
ation, and the CSM estimation can track the J? well for
different o,, and in different iterations. The recursive MNLM-
Simple filter can increase PSNR by up to 3.9 dB. On the other
hand, the MNLM-DCT can provide better PSNR due to the
use of DCT-Wiener filtering, and it also terminates earlier.
Though less accurate, the CSM fitting still provides good
estimation of o2 for it. Note that the MAD+SURE cannot be
applied here because the neighborhood is dynamically derived.
For comparing the conventional NLM and MNLM, we also
tested NLM in form of (2) using a af scan. Its best PSNR
differs by less than 1% compared to MNLM-Simple, which
indicates NLM and MNLM have similar performance.

Two state-of-the-art denoising algorithms, CPLOW [19] and
CBM3D [27] (’C” stands for the versions for color images),
are also tested for comparison. The MAD-derived noise vari-
ance 02, ,p is used for them, and all other parameters are
set as default in the software provided by their authors23.
The CBM3D performs best due to the processing in sparse
representation and the good heuristic parameters. Our MNLM-
DCT outperforms the CPLOW which is the state-of-the-
art non-local filter, though sharing a similar flow. Besides

2BM3D: http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D.zip
3PLOW: https://users.soe.ucsc.edu/~priyam/PLOW/
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Fig. 5. BF-9%9 (e,q = 0.1, GK, k£ = 3, AWGN) for Lena with o, = 5, 20, and 50. The top row shows the model fitting of empirical distributions. The
bottom row presents the filtered results, where the best o2 is marked by a circle, CSM estimation by a cross, and MAD+SURE by a triangle.

TABLE 11
DETAILED RESULT FOR BF-9x9 (¢4 = 0.1, GK, k£ = 3, AWGN).

0,=5, 1st iteration 0,=20, 1st iteration
Image Best’ CSM Fitting MAD+SURE Best CSM Fitting MAD+SURE
T - - - -
PSNR 0,2 o «  KLp APS\R A‘Trj time rnp APSNR Ag,? time ||PSNR 62| o2 « KD APSNR Ag,?  time onp APSNR  Ag,?  time
(dB) (dB) (rel.)" (sec) (dB) (rel.) (sec) (dB) (dB) (rel.) (sec) (dB) (rel.) (sec)
Lena 37.4 117 322 53 0.0034 -0.2 45% 16.1 52.8 -1.6 303% 264.0 (| 30.9| 3812 | 341.1 7.4 0.0011 -0.2 -34% 17.8|448.8 -0.2 46% 251.8

Baboon | 35.0 98 70.5 3.0 0.0059 -0.8 115% 17.0( 193.8 -53 949% 297.2|| 263 | 1725 | 381.2 3.3 0.0011 -0.2 -27% 17.9]|646.2 -0.8 109% 325.9
Barbara | 37.3 130 262 3.8 0.0011 -0.1 -24% 22.4 71.8 -19 298% 519.3 || 28.7| 2356 | 326.8 4.6 0.0009 -04 -37% 24.8|501.5 -0.3 55% 548.1
Peppers | 36.7 92 40.4 5.7 0.0035 -0.7 149% 15.0 61.9 -2.1 539% 304.4 || 30.7| 4384 | 339.8 7.0 0.0020 -0.3 -45% 17.9|4488 -0.1 27% 298.6
F16 38.8 134 247 55 0.0040 0.0 2% 138 443 -1.1 202% 329.0|| 31.3| 3526 | 315.5 6.5 0.0024 -0.6 -42% 16.7|448.8 -0.1 46% 289.4
House 37.7 106 292 5.6 0.0042 -0.2 54% 59 443 -1.2 208% 89.7|| 30.8 | 3537 | 316.5 63 0.0043 -0.5 -43% 7.6|448.8 -0.1 46% 734
Kodim04 | 38.7 127 28.0 52 0.0113 0.0 15% 19.2 443 -1.0 147% 4829 || 31.0| 3280 | 347.2 8.1 0.0008 -0.1 -14% 2544235 -0.1 37% 480.9
Kodim08 | 37.3 127 31.1 39 0.0116 0.0 -5% 21.7| 118.7 -3.1 428% 468.5 || 27.9| 2101 | 332.7 4.3 0.0017 -0.3 -31% 25.6|586.1 -0.5 77% 4812
Kodim13 | 36.8 131 413 3.5 00224 0.0 10% 234 1465 -4.1 468% 485.8 || 27.4| 2023 | 373.2 4.8 0.0009 0.0 -11% 25.0]|615.8 -0.8 106% 478.6
Kodim19 | 38.5 133 26.7 52 0.0088 0.0 5% 18.3 528 -1.4 159% 440.0 [[ 29.9| 2744 | 3209 6.0 0.0018 -0.2 -30% 22.1|4748 -0.1 31% 458.6
Kodim22 | 38.0 124 304 48 0.0158 0.0 17% 21.3 528 -1.4 174% 4342 (] 29.9| 2860 | 3529 7.5 0.0008 0.0 -8% 23.6|4488 -0.1 38% 4445
Kodim23 | 40.3 180 25.0 6.5 0.0065 0.0 -10% 20.2 36.6 -0.7 127% 437.3 || 32.8| 4792|3275 84 0.0014 -04 -43% 23.7]|423.5 -0.1 24% 442.6
Average | 37.7 | 125 33.8 4.8 0.0082 -0.2 31% 17.9 76.7 -2.1 334% 379.4 || 29.8 | 3095 |339.6 6.2 0.0016 -0.3 -30% 20.7 |492.9 -0.3 53% 381.1

0,=50, 1st iteration 0,=50, 2nd iteration
Image Best CSM Fitting MAD+SURE Best CSM Fitting MAD+SURE
PSNR 0.2 o «  KLp JPS\R Ac,?  time Zrnp APSNR Ag,? time ||PSNR 62| o2 « KD APSNR Ag,?  time onp APSNR  Ag,?  time
(dB) (dB) (rel) (sec) (dB) (rel.) (sec) (dB) (dB) (rel.) (sec) (dB) (rel.) (sec)
Lena 26.6 | 55409 | 2216.3 14.3 0.0018 -0.2 -43% 20.1(2523.7 0.0 0% 295.7|| 27.5| 439 30.0 53 0.0106 -0.1 -64% 13.1| 239 -09 -97% 3144

Baboon | 21.6|17733|2459.3 10.4 0.0020 -0.1 44% 22.8|2836.9 -0.2 79% 330.6|| 21.5 69| 49.8 44 00134 -0.1 213% 134| 502 0.0 -64% 3522
Barbara | 23.7|25776 | 2306.5 11.8 0.0014 0.0 5% 27.3|2646.8 -0.1 62% 475.0 || 24.0 159 | 351 4.2 00072 0.0 -8% 223 381 -02 -89% 515.3
Peppers | 26.1 146991 | 2181.2 11.9 0.0018 -0.3 -45% 20.5|25849 0.0 16% 3069 || 27.2| 698 | 38.6 5.3 0.0091 -0.2 -70% 154 33.0 -12 -97% 292.0
Fl16 25.8 (38353 | 21204 104 0.0018 -0.3 -42% 20.4(2523.7 0.0 10% 307.5|| 27.0( 561 | 43.5 56 0.0083 -0.2 -57% 153| 41.6 -1.2 -96% 308.7
House 25.6 (39298 | 2172.6 10.8 0.0042 -0.2 -40% 11.8[2584.9 0.0 19% 72.8]|| 26.8 586 | 40.0 53 00072 -0.2 -64% 6.1| 39.6 -12 -97% 73.7
Kodim04 | 26.6 [ 54958 [ 2198.3 14.3 0.0015 -0.2 -43% 26.5|2523.7 0.0 0% 4579 || 27.5( 410 31.7 6.0 0.0132 -0.1 -54% 21.4| 224 -09 -96% 464.8
Kodim08 | 22.1 16971 | 2093.8 6.0 0.0018 -0.2 -26% 25.5|2772.8 -0.1 38% 454.7 || 22.9 668 | 98.8 4.5 0.0085 0.0 -33% 2431547 -0.7 -93% 477.4
Kodim13| 22.2|17463 | 21545 7.2 0.0016 0.0 -12% 29.8|2772.8 -0.1 38% 434.1 || 22.7 319 | 782 49 0.009 0.0 19% 22.7|101.6 -0.4 -88% 454.9
Kodim19 | 24.3 127073 [ 2098.1 8.9 0.0015 -0.1 -31% 29.6|2584.9 0.0 13% 4643 252| 419| 547 58 0.0082 0.0 -24% 209 56.8 -0.8 -93% 445.8
Kodim22 | 25.6 (43316 [ 2186.0 12.6 0.0015 -0.1 -37% 25.9|25849 0.0 26% 494.0(| 262| 320| 374 6.0 0.0123 0.0 -30% 19.8| 28.8 -0.6 -94% 430.4
Kodim23 | 27.2 152888 | 2115.5 12.2 0.0017 -0.4 -51% 28.3]|2523.7 0.0 0% 446.2 || 28.6| 709 | 39.2 6.6 0.0127 -0.2 -64% 23.6]| 29.7 -1.6 -97% 459.3
Average | 24.8 |36352 |2191.9 10.9 0.0019 -0.2 -27% 24.0 [2622.0 -0.1 25% 378.3 || 25.6 | 446 | 481 5.3 0.0100 -0.1 -20% 182 | 51.7 -0.8 -92% 382.4

* The PSNR and ai in the columns under "Best” are derived by the crz scan;
T APSNR is calculated by subtracting the best PSNR from the PSNR of CSM fitting or MAD+SURE;

2. . . : 2 2 2
f Aoy is presented in form of relative percentage, i.e. (0. — 07 best)/0r pest-



TABLE III
SUMMARY FOR YAROSLAVSKY/BILATERAL FILTERS (€54 = 0.1/1.0, GK,
k = 3, AWGN). THE NUMBERS REPRESENT THE CORRESPONDING
AVERAGES FOR THE TWELVE TEST IMAGES. THE RESULTS OF
€pd = 0.1/1.0 DIFFER ONLY FOR o, = 40/50.

Ist iteration Recursive filtering

TABLE V
SUMMARY FOR GENERALIZED KERNELS (BF-9x9, k = 3, AWGN).

1st iteration Recursive filtering

Best CSM Fitting MAD+SURE CSM Fitting
. | PSNR| KLD APSNR |Ac,?| |APSNR [Ad, 7| APSNR PSNR APSNRg,
n

(dB) [x10%) (dB) (rel) | dB) (rel.) (dB) (dB)  (dB)
5| 3770 82 02 38% | -2.1 334%| 1.0 -02 375 -

APSNR here is calculated by subtracting PSNR from the best first-iteration PSNR;
| Ac?| here is presented in form of relative percentage of absolute difference;
mm stands for the average number of iterations.

the CSM parameter optimization, one other reason is that
the CPLOW processes color channels separately while we
consider all channels jointly.

The visual comparison of CPLOW, CBM3D and MNLM-
DCT is shown in Fig. 6. The CPLOW has obvious color-
misalignment artifacts, while the CBM3D gives the best
quality for its processing in the sparse 3-D transform. The
MNLM-DCT has DCT-basis artifacts which result from the
usage of non-sparse 2-D transform. Except this issue, it can
deliver the same level of details as the CBM3D.

D. Range-weighted kernel (BF-9x9, k = 3, AWGN)

The kernel functions for K,.(-) in Table I are tested and
summarized in Table V. For the GGD4, Epanechnikov, Bi-
weight and Triweight kernels, the upper bound of « in the
fitting parameter range W is set to 20k for accommodating
larger range variance. The performance of these kernels is
very similar to the Gaussian one, and their estimated range
variances are also highly correlated as shown in Fig. 7. An
alternative way to estimate the corresponding o2 ratios is
by minimizing the L? distance to the Gaussian kernel. The
optimized ratios in this manner for the GGD4, Epanechnikov,
Biweight and Triweight kernels are 1.08, 1.87, 2.83 and 3.81
respectively, which differs from the linear coefficients in Fig.
7 by less than 0.3. This not only shows the adaptability of
CSM fitting but also suggests that those kernels can be used
interchangeably for denoising under the proposed framework.
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APSNR, |Ac?| and 7 have the same definitions as those in Table II;
APSNRgk is calculated by subtracting PSNR from the PSNR of the Gaussian kernel.
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Fig. 7. Correlation of estimated o2 between Gaussian and other kernels. The
Laplacian kernel is not shown for its lower R? value 0.9836.

In contrast, the Laplacian kernel has worse PSNR and higher
KLD, which indicates it is not suitable for bilateral filtering.

E. Hyperspectral image (BF-9x9, GK, AWGN)

We use the hyperspectral HYDICE* image for testing more
color channels. The test results for up to nine channels across
the available spectrum are shown in Table VI. One notable
effect as k increases is that the fitting KLLD goes up either,
and this is especially obvious for low-noise cases or the
iterations after the first one. It reflects the fact that there is
still inconsistency which cannot be modelled well by NNM

“https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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CPLOW (28.8 dB)

’

CPLOW (22.0 dB)

Noisy (0, = 50)

MNLM-DCT (22.6 dB)

Fig. 6. Visual comparison for the denoising results of CPLOW, CBM3D and MNLM-DCT in the case of large AWGN intensity o, = 50. The whole images
and cropped regions for Lena (top two rows) and Baboon (bottom two rows) are shown.

among the latent signals in different channels. To exclude the
fitting results with high KLD, we exit the recursive processing
when the KLD is higher than 0.3. Compared to using only
RGB channels (k = 3), the denoising performance using more
channels is better for high-noise cases (o, > 10) due to having
more information of intensity texture, and the range variance
is also well tracked. However, the performance for the low-
noise case (o, = 5) becomes worse because of the channel
inconsistency and thus the over-estimated range variance.

E Noise type (BF-9x9, GK, k = 3)

The assumption of Gaussian noise in the NNM (4) is for the
tractable formulations. However, we have also shown that the
CSM fitting still works well for the iterations after the first one,
i.e. when the noise is no more Gaussian. In the following, we
further apply other noise models to the twelve standard color
images to evaluate the effectiveness of our framework when
the model is not matched. The results are summarized in Table
VIIL.

For the uniform noise models, the CSM fitting performs sim-



TABLE IV
SUMMARY OF TEST RESULTS FOR MNLM FILTERS. THE RESULTS OF CPLOW AND CBM3D ARE GIVEN FOR REFERENCE.

MNLM Ist iteration 2nd iteration Recursive filtering
-Simple | Best CSM Fitting Best CSM Fitting CSM Fitting
o PSNR| | v APSNR, |A,?|[PSNR| | " APSNR, |Ac,”[] . APSNR, PSNR
(dB) (dB)  (rel.) | (dB) (dB)  (rel) (dB)  (dB)
5 36.5]0.0047 -02 38% 14  -03 362
10 32.5] 0.0008 0.2 29% 1.3 -02 323
20 28.5] 0.0005 -0.1  20%| 29.8]0.0048 -0.03 22%| 2.3 1.3 298
40 23.9 | 0.0002 0.0 39%| 26.6|0.0015 -0.04 29%| 3.0 32 271
50 22.2 | 0.0002 0.0  51%| 25.5]0.0008 -0.03 34%| 3.0 39 26.1
MNLM 1st iteration 2nd iteration Recursive filtering || CPLOW [ CBM3D
-DCT | Best CSM Fitting Best CSM Fitting CSM Fitting -MAD | -MAD
o, PSNR| | APSNR, |Ac,”|[PSNR| = APSNR, |Ac,?|) .~ APSNR, PSNR|[ PSNR | PSNR
(dB) (dB)  (rel) | (dB) (dB)  (rel.) (dB) (dB) (dB) (dB)
5 37.61 0.0047  -0.3 330% 1.0 -03 373 33.6 37.1
10 34.8(0.0008 -03 131% 1.0  -03 344 31.8 34.7
20 31.6|0.0012 -02 81% 1.0 -02 313 29.6 32.0
40 28.110.0003 -0.1 47%| 28.6|0.0107 -0.01 62%| 2.0 05 286 27.2 29.2
50 27.010.0004 -0.1 57%| 27.7]0.0068 -0.02 60%| 2.0 0.7 2717 26.4 28.3
APSNR; and APSNR are calculated by subtracting PSNR from the first-iteration and the second-iteration best PSNR respectively;
\Aafh and \Ao—f |2 present relative percentages of absolute difference for the first and second iterations respectively.
TABLE VI TABLE VII
SUMMARY FOR HYPERSPECTRAL HYDICE (BF-9x9, GK, AWGN). SUMMARY FOR DIFFERENT NOISE TYPES (BF-9x9, GK, k£ = 3).
1st iteration Recursive filtering 1st iteration Recursive filtering
Best CSM Fitting MAD+SURE CSM Fitting Best CSM Fitting MAD+SURE CSM Fitting
k |o, | PSNR| KLD aPSNR Ac,? |[APSNR  Ac,? APSNR PSNR APSNR,_, Noise Type PSNR| KLD APSNR |Ac,%| [APSNR |Ac,?| APSNR  PSNR
(dB) |[(x10%) (dB)  (rel) | (dB)  (rel) (dB)  (dB) (dB) (B) |(x10%) (@B)  (rel) | (dB)  (rel) (dB) (dB)
51 363(12.8 -0.1 -34% | -29 376%| 1.0 -0.1 36.2 - uUs 377 714 -0.2 42% 22 352%| 1.0 -0.2 375
10| 314 6.8 -03  -40% | -1.4 159%| 1.0 -0.3 31.1 - U20 298| 9.1 -0.1 21% | -0.7  113%| 2.0 0.4 30.1
3 |20 267| 23 -0.6  -44% | -0.5 74%| 2.0 -0.1 26.5 - Us0 248 13.6 -0.1 36% | -0.2 T9%| 2.2 0.5 253
40| 225( 1.8 0.0 -2% -0.2  46%| 3.0 0.2 22.7 - POS 329 6.9 -0.4 36% -0.4 67%| 1.2 -0.4 325
50| 2141 2.0 0.0 -4% -0.1  31%| 3.0 0.2 21.6 - SNP 252 86.1  -0.1 775% | -0.2 3460%| 1.0 -0.1 25.1

51 363|508 -03 62% | -3.2 435%| 1.0 -0.3 36.0 -0.1
10| 31.8|17.0 0.0 1% -1.6 174%| 1.0 0.0 31.8 0.7
5 |20 273| 76 00 -13%| -06 69%| 2.0 0.1 275 0.9
40| 229 69 0.1 21% | -0.1 30%| 2.0 0.0 229 0.2

50| 21.7] 64 0.0 20% | -0.1 36%| 3.0 0.1 21.8 0.2
51 3651637 -1.0 121%| -3.7 464%| 1.0 -1.0 355 -0.7
10| 320534 -02 44% | -1.7 197%| 1.0 -0.2 31.8 0.8

7 |20 276|143 0.0 7% -0.6  66%| 1.0 0.0 27.6 1.0
40| 23.1| 163 03 49% | -02 37%| 2.0 -0.4 228 0.1
50 218|138 -02 45% | -02 33%| 2.0 -0.2 21.6 0.0

51 3663033 -1.3 188%| -3.1 413%| 1.0 -1.3 353 -0.9
10| 323(111.0 -04 48% | -1.6 140%| 1.0 -0.4 31.8 0.8
9 20| 279|259 -0.1 25% | -0.6 62%| 1.0 -0.1 27.8 12
40| 235|150 -0.1 31% | 0.2 37%| 1.0 -0.1 23.4 0.7
50| 2221157 -0.1 26% | -0.1  22%| 2.0 -0.1 22.1 0.5

For each case, the first k& channels are selected from this set (in wavelength, nm):
{459(blue), 504(green), 759(red), 401, 953, 1175, 1768, 2200, 2473}.

ilarly well compared to the corresponding cases of Gaussian
noises in Table V, while the MAD+SURE becomes worse for
both PSNR and the accuracy of af. For the Poisson noise,
the performance of the two methods is similar on average.
Regarding the salt and pepper noise, which the bilateral filter
is not good at, the CSM fitting happens to suggest small range
variances because it treats the sparkles as intensity edges. In
contrast, the MAD+SURE still suggests higher range variances
and leads to more blurry images. The above experiments
demonstrate the robustness of the proposed framework across
different noise models.

U5/U20/U50: Uniform noise with standard deviation 5/20/50;
POS: Poisson noise with the pixel value as the number of photons;
SNP: Salt and pepper noise with 1% density.

G. Natural image gradient (GK, k = 3)

Given the definition of the observable s with the simplest
four-connected neighborhood, the NNM is then equivalent to
a model for image gradients. For noisy images, the CSM can
fit as well as YF-5x5 and YF-9%x9 do. A more interesting
question is how the CSM fitting performs for natural images
since image noise is inevitable during picture capturing. We
summarize the fitting results for the test color images in Table
VIII and show the best and worst cases in Fig. 8. Generally
speaking, the main bodies, where P(s) > 10~%, can be fit
well, but the tails of the CSM drop faster than the heavy tails
of the empirical distributions. Therefore, if the deviation of the
tails is acceptable, the proposed framework can be applied to
modelling natural images and also inferring novel algorithms
which use gradients as important cues.

VII. DISCUSSION
A. Robustness of CSM fitting over SURE

The robustness of CSM fitting over SURE mainly comes
from its independent MAP framework for each range weight
wy;. It estimates the range variance based on a simple as-
sumption, range kernel K,.(z) is invertible, and decouples
itself from the following ML estimation for the adaptive filter



TABLE VIII
SUMMARY FOR CSM FITTING TO COLOR-IMAGE GRADIENTS
(FOUR-CONNECTED NEIGHBORHOOD, GK, k = 3).

Image a? a KLD
Lena 7.2 4.6  0.0293
Baboon 37.6 3.1 0.0265
Barbara 33 4.0  0.0420
Peppers 18.6 6.0 0.0271
F16 1.9 49  0.1098
House 3.0 43 0.1711
Kodim04 1.3 4.0 0.0878
Kodim08 2.7 41  0.1269
Kodim13 2.5 3.0 0.1135
Kodim19 1.9 47 0.0935
Kodim22 22 4.0 0.0852
Kodim23 1.4 5.6 0.0999
Average 7.0 4.4 0.0844

Color image gradient; baboon
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Fig. 8. CSM fitting results for natural image gradients.

kernel. Therefore, it works well even when the neighborhood
is dynamically allocated for the non-local filters. On the
other hand, the SURE-based method explicitly relies on the
weakly differentiable filter kernel assumption to derive an
accurate risk estimation, so it fails in this case. Similarly, the
SURE accuracy also counts on the independent Gaussian noise
assumption, and thus it does not work for the filtered images
in which the noise is neither independent nor Gaussian. In
contrast, the MAP estimation for the CSM fitting is accurate
as long as the fitting is good with a small KLD value.

B. Limitations of this framework

The effectiveness of the proposed framework depends on if
the empirical distribution P(s) can be explained well by the
CSM model. And we use KLD as the numerical assessment
for this explanatory capability. The denoising experiments
in Section VI work well thanks to their small KLD values.
However, this framework may fail if KLD is large, i.e. CSM
cannot fit P(s) well. For example, this may happen when a

very large neighborhood size |A| is used for local or non-
local filters. Therefore, examining the KLD value is necessary
before applying this framework to a specific problem.

C. Possible future extensions

Range-weighted formulation is a very useful and widely
adopted tool in many computer vision and signal processing
problems, but mostly applied in an intuitional way. This
paper presents how to systematically solve this formulation
for the denoising problem in an empirical Bayesian way. We
believe that this approach can be extended to many other
algorithms using similar range-weighted formulation, such as
cross bilateral filter [4] and stereo matching (especially for
[5] and more recently [32], [33]). Besides, we show that the
NNM can capture the statistics of the image gradient in Section
VI-G. Thus, this framework can also be extended to construct
image prior and estimate its parameters for regularization
of image restoration problems, e.g. for those using sparse
representation.

VIII. CONCLUSION

In this paper, we propose and study a unified empirical

Bayesian framework which can both infer the neighborhood
filters and estimate the range variance. With the neighbor-
hood noise model, we show that the Yaroslavsky, bilateral,
and MNLM filters can be derived by joint MAP and ML
optimization. We also present an EM+ algorithm for parameter
estimation via fitting the observable CSM. The extensive ex-
perimental results on image denoising show the effectiveness
and robustness for a variety of application scenarios. The noisy
images can be fit well and the range variance can be tracked as
accurate as the multi-pass SURE-based method. Moreover, the
CSM fitting also works for filtered images, and this enables a
recursive filtering scheme and improves PSNR.
Instead of heuristic tuning for the essential range variance,
the proposed framework can be used to build efficient filters
automatically for different constraints, e.g. different filter
types/supports, patch sizes, and color channel numbers. It can
also be expected that it will be applied to other range-weighted
algorithms by formulating the corresponding likelihood func-
tions or modelling the image gradients. Therefore, we believe
that it will help many computer vision and signal processing
problems be solved in an empirical Bayesian way, instead of
an intuitive way.

APPENDIX A
SURE FOR GENERALIZED KERNEL K.(z)

By extending the analytical expressions of [22] for the local

filter and k-channel signals in (1), we have

1 20’2 821 .
SURE = — —7 |2 —0?+ =— e
RODI R D D
leT leZ,ceX ’
(30)
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where Z represents the pixel array, I = |Z|, K = {1,2, .., k},
and Wy = 7. cp, wiidii. Given wy; = Kp(x = w)
and r(w) = — K/ (K '(w)), we can have

I3

Owr — A
wi,; _ K,(ﬂf) Yl,c Yi,c _ T(wl,i)yz,c 2yl,c. (32)

i " o2 o2
Then combining the above equations gives the SURE formu-
lation for generalized kernels:

1 .
SURE = H Z H Y — 27 ||§ *dl,l . 0'2
leT
202 1
(),

2
[ W \ko?

(33)

where p; £ ZiEAz,ceK dl,ir(wl,z’)(yi,c - yl,c)(yi,c - él,c)- The
cases of r(w) used in this paper can be found in Table 1.
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