Neighborhood Filtering

Range-weighted filters preserve edges but
are devised intuitionally, e.g. bilateral filter:
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Challenge and Contribution
Challenge

» Hard to build statistical model because the range weight w Is
linked to the noisy signal y adaptively

Novelty

» Introduce a soft-edge random variable to infer the Gaussian
range weight by MAP

> Formulate the [%-norm of pixel difference in observable chi
scale mixtures (CSM) to enable model fitting

Contribution
» Develop a unified empirical Bayesian framework to

1. Infer neighborhood filters (Property Reasoning)

2. Estimate ¢,-% by model fitting (Parameter Estimation)
» Enable an iterative filtering scheme to improve performance
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Noise Model and Inference
Neighborhood noise model

» Model neighbors in Gaussian scale mixture
ng;
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» Define soft-edge prior distribution as
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Bayesian inference
» First-iteration estimation for maximizing the posterior equals to

1. MAP estimation for each w;; = Range Weight (6,* = ao?)
2. ML estimation for z; = Weighted Average

» Robust likelihood functions considering
 Proximity = Bilateral filter
« Patch similarity = Modified non-local means filter

CSM fitting —

-/ CSM Parameter |-
» Formulate CSM = sui =l yi =i lla~ “V w. %k | o:noise intensity

> Fit empirical P(s) to estimate (o, ¢, @) ¢, a: edge distribution

Examples of Model Distributions
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f.n(w) leans left (more edges)
fs(s) has thicker tail
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CSM fitting:
g, a for the shape
o for the scale
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Experiments on Denoising

Datasets: Twelve standard test images (RGB color) + AWGN (a,)
Evaluation: Compare PSNR and ¢.-% accuracy to

1) Best result by scanning o,

2) MAD+SURE: State-of-the-art (multi-pass) estimator

Bilateral filter (9x9)
» Individual fitting results
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» Average fitting results (and iterative filtering)

1st iteration

2nd jteration
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CSM fitting even good for non-Gaussian noise, which enables the
iterative filtering and improves PSNR by up to 1 dB.
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More results and further extensions

(incl. different filter/kernel/noise, multispectral image, image gradient)



