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Fast Distribution Fitting for Parameter Estimation of
Range-Weighted Neighborhood Filters

Chao-Tsung Huang, Member, IEEE

Abstract—The range variance of neighborhood filters is well
estimated via distribution fitting of a chi scale mixtures model
proposed in our previous work. However, it introduced com-
putation overheads for deriving empirical distributions and
performing iterative fitting. In this letter, we discuss how to
greatly reduce the overheads for practical usage while main-
taining denoising quality. For empirical distributions, a grid-
subsampling strategy is adopted for acceleration. Regarding
distribution fitting, two different methods are studied: equal-
frequency merged distribution and L-moment fitting. The former
reformulates the fitting process into entropy optimization for only
few merged bins. It provides 6-13x speedup for model fitting with
negligible quality loss and 9-20x speedup with ≤0.1 dB PSNR
drop by using 20 and 10 bins respectively. The latter performs
table lookup of L-moments, instead of conventional moments,
for robust fitting of heavy-tailed distributions. The fitting time
then becomes negligible with ≤0.2 dB drop in most cases, e.g. the
overall run time for bilateral 9×9 filtering can be thus accelerated
by around 6x. Experiments on bilateral and non-local means
filters are also given to show the speedup, quality and robustness.

Index Terms—Bilateral filter, non-local means, denoising, em-
pirical Bayesian, L-moment, parameter estimation.

I. INTRODUCTION

Range-weighted formulation provides simple and effective
neighborhood filters for edge-preserved denoising, especially
the bilateral filter [1] and non-local means (NLM) [2]. Many
extensions were proposed for computer vision applications,
and the reader is referred to [3] for more details. Its general
form can be expressed using adaptive weighted averaging:

ẑl =

∑
i∈Λl

wl,idl,i · yi∑
i∈Λl

wl,idl,i
, (1)

where y and ẑ are the observed and filtered signals respec-
tively, and Λl represents the neighborhood of the pixel at
position l. The kernels wl,i and dl,i represent the adaptive
weights for intensity range and pixel distance respectively. For
the bilateral filter, the range-weighted wl,i = Kr(

‖yl−yi‖22
2σ2

r
)

adapts to pixel similarity for edge preservation. For the NLM,
the pixel differences are replaced by patch differences for
robustness. A conventional choice of the kernel Kr(·) is
Gaussian function, and the performance is controlled by the
range variance σ2

r . The filtered result will be over blurred or
still noisy if it is too large or too small. Therefore, how to
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Fig. 1. Comparison of average execution time per image for the first-iteration
bilateral 9×9 filter (BF-9×9). Twelve standard images are tested. Detailed
results are listed in Table II in Section III. EFM-20/10 stands for the proposed
equal-frequency merged distribution fitting with 20/10 bins. Grid-subsampled
probability mass functions are used for all the proposed methods.

estimate the best σ2
r is an important issue in practice.

A general approach of parameter estimation is the Stein’s unbi-
ased risk estimate (SURE) [4], [5], [6], [7]. Due to theoretical
limitations, it only works when the following assumptions
hold: independent Gaussian noise and a weakly differentiable
kernel. It provides unbiased estimation of the mean squared
error (MSE) from noisy and filtered images. The optimal
parameters can then be selected based on the filtered results
using different parameter combinations. Though accurate, the
complexity is quite high because each combination needs to
filter the image separately.
In our previous work [8], we proposed a neighborhood noise
model for specifically reasoning the range-weighted filters
and also accurately estimating the range variance σ2

r . An
expectation-maximization-plus (EM+) algorithm was devised
for parameter estimation by iteratively fitting the empirical
distributions of pixel differences to a chi scale mixtures (CSM)
model. Fig. 1 shows an example of the speed advantage
over SURE. In addition, it can overcome the theoretical
limitations of SURE and thus enables iterative filtering to
improve denoising quality and also parameter estimation for
non-differentiable kernels, e.g. NLM with motion estimation.
However, the computation overhead introduced by the direct
EM+ fitting is significant compared to the filtering itself. As
shown in Fig. 1, deriving the probability mass function (PMF)
and performing the iterative fitting may take 0.9 and 6.3
seconds respectively while the filtering only needs 1.4 seconds.
In this letter, we aim to reduce the overhead to a sufficiently
small extent for practical usage. In Section II, a grid-sampling
strategy will be presented first for speeding up the PMF
derivation, and then two different methods will be proposed
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for accelerating the distribution fitting. One merges the PMF
into only few equal-frequency bins to speed up the EM+
fitting. And the other one uses moment fitting of L-moments
[9], [10], [11] which are robust for heavy-tailed distributions.
Experimental results on true-color image denoising will be
given in Section III, and conclusion remarks in Section IV.

II. FAST CSM FITTING

In [8], we built an observable CSM model for the pixel
difference sl,i ,‖ yl − yi ‖2 with a marginal distribution

fs(s;σ, ε, α) =

∫ 1

ε

fs,w(s, w;σ, ε, α) dw, (2)

where fs,w is a chi distribution scaled by a hidden random
variable w, and σ and (ε, α) are the scale and shape parameters
respectively. The range variance σ2

r is equal to ασ2. The EM+
fitting was then developed to iteratively optimize the Kullback-
Leibler divergence (KLD) between the empirical distribution
P (s) and the estimated P̃ (s;σ, ε, α). Its complexity issue
results from that the marginal distribution fs(s) and its partial
derivatives have no analytical expressions. Therefore, many
numerical integrals are required in each iteration. In the
following, we will discuss how to accelerate the fitting process.

A. Grid-subsampled empirical distribution

The naive way in [8] to derive P (s) for the bilateral filter
is accumulating the histogram of all sl,i. The complexity is
then of the same order as the filtering: O(|Λ||I|) where I
is the pixel set of the whole image. In this letter, we apply a
grid-subsampling strategy that only samples l at grid positions
such that their neighborhood Λl are mutually exclusive and
collectively exhaustive. Then the complexity becomes only
O(|I|), and the collected P (s) still includes information from
all pixels. Similarly, for the NLM we sample l such that their
center patches are exclusive and exhaustive.

B. Equal-frequency merging (EFM) for distribution fitting

The complexity of the EM+ fitting is independent of image
resolution and, instead, mainly related to the histogram bin
number. For the empirical P (sj), we can merge the bins sj
into T different and contiguous intervals S0,S1, ...,ST−1, and
each one has the discrete probability Pt =

∑
sj∈St

P (sj).
Suppose a probability density function p(s) is behind the
PMF P (s). Then we can find a representative s∗t in each
interval such that p(s∗t ) = Pt/|St| according to the mean value
theorem.
Distribution fitting can be performed by minimizing the KLD
between the merged Pt and an estimated P̃t = fs(s

∗
t ) · |St|.

This is equivalent to minimizing
∑
t−Pt log fs(s

∗
t ) which

exactly can be optimized by the EM+ fitting. The bin merging
accelerates the fitting process by reducing the number of
numerical integrals proportionally.
To find the representative s∗t for each interval, we approx-
imated the p(s) by polynomial fitting on logP (s). A high
polynomial degree may be preferred to reduce fitting error,
but overfitting should be avoided because the empirical P (s)
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Fig. 2. Average KLD between P (s) and P̃ (s) versus degree of polynomial
fitting (EFM, T = 10) for the twelve tested images with different noise
intensities σn.
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Fig. 3. Density functions of bin merging (T = 10) for BF-9×9 on Barbara
with noise intensity σn = 5.

is noisy. On the other hand, a low degree could be sufficient
since the distribution fs(s) is unimodal and varies smoothly.
This tradeoff was verified by the experiments in Fig. 2. As a
result, we chose the degree 5 for its balanced performance.
The last issue is how to merge the bins. A conventional way
is the equal-width merging (EWM), i.e. equal |St|. Instead,
we used the EFM approach, i.e. equal Pt, because the most
information can be preserved in terms of discrete entropy.
Fig. 3 shows an example of the advantage. The EFM keeps
details near the density peak even when T is small, while the
EWM loses too much information there. Therefore, given the
same fitting quality the EFM can use a smaller T to provide
more speedup. Note that if T is too small (e.g. T = 5), the
proposed EFM will still fail for two reasons: the polynomial
fitting cannot fit long intervals well, and too little information
about P (s) is preserved.

C. L-moment fitting

A much faster way for distribution fitting is to compare and
match moments, but the common moments cannot perform
well due to their instability for the heavy-tailed fs(s). In
contrast, the L-moments remain viable for fs(s) and can be
used for the fitting. They are formed by the expected values
of order statistics, e.g. λ2 = 1

2E[X2:2 − X1:2] where Xj:n

denotes the jth smallest element of a random sample of size
n drawn from fX(x) [11]. And in a more general form, the
trimmed L-moments discard the first a and the last b elements
of the random sample, e.g. λ(a,b)

2 .
In this work, we use the L-moment ratios τ (0,b)

r , λ
(0,b)
r /λ

(0,b)
2

to fit the shape parameters (ε, α) and then the L-moment λ2 for
the scale parameter σ. For a 2-D grid of (ε, α), the τ (0,b)

r and
λ2 of CSM distributions fs(s;σ = 1, ε, α) are precalculated
and stored in tables, e.g. τ3(ε, α). Then the estimated (ε̂, α̂) can
be found by table lookup for the empirical L-moment ratios,
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TABLE I
R2 OF y = x FITTING FOR EMPIRICAL AND CSM-FITTED L-MOMENTS

e.g. τ3[P (s)], and the estimated σ̂ is derived as the ratio of
the empirical λ2[P (s)] to the estimated λ2(ε̂, α̂).
The fitting accuracy depends on if the L-moments and ratios
of fs(s;σ, ε, α) can match those of the empirical P (s) well,
i.e. how accurately a simple y = x can fit them. Table I
shows the fitness in terms of R2 values for the first-iteration
BF-9×9 on tested noisy images. While the λ2 shows great
predictability, the performance of the ratios τ (0,b)

r is varied
in different cases of noise intensity σn. Also, we observed
that for each τ

(0,b)
r (ε, α) the valley of the absolute gradient,

or insensitive area, locates at different regions. Therefore, the
fitting accuracy and robustness of each ratio are related to the
latent (σ, ε, α), which leads to a chicken-and-egg situation.
To address the accuracy and robustness issues, we adopted
a confidence-based approach. Two possible sets of (ε̂, α̂) are
first estimated using (τ3, τ4) and (τ

(0,1)
3 , τ

(0,2)
3 ), respectively,

and they are also accompanied with corresponding confidence
values. The one with the highest confidence is then chosen and
used to derive σ̂ via the table of λ2. In this work, we used
paraboloid approximation to refine (ε̂, α̂) from the table grid
and applied Gaussian curvature to measure the confidence.
For simplicity, only the case of using (τ3, τ4) is detailed in the
following. The tables of τ3 and τ4 are discretely 2-D indexed,
and so are the corresponding ε, α and λ2. Given the empirical
τ3[P (s)] and τ4[P (s)], the best index (m,n) can be chosen
by minimizing the cost E in L2-norm:

Em,n =‖ (τ3[P (s)], τ4[P (s)])− (τ3, τ4)m,n ‖2, (3)
(m,n) = arg min

m′,n′
Em′,n′ . (4)

Then we use a paraboloid to fit the cost E locally at the (m,n)
and have the fractional refinement

4m =
Em−1,n − Em+1,n

2A
,4n =

Em,n−1 − Em,n+1

2B
, (5)

where A = Em−1,n − 2Em,n + Em+1,n and B = Em,n−1 −
2Em,n + Em,n+1. The confidence can be derived as AB by
the definition of Gaussian curvature. Finally, the refined ε̂, α̂
and λ2(ε̂, α̂) are bilinearly interpolated from the 2-D tables.

III. EXPERIMENTAL RESULTS

The bilateral filter, BF-9×9, and modified NLM filter,
MNLM-DCT, are tested using the same twelve standard true-
color images in [8] with the Gaussian kernel Kr(·). The EFM
fitting is tested in two conditions: EFM-20 and EFM-10 for
bin numbers T = 20 and 10 respectively. The L-moments
are calculated using the representation of quantile function
in [11] and the piecewise linear cumulative density functions
approximated by the PMFs. The tables of the L-moments and
ratios of the CSM distributions were generated in a dense 2-
D grid (α = [3 : 0.125 : 14], ε = 10[−4:0.125:−1]). The test

TABLE II
COMPARISON OF DISTRIBUTION FITTING METHODS (BF-9×9, AWGN)

4PSNR is the difference from the best first-iteration PSNR;
|4σ2

r | is in form of relative percentage of absolute difference;
m̄ stands for the average number of filtering iterations;

4EM+ is the PSNR difference from the result using direct EM+ fitting.

platform was MATLAB R2010b on a 3.4 GHz CPU with 8
MB cache, and the MATLAB code was optimized by multicore
processing and vectorization.

A. Bilateral 9×9 filter

The averaged results for BF-9×9 with additive white Gaus-
sian noise (AWGN) are summarized in Table II, and the direct
EM+ fitting, if used, dominates the total execution time. The
proposed grid-subsampling strategy can save the computation
time of PMF derivation from 0.9 to 0.1 s. The EFM-20 fitting
provides nearly the same results as the direct EM+ fitting
and accelerates the fitting time by 6-13x. The speedup can
be increased to 9-20x by using the EFM-10 fitting, but a 0.1
dB PSNR drop is possible. The L-moment fitting can achieve
a nearly negligible fitting time, 0.003 s, and the quality drop
is about 0.2 dB for the small noise intensity σn = 5 and
around 0.1 dB for larger σn. More experimental details and
also the MATLAB code of the proposed fast fitting methods
are available online1.
To examine the quality issues for the L-moment and EFM-10
fitting, we show two examples of fitting and filtering in Fig. 4.
For the small noise intensity σn = 5 on the left column, the L-
moment fitting is not accurate. This is because it relies on the
similarity between the empirical distribution and CSM, but the
optimal KLD between them is high in this case. The situation
is different for large noise intensities, e.g. σn = 50, for which
the KLD is small but its sensitivity is low as discussed in [8].
The results show that the L-moment fitting tends to estimate
larger range variances. On the contrary, the EFM-10 fitting
often provides smaller ones because the long tails are not well

1http://www.ee.nthu.edu.tw/chaotsung/fast fitting

http://www.ee.nthu.edu.tw/chaotsung/fast_fitting
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Fig. 4. Examples of BF-9×9 results. The top row shows the fast model fitting
of empirical distributions, and the bottom presents the filtering results.

TABLE III
SUMMARY FOR DIFFERENT NOISE TYPES (BF-9×9)

U5/U20/U50: Uniform noise with standard deviation 5/20/50;
POS: Poisson noise with the pixel value as the number of photons;

SNP: Salt and pepper noise with 1% density.

captured using only 10 bins.
Other noise types were also tested and summarized in Table
III. The EFM methods perform well and show robustness in
practice. The L-moment fitting also has similar results to the
AWGN case, except for the uniform noise of intensity 20. In
that case, the resulting KLD is usually high, and the estimated
range variance in the first iteration is usually too large to turn
on the second iteration.

B. MNLM-DCT filter

Considering practical usage, we overlapped the patches by
every other pixel and reduced the search window to 21×21 for

TABLE IV
SUMMARY FOR THE MNLM-DCT FILTER

an 8x speedup (with ≤ 0.1 dB drop) for the filtering process
compared to [8]. The fast algorithm using an integral image
in [12] was also implemented. The results are summarized in
Table IV. The proposed grid-subsampling strategy reduces the
PMF derivation time from 10.2 to 3.6 s. The EFM-20 fitting
provides very similar results compared to the direct EM+
fitting, which again demonstrates that the grid-subsampling
and 20 merged bins are sufficient for the CSM fitting. The
EFM-10 fitting performs even better, about 0.1 dB gain, for
its smaller range variances which are preferred for the DCT-
Wiener filter. In contrast, the quality degradation for using the
L-moment fitting can be up to 0.3 dB because larger range
variances are often inferred.

IV. CONCLUSION

In this letter, we study how to accelerate the CSM fitting
process while maintaining the denoising quality. The com-
plexity overheads consist of PMF derivation and distribution
fitting. The grid-subsampling strategy reduces the PMF deriva-
tion time greatly, e.g. from 0.9 to 0.1 s for the BF-9×9
and from 10.2 to 3.6 s for the MNLM-DCT. Regarding the
distribution fitting, the direct EM+ fitting could dominate the
total execution time, and the proposed EFM fitting can achieve
6-12x and 9-20x speedup by using 20 and 10 bins respectively.
An even faster approach is the confidence-based L-moment
fitting via table lookup and paraboloid refinement. The fitting
time becomes as negligibly small as 0.003 s with ≤0.2 dB
drop in most cases.
This work not only enhances the applicability of the CSM
fitting but also provides some heuristics on practical usage.
For example, the EFM-10 fitting is especially suitable for the
MNLM-DCT. And the L-moment fitting is useful when the
computing resource is limited or only one single filter iteration
is allowed. We also believe that the proposed approaches can
be extended to fit other heavy-tailed distributions which have
no analytical expressions in a fast and robust way.
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