EE565000 Stochastic Process

Homework #4 2008

TA: Chien-Tien Wu

1. Since \mathcal{E} is well-defined,

$$|\mathcal{E}(X)| = |\mathcal{E}(X^+) - \mathcal{E}(X^-)| \le \mathcal{E}(X^+) + \mathcal{E}(X^-) = \mathcal{E}(|X|).$$

- 2. X is an r.v. with finite expectation.
 - (a) We assume that $\mathcal{E}(|X|) > 0$.
 - (i) Since $1_{(X \in B)}|X|$ is a non-negative r.v., $\mathcal{E}(1_{(X \in B)}) \ge 0$ and by Corollary 1.4.10, $\mathcal{E}(1_{(X \in B)}) < +\infty$, we have

$$0 \le |\mu|(B) = \frac{\mathcal{E}(1_{(X \in B)}|X|)}{\mathcal{E}(|X|)} < +\infty.$$

(ii) Let $B_1, B_2...$ be disjoint Borel sets, by Theorem 1.4.9,

$$|\mu|(\cup_{n=1}^{\infty} B_n) = \frac{\mathcal{E}(1_{(X \in \cup_{n=1}^{\infty} B_n)} \cdot |X|)}{\mathcal{E}(|X|)} = \frac{\sum_{n=1}^{\infty} \mathcal{E}(1_{(X \in B_n)} \cdot |X|)}{\mathcal{E}(|X|)} = \sum_{n=1}^{\infty} |\mu|(B_n).$$

(iii)
$$|\mu|(R) = \frac{\mathcal{E}(1_{(X \in R)} \cdot |X|)}{\mathcal{E}(|X|)} = \frac{\mathcal{E}(|X|)}{\mathcal{E}(|X|)} = 1.$$

Hence, $|\mu|$ is a probability measure on (R, \mathcal{B}) .

(b) We first assume that $\mathcal{E}(|X|) > 0$. From (a), $|\mu|$ is a probability measure, by the monotone property,

$$B_n \downarrow \phi \implies |\mu|(B_n) = \frac{\mathcal{E}(1_{(X \in B_n)} \cdot |X|)}{\mathcal{E}(|X|)} \to |\mu|(\phi) = 0 \text{ as } n \to \infty,$$

i.e.

$$\lim_{n \to \infty} \mathcal{E}(1_{(X \in B_n)} \cdot |X|) = 0.$$

By Exercise 1 in above,

$$0 \le \lim_{n \to \infty} |\mathcal{E}(1_{(X \in B_n)} \cdot X)| \le \lim_{n \to \infty} \mathcal{E}(|1_{(X \in B_n)} \cdot X|) = \lim_{n \to \infty} \mathcal{E}(1_{(X \in B_n)} \cdot |X|) = 0,$$

which implies

$$\lim_{n \to \infty} \mathcal{E}(1_{(X \in B_n)} \cdot X) = 0.$$

If $\mathcal{E}(|X|) = 0$, by Exercise 1 in above,

$$0 \le |\mathcal{E}(1_{(X \in B_n)} \cdot X)| \le \mathcal{E}(1_{(X \in B_n)} \cdot |X|) \le \mathcal{E}(|X|) = 0$$

i.e.

$$\mathcal{E}(1_{(X \in B_n)} \cdot X) = 0, \quad \forall \ n \Rightarrow \lim_{n \to \infty} \mathcal{E}(1_{(X \in B_n)} \cdot X) = 0.$$

(c) Let $\{t_n\}$ be a sequence of real numbers s.t. $t_1 \leq t_2 \leq t_3, \ldots$ and $t_n \to \infty$ as $n \to \infty$. Since $B_n = (t_n, \infty) \downarrow \phi$, by (b), we have $\lim_{n \to \infty} \mathcal{E}(1_{(X \in B_n)} \cdot X) = 0$. Moreover,

$$\mathcal{E}(1_{(X \in B_n)} \cdot X) = \mathcal{E}(1_{(X > t_n)} \cdot X) \ge \mathcal{E}(1_{(X > t_n)} \cdot t_n)$$

 $\Rightarrow 0 \leq \liminf_{n} \mathcal{E}(1_{(X>t_n)} \cdot t_n) \leq \lim_{n} \sup_{n} \mathcal{E}(1_{(X>t_n)} \cdot t_n) \leq \lim_{n} \sup_{n} \mathcal{E}(1_{(X\in B_n)} \cdot X) = 0.$

Since $\{t_n\}$ is an arbitrary increasing sequence s.t. $t_n \to \infty$ as $n \to \infty$, we have

$$0 = \lim_{t \to \infty} \mathcal{E}(1_{(X>t)} \cdot t) = \lim_{t \to \infty} (t \cdot \mathcal{E}(1_{(X>t)})) = \lim_{t \to \infty} (t \cdot \mathcal{P}(X>t)).$$

Now, consider Y = -X. Then as proved in above,

$$\lim_{t \to \infty} t \cdot \mathcal{P}(Y > t) = 0$$

Let t = -s. Then,

$$0 = \lim_{s \to -\infty} (-s) \mathcal{P}(-X > -s) = -\lim_{s \to -\infty} s \cdot \mathcal{P}(X < s),$$

and we have

$$\lim_{t \to -\infty} t \cdot \mathcal{P}(X < t) = 0.$$

With similar argument, we have

$$\lim_{t \to \infty} t \cdot \mathcal{P}(X \ge t) = \lim_{t \to -\infty} t \cdot \mathcal{P}(X \le t)$$

3. (a) Let X be a non-negative simple r.v. belonging to $\{\Lambda_j; x_j\}_{j=1}^n$. Then

$$\mathcal{E}(X) = \sum_{j=1}^{n} x_j \mathcal{P}(\Lambda_j).$$

With loss of generality, we assume $0 \le x_1 < x_2 < \ldots < x_n$, then

$$\mathcal{E}(X) = \sum_{j=1}^{n} x_{j} \mathcal{P}(\Lambda_{j})$$

$$= x_{1} + (x_{2} - x_{1}) \mathcal{P}(\Omega \setminus \Lambda_{1}) + \dots + (x_{n} - x_{n-1}) \mathcal{P}(\Omega \setminus \bigcup_{i=1}^{n-1} \Lambda_{i})$$

$$= x_{1} + \int_{[x_{1}, x_{2})} \mathcal{P}(X > t) dt + \dots + \int_{[x_{n} - 1, x_{n})} \mathcal{P}(X > t) dt$$

$$= \int_{[0, x_{1})} \mathcal{P}(X > t) dt + \int_{[x_{1}, x_{2})} \mathcal{P}(X > t) dt + \dots$$

$$+ \int_{[x_{n-1}, x_{n})} \mathcal{P}(X > t) dt + \int_{[x_{n}, \infty)} \mathcal{P}(X > t) dt.$$

$$= \int_{0}^{\infty} \mathcal{P}(X > t) dt$$

$$= \int_{0}^{\infty} (1 - F(t)) dt.$$

(b) Since $\{X_n, n \geq 1\}$ is a sequence of monotone increasing non-negative r.v.'s and is assumed to converge to X, we have

$$(X_n > t) \uparrow (X > t)$$
.

This is because

i. if $\omega \in (X_n > t)$. i.e, $X_n(\omega) > t$, then

$$t < X_n(\omega) \le X_{n+1}(\omega)$$
, i.e., $\omega \in (X_{n+1} > t)$,

which shows that $(X_n > t) \subseteq (X_{n+1} > t)$;

ii. similarly, since $X_n \leq X \ \forall n, (X_n > t) \subseteq (X > t) \ \forall n$ so that

$$\bigcup_{n=1}^{\infty} (X_n > t) \subseteq (X > t);$$

iii. if $\omega \in (X > t)$, i.e., $t < X(\omega) = \lim_{n \to \infty} X_n(\omega)$, then there exist N_0 s.t. $X_n(\omega) > t \ \forall n \ge N_0$. In particular, $\omega \in (X_{N_0} > t)$, which shows that

$$(X > t) \subseteq \bigcup_{n=1}^{\infty} (X_n > t).$$

Now, by the monotone probability of probability measure, we have

$$1 - F_n(t) = \mathcal{P}(X_n > t) \uparrow \mathcal{P}(X > t) = 1 - F(t).$$

(c) For a non-negative r.v. X, let $\{X_n, n \geq 1\}$ be an increasing sequence of non-negative simple random variables defined as

$$X_n(\omega) = \begin{cases} \frac{i}{2^n}, & \text{if } \frac{i}{2^n} \le X(\omega) < \frac{i+1}{2^n} \text{ and } 0 \le i < n2^n, \\ n, & \text{otherwise.} \end{cases}$$

Then by Lemma 1.4.6, 3(a), 3(b) and the monotone converge theorem,

$$\mathcal{E}(X) = \lim_{n \to \infty} \mathcal{E}(X_n)$$

$$= \lim_{n \to \infty} \int_0^\infty (1 - F_n(t)) dt$$

$$= \int_0^\infty (1 - F(t)) dt,$$

where 1 - F(t), $1 - F_n(t)$ are Borel measurable function (probability distribution functions are Borel measurable) and we use the monotone convergence theorem for non-negative Borel measurable function in the last equality.

4. Since $\mathcal{E}(X)$ is well-defined and by problem 3,

$$\begin{split} \mathcal{E}(X) &= \mathcal{E}(X^+) - \mathcal{E}(X^-) \\ &= \int_0^\infty \mathcal{P}(X^+ > t) dt - \int_0^\infty \mathcal{P}(X^- > t) dt \\ &= \int_0^\infty \mathcal{P}(X > t) dt - \int_0^\infty \mathcal{P}(-X > t) dt \\ &= \int_0^\infty \mathcal{P}(X > t) dt - \int_{-\infty}^0 \mathcal{P}(X < t) dt \\ &= \int_0^\infty (1 - F(t)) dt - \int_{-\infty}^0 F(t^-) dt. \end{split}$$

5. Since f(x) is continuous,

$$\begin{split} F(t^-) &= \lim_{s \uparrow t} F(s) = \lim_{s \uparrow t} \mathcal{P}(X \le s) = \mathcal{P}(X < t) \\ &= \int_{(-\infty < x < t)} f(x) dx = \int_{(-\infty < x \le t)} f(x) dx = \mathcal{P}(X \le t) \\ &= F(t). \end{split}$$

Then by Exercise 4,

$$\mathcal{E}(X) = \int_0^\infty \mathcal{P}(X > t)dt - \int_{-\infty}^0 \mathcal{P}(X < t)dt$$
$$= \int_0^\infty (1 - F(t))dt - \int_{-\infty}^0 F(t)dt.$$

And let u = 1 - F(t), du = -f(t)dt, v = t, dv = dt, then

$$\int_0^\infty (1 - F(t))dt = \left[(1 - F(t)) \cdot t \right] \Big|_0^\infty - \int_0^\infty (-f(t) \cdot t) dt.$$

Similarly, let u = F(t), du = f(t)dt, v = t, dv = dt, then

$$\int_{-\infty}^{0} F(t)dt = \left[(F(t)) \cdot t \right] \Big|_{-\infty}^{0} - \int_{-\infty}^{0} (f(t) \cdot t) dt.$$

Thus,

$$\begin{split} \mathcal{E}(X) &= \int_0^\infty (1 - F(t)) dt - \int_{-\infty}^0 F(t) dt \\ &= \left[(1 - F(t)) \cdot t \right] \Big|_0^\infty - \int_0^\infty \left(-f(t) \cdot t \right) dt - \left(\left[(F(t)) \cdot t \right] \Big|_{-\infty}^0 - \int_{-\infty}^0 \left(f(t) \cdot t \right) dt \right) \\ &= \left[\mathcal{P}(X > t) \cdot t \right] \Big|_0^\infty - \int_0^\infty \left(-f(t) \cdot t \right) dt - \left(\left[(\mathcal{P}(X \le t)) \cdot t \right] \Big|_{-\infty}^0 - \int_{-\infty}^0 \left(f(t) \cdot t \right) dt \right) \\ &= \lim_{t \to \infty} t \cdot \mathcal{P}(X > t) - \int_0^\infty \left(-f(t) \cdot t \right) dt + \lim_{t \to -\infty} t \cdot \mathcal{P}(X \le t) + \int_{-\infty}^0 \left(f(t) \cdot t \right) dt \\ &= \int_{-\infty}^\infty t f(t) dt, \end{split}$$

by Exercise 2(c) in above.

6.

$$\mathcal{E}(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \int_{-\infty}^{\infty} x \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(x-\eta)^2}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{\infty} (y+\eta) \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{y^2}{2\sigma^2}} dy$$

$$= \int_{-\infty}^{\infty} y \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{y^2}{2\sigma^2}} dy + \eta$$

$$= -\frac{1}{\sqrt{2\pi}\sigma} \sigma^2 e^{-\frac{x^2}{2\sigma^2}} \Big|_{-\infty}^{\infty} + \eta$$

$$= \eta.$$

7. (a) (i) We assume that X is a non-negative r.v. and $\mathcal{S}(X)$ is the set of all non-negative simple r.v.'s Z s.t. $0 \leq Z \leq X$. Since X = 0 w.p.1, there exist a $\Lambda \in \mathcal{F}$ s.t. $\mathcal{P}(\Lambda) = 1$ and $X(\omega) = 0 \ \forall \ \omega \in \Lambda$. Then for each $Z \in \mathcal{S}(X)$

$$0 \le Z(\omega) \le X(\omega) = 0 \ \forall \ \omega \in \Lambda$$

and

$$Z(\omega) = 0 \ \forall \ \omega \in \Lambda.$$

Then Z belongs to a weighted finite partition $\{\Lambda_j; z_j\}_{j=1}^n$ with $\Lambda \subseteq \Lambda_1, Z_1 = 0$, and $\mathcal{P}(\Lambda_j) = 0 \ \forall j > 1$. Then

$$\mathcal{E}(Z) = \sum_{j=0}^{n} z_j \mathcal{P}(\Lambda_j) = 0 \cdot \mathcal{P}(\Lambda_1) + \sum_{j=2}^{n} Z_j \cdot 0 = 0$$

$$\Rightarrow \mathcal{E}(X) = \sup_{Z \in \mathcal{S}(X)} \mathcal{E}(Z) = 0.$$

(ii) Let X be a generic r.v.. If X = 0 w.p.1, then

$$X^{+} = 0$$
 w.p.1 and $X^{-} = 0$ w.p.1.

Thus

$$\mathcal{E}(X^+) = 0$$
 and $\mathcal{E}(X^-) = 0$

as shown in (i). This shows that $\mathcal{E}(X)$ is well-defined and

$$\mathcal{E}(X) = \mathcal{E}(X^+) - \mathcal{E}(X^-) = 0.$$

(b) Since X=Y w.p.1, we have $X^+=Y^+$ w.p.1 and $X^-=Y^-$ w.p.1. Let $Z=Y^+-X^+$. Then

$$Z^+ + X^+ = Y^+ + Z^- \Rightarrow \mathcal{E}(Z^+) + \mathcal{E}(X^+) = \mathcal{E}(Y^+) + \mathcal{E}(Z^-)$$

by Theorem 1.4.7. Since Z=0 w.p.1 and by part(a), $\mathcal{E}(Z)=\mathcal{E}(Z^+)$ $\mathcal{E}(Z^-)=0$, we have

$$\mathcal{E}(X^+) = \mathcal{E}(Y^+).$$

Similarly, we have

$$\mathcal{E}(X^-) = \mathcal{E}(Y^-).$$

Thus if $\mathcal{E}(X)$ is well-defined, then $\mathcal{E}(Y)$ is well-defined and

$$\mathcal{E}(Y) = \mathcal{E}(Y^+) - \mathcal{E}(Y^-) = \mathcal{E}(X^+) - \mathcal{E}(X^-) = \mathcal{E}(X).$$

8. By Exercise 3,

$$\mathcal{E}(X) = \int_0^\infty \mathcal{P}(X > t)dt = \sum_{n=1}^\infty \int_{[n-1,n)} \mathcal{P}(X > t)dt \ge \sum_{n=1}^\infty \mathcal{P}(X \ge n),$$

since $(X > t) \supseteq (X \ge n) \ \forall t \in [n-1,n), n = 1,2 \cdots$. On the other hand,

$$\mathcal{E}(X) = \int_0^\infty \mathcal{P}(X > t)dt$$

$$= \sum_{n=1}^\infty \int_{[n-1,n)} \mathcal{P}(X > t)dt$$

$$\leq \sum_{n=1}^\infty \mathcal{P}(X \ge n-1) \quad \text{since}(X > t) \subseteq (X \ge n-1) \forall \ n-1 \le t < n$$

$$= \sum_{n=0}^\infty \mathcal{P}(X \ge n)$$

$$= 1 + \sum_{n=1}^\infty \mathcal{P}(X \ge n),$$

since $(X \ge 0) = \Omega$.