EE565000 Stochastic Process Homework #3 2008 TA: Chien-Tien Wu

1. i.
$$\forall B \in \mathcal{B}^2, \ \mu_{X,Y}(B) \equiv \mathcal{P}((X,Y)^{-1}(B)) \ge 0.$$

ii. If $B_j, j = 1, 2, ...$ are mutually disjoint events in \mathcal{F} , then $(X, Y)^{-1}(B_j)$, j = 1, 2, ... are also mutually disjoint. Therefore,

$$\mu_{X,Y}(\bigcup_{j=1}^{\infty} B_j) = \mathcal{P}((X,Y)^{-1}(\bigcup_{j=1}^{\infty} B_j))$$
$$= \mathcal{P}(\bigcup_{j=1}^{\infty} (X,Y)^{-1}(B_j))$$
$$= \sum_{j=1}^{\infty} \mathcal{P}((X,Y)^{-1}(B_j))$$
$$= \sum_{j=1}^{\infty} \mu_{X,Y}(B_j).$$

iii.

$$\mu_{X,Y}(R^2) = \mathcal{P}((X,Y)^{-1}(R^2))) = \mathcal{P}(\Omega) = 1.$$

- 2. (a) i Since $f_{(X,Y)}(x,y)$ is a non-negative integrable function on \mathbb{R}^2 , $f_X(x) \equiv \int_R f_{(X,Y)}(x,y) dx$ is a non-negative function.
 - ii We have to show that $F_X(x) = \int_{-\infty}^x f_X(s) ds \quad \forall x \in \mathbb{R}$. Note that

$$F_X(x) = \mathcal{P}(X \le x)$$

= $\mathcal{P}(X \le x, Y \in \mathbb{R})$
= $\int_{-\infty}^x \int_{-\infty}^\infty f_{X,Y}(s,t) dt ds$
= $\int_{-\infty}^x \left(\int_{\mathbb{R}} f_{X,Y}(s,t) dt \right) ds$
= $\int_{-\infty}^x f_X(s) ds.$

By i and ii, we have $f_X(x)$ is a density function of X. Similarly, $f_Y(y)$ is a density function of Y.

$$\begin{split} f_X(x) &= \int_R f_{X,Y}(x,y) dy \\ &= \frac{1}{2\pi\sigma_X \sigma_Y \sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\frac{x^2}{\sigma_X^2}} \int_R e^{-\frac{1}{2(1-\rho^2)} \left(\frac{y^2}{\sigma_Y^2} - \frac{2\rho xy}{\sigma_X \sigma_Y}\right)} dy \\ &= \frac{1}{\sqrt{2\pi}\sigma_X} \left(e^{-\frac{1}{2(1-\rho^2)}\frac{x^2}{\sigma_X^2}} \right) \left(e^{\frac{1}{2(1-\rho^2)}\frac{\rho^2 x^2}{\sigma_X^2}} \right) \int_R \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2}\sigma_Y} e^{-\frac{1}{2(1-\rho^2)} \left(\frac{y}{\sigma_Y} - \frac{\rho x}{\sigma_X}\right)^2} dy \\ &= \frac{1}{\sqrt{2\pi}\sigma_X} e^{-\frac{x^2}{2\sigma_X^2}}. \end{split}$$

Similarly, $f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_Y}} e^{-\frac{y^2}{2\sigma_Y^2}}.$

- 3. X_1, X_2, \ldots, X_n are r.v.'s taking values on the set $\{0, 1\}$. We can partition Ω into $X^{-1}(0) = E_i$ and $X_i^{-1}(1) = E_i^c$. Let $\mathcal{G}_i = \{E_i, E_i^c\}$, and \mathcal{S} be the collection of subsets $A = \bigcap_{i=1}^n F_i$, where $F_i \in \mathcal{G}_i$. Then \mathcal{S} is a partition of Ω and the σ -algebra $\mathcal{F}(X_1, X_2, \ldots, X_n)$ is a collection of all possible unions of sets in \mathcal{S} .
- 4. An uncountable partition, $R = \bigcup_{r \in R} \{r\}$. A countable example, $R = (-\infty, 0] \cup (0, \infty)$. Yes, both partitions are Borel measurable.
- 5. (a) $\inf_n a_n = -1$, $\sup_n a_n = 1$, $\liminf_n a_n = -1$, $\limsup_n a_n = 1$, $E = \{1, -1\}.$
 - (b) $\inf_n a_n = -e^{-1}$, $\sup_n a_n = e^{-1}$, $\liminf_n a_n = -e^{-1}$, $\limsup_n a_n = e^{-1}$, $E = \{e^{-1}, -e^{-1}\}.$
 - (c) $\inf_n a_n = -\infty$, $\sup_n a_n = \infty$, $\liminf_n a_n = -\infty$, $\limsup_n a_n = \infty$, $E = \{-\infty, \infty\}.$
 - (d) $\inf_n a_n = \sup_n a_n = \liminf_n a_n = \limsup_n a_n = 0$, $E = \{0\}.$
 - (e) $\inf_n a_n = -\infty$, $\sup_n a_n = \infty$, $\liminf_n a_n = -\infty$, $\limsup_n a_n = \infty$, $E = \{-\infty, \infty\}.$
 - (f) $\inf_n a_n = 0$, $\sup_n a_n = \frac{2}{3}$, $\liminf_n a_n = 0$, $\limsup_n a_n = \frac{2}{3}$, $E = \{0, \frac{1}{3}, \frac{2}{3}\}.$
- 6. Given an $\omega \in \Omega$, there is one and only one set $\Lambda_k \in \{\Lambda_j, j \ge 0\}$ such that $\omega \in \Lambda_k$. Thus $\sup_j 1_{\Lambda_j}(\omega) = 1$ and $\inf_j 1_{\Lambda_j}(\omega) = 0, \forall \omega$, and then $\sup_j 1_{\Lambda_j} = 1_{\Omega} = 1$ and $\inf_j 1_{\Lambda_j} = 1_{\phi} = 0$.

Since $\bigcup_{j \ge k} \Lambda_j \downarrow \phi$ as $k \to \infty$, $\limsup_{j \ge k} \mathbb{1}_{\Lambda_j} = \inf_l \sup_{j \ge l} \mathbb{1}_{\Lambda_j} = \mathbb{1}_{\phi} = 0$ and $\liminf_j \mathbb{1}_{\Lambda_j} = \sup_k \inf_{j \ge k} \mathbb{1}_{\Lambda_j} = \mathbb{1}_{\phi} = 0$.